用户名: 密码: 验证码:
塔中地区下古生界储层评价与分布
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
塔中地区下古生界碳酸盐岩储层具有良好的勘探前景,已有的研究表明该地区碳酸盐岩储层类型具有多样性、复杂性,储层非均质性强的特点,目前对储层分布规律认识不清,从而制约了勘探进展。因此,深入研究塔中地区不同类型碳酸盐岩储层特征,客观评价储层的质量和空间分布规律是很有必要的。
     论文在吸收前人研究的基础上,充分利用录井、钻井、测井和测试分析资料,对研究区下古生界碳酸盐岩储层物性特征、孔隙结构特征、储集空间等进行了研究,完成了储层分类和分布特征等评价工作。
     岩心物性分析表明塔中奥陶系储层为低孔低渗致密岩石。良里塔格组、鹰山组储层相对发育,个别层段发育有Φ>4%的样品,具有较好的储集性,白云岩的孔隙度略高于灰岩。地层基质渗透率很低,良里塔格组、鹰山组样品中出现有较高渗透率样品,反映储层中发育有微裂缝。塔中地区下古生界碳酸盐岩孔隙类型多样化,部分储层为孔隙较大、喉道较粗的孔隙结构,大部分为致密岩石孔隙结构特征。研究发现白云岩储层是研究区内非常重要的储层类型,晶间孔及晶间溶、溶蚀孔洞和岩溶缝孔洞是重要且普遍发育的储渗空间类型。
     利用BP神经网络原理解释了研究区19口井的孔隙度,取得了较好的结果。根据测井解释孔隙度值对各井储层进行了分类评价。良里塔格组、鹰山组及蓬莱坝组地层中发育一定厚度的Ⅰ、Ⅱ类储层,Ⅰ、Ⅱ类储层累计厚度与地层厚度比约0.2-0.3。储层以薄层状分布于地层中,也可见单层厚度10米以上的储层。
     良里塔格组礁滩相储层是区内有利储层,颗粒灰岩中溶蚀孔隙、溶蚀孔洞发育,孔洞规模较小,为溶蚀孔洞型储层。储层主要分布在上部的泥质条带灰岩段和中部颗粒灰岩段。塔中Ⅰ号断裂带是良里塔格组礁滩相储层发育的有利区带,卡1区块良里塔格组储层不发育。
     鹰山组及蓬莱坝组储层孔隙空间多为晶间孔、溶孔、溶洞、岩溶缝洞等,但孔洞规模较小,主要为白云岩溶蚀孔洞缝型储层。储层多分布在鹰山组上部。鹰山组及蓬莱坝组储层发育区奥陶系顶部一般缺失桑塔木组。
The exploration prospect of Lower Paleozoic carbonate reservoirs in Tazhong area is quite good, but the existisng researches have shown that the types of carbonate reservoirs in this area are characterized by diversity and complication, and the reservoirs are of strong heterogeneity. In addition to the condition that the reservoir distribution rule is not quite clear, the exploration process is constrained. So, it is quite necessary to proceed further study about carbonate reservoirs in Tazhong area and objectively evaluate the reservoir quality and its spatial distribution characteristics.
     On the basis of previous studies and by full use of analysis data like mud logging, drilling, logging and well test data, the author has researched the reservoir physical property, pore structure characteristics and storage space, and has finished the evaluation of reservoir characteristics and spatial distribution characteristics.
     The core test results have shown that the Ordovician reservoirs belong to low-porosity and low-permeability rocks. The reservoir in Lianglitage Formation and Yingshan Formation develop better; porosity of samples in some layers is higher than 4%, which indicates better reservoir performance; porosity of dolomites is higher than limestone. The formation matrix permeability is quite low, but there are samples in Lianglitage Formation and Yingshan Formation have very high permeability, which indicates micro-fractures in the reservoir. The pore types in studying area are diverse, some reservoirs are with big pores and thick throats, but most the rocks belong to dense carbonate reservoirs. The researches have also shown that dolomites are the main reservoir types in studying area, and intercrystalline pore and intercrystalline dissolved pore, corroded pore and cave and cleft in karst are the most important and developed infiltration and storage space.
     Based on principles of BP neural network theory, the author has interpreted the porosity of 19 wells and has archived good results. On the basis of interpreted porosity, the reservoirs of every single well have been classified and evaluated. TypeⅠa nd typemⅡreservoirs mainly distribute in Lianglitage Formation, Yingshan Formation and Penglaiba Formation; the ratio of typeⅠand typeⅡreservoirs’thickness to total formation’s thickness is 0.2-0.3. The reservoirs distribute laminatedly in the formation and reservoir of which thickness is higher than 10m could also be found.
     Lianglitage Formation reef and shoal facies is the advantageous area for reservoir distribution. Dissolved pores and dissolved caves are developed in grain limestone, because the pores and caves are small, the reservoirs belong to dissolved vug reservoir. The reservoirs mainly distribute in the upper shale strip limestone section and the middle grain limestone section. The prospect area for reef and shoal facies reservoirs of Lianglitage Formation is located in Tazhong No.1 fault belt and reservoirs of Lianglitage Formation in Katake No.1 block are not developed.
     Pore types of Yingshan Formation and Penglaiba Formation are mainly intercrystalline dissolved pore, dissolved pore, dissolved vug and karst fracture-cavity, but the vugs and pores are small. The reservoirs belong to dissolved vug limestone reservoir. Yingshan Formation mainly develops in the upper section. The reservoir in Yingshan Formation and Penglaiba Formation are well developed in areas where Sangtamu Formation is lost in the top of Ordivision system.
引文
[1]康玉柱.塔里木盆地大油气田勘探方向[J].新疆石油地质,2004,25(6):581-583.
    [2]赵川喜,党俊芳,赵玉玲等.塔里木盆地勘探区块碳酸盐岩油气勘探制约因素及勘探方向[J].科协论坛,2009,12:116-117.
    [3]孙龙德,李曰俊,江同文等.塔里木盆地塔中低凸起:一个典型的复式油气聚集区[J].地质科学,2007,(03):602-620.
    [4]金之钧,王清晨.中国典型叠合盆地与油气成藏研究新进展——以塔里木盆地为例.中国科学D辑:地球科学[J],2004,34(增刊Ⅰ):1-12.
    [5]翟光明,何文渊.塔里木盆地石油勘探实现突破的重要方向[J].石油学报,2004,25(1):1-7.
    [6]黎玉战,徐传会.塔里木盆地塔河油田发现历程及其意义[J].石油实验地质,2004,26(2):180-186.
    [7]翟晓先,云露.塔里木盆地塔河大型油田地质特征及勘探思路回顾[J].石油与天然气地质,2008,(05). 565-573.
    [8]何发岐,俞仁连,韩振华等.塔里木盆地塔河油田近年来勘探主要成果与下一步勘探方向[J].石油实验地质,2004,26(01). 23-27.
    [9]康玉柱.塔里木盆地大气田形成的地质条件[J].石油与天然气地质,2001,(01):21-25.
    [10]邹才能,李启明,邬光辉等.塔里木盆地寒武-奥陶系碳酸盐岩基本特征与勘探方向[J].新疆石油地质,2009,(04). 450-453.
    [11]周新源,王招明,杨海军等.中国海相油气田勘探实例之五塔中奥陶系大型凝析气田的勘探和发现[J].海相油气地质,2006,(01):45-51.
    [12]金晓辉,闫相宾,李铁军等.塔里木盆地油气勘探实践与发现规律探讨[J].石油与天然气地质,2008,(01):45-60.
    [13]康玉柱.塔里木盆地寒武—奥陶系油气勘探重大进展及建议[J].中国西部油气地质,2006,(03):237-240.
    [14]康玉柱.塔里木盆地油气勘探实践论谈[J].中国西部油气地质,2005,(01):4-8.
    [15]赵宗举,贾承造,周新源等.塔里木盆地塔中地区奥陶系油气成藏主控因素及勘探选区[J].中国石油勘探,2006,(04) :6-16.
    [16]范嘉松.世界碳酸盐岩油气田的储层特征及其成藏的主要控制因素[J].地学前缘,2005,12(3):23-30.
    [17]范嘉松.中东地区形成世界级碳酸盐岩油气田的基本要素[J].海相油气地质,2003,(Z1) :61-67.
    [18] S.J. Mazzullo, George V. Chilingarian。Developments in Petroleum Science, Volume 30, 1992:59-108
    [19] Journal of Petroleum Science and Engineering, Volume 47, Issues 1-2, 15 May 2005, Pages 35-50
    [20] Ildar Batyrshin, Leonid Sheremetov, Mikhail Markov, Alexandra Panova. Journal of Petroleum Science and Engineering, Volume 47, Issues 1-2, 15 May 2005:35-50
    [21] Shaun Hayton, Campbell S. Nelson, Steven D. Hood. A skeletal assemblage classification system for non-tropical carbonate deposits based on New Zealand Cenozoic limestonesOriginal Research Article Sedimentary Geology, Volume 100, Issues 1-4, December 1995: 123-141
    [22] Loucks R G. Paleocave carbonate reservoirs,origins,burial-depth modifications,spatial complexity,and reservoir implications[J]. AAPG Bulletin,1999,83(11):1795 -1834.
    [23] Choqutte P W and Steinen R P. Mississippian oolite and non-supratidal dolomite reservoirs in the Genevieve Formation,North Bridgeport Field,Illinois Basin[M]// Roehl P O and Choquette P W,eds. ,Carbonate Petroleum Reservoir,New York,Springer-Verlag,1985:207-225.
    [24]罗平,张静,刘伟等.中国海相碳酸盐岩油气储层基本特征[J].地学前缘,2008,(01) :36-50.
    [25]王建坡,沈安江,蔡习尧等.全球奥陶系碳酸盐岩油气藏综述[J].地层学杂志,2008,(04):363-373.
    [26]赵宗举,李宇平,吴兴宁等.塔里木盆地塔中地区奥陶系特大型岩性油气藏成藏条件及勘探潜力[J].中国石油勘探,2004,(05):12-21.
    [27]江怀友,宋新民,王元基等.世界海相碳酸盐岩油气勘探开发现状与展望[J].海洋石油,2008,(04):6-13.
    [28]邬光辉,刘胜,汪海等.塔中地区奥陶系碳酸盐岩裂缝特征与评价[J].中国石油勘探,1999,(04) .
    [29]张松扬,范宜仁,程相志等.塔中地区奥陶系碳酸盐岩储层测井评价研究[J],石油物探,2006(06):630-637.
    [30]樊太亮,于炳松,邓宏文等.塔里木盆地寒武-奥陶系沉积体系及储层评价研究中国石化西部新区勘探指挥部项日报告,2004.
    [31]代宗仰,周翼,陈景山等.塔中中上奥陶统礁、滩相储层的特征及评价[J].西南石油学院学报,2001,(04):1-4.
    [32]智慧文,杨志彬,肖兹等.塔河油田奥陶系碳酸盐岩储层孔隙度测井解释方法研究新疆石油天然气,2007(04):5-8.
    [33]焦伟伟,李建交,田磊.中国海相碳酸盐岩优质储层形成的地质条件[J].地质科技情报,2009(06):64-70.
    [34]康玉柱.中国古生界油气勘探前景展望[J].地质力学学报,2006,(01):1-5.
    [35]金之钧等.中国海相碳酸盐岩层系油气勘探特殊性问题[J].地学前缘,2005(03):15-22.
    [36]成永生.渤海湾盆地南堡凹陷周边地区寒武—奥陶系碳酸盐岩储层研究[D].中南大学,2008.
    [37]郑和荣,吴茂炳,邬兴威等.塔里木盆地下古生界白云岩储层油气勘探前景[J].石油学报,2007,(02):1-8.
    [38]杨宁,吕修祥,周新源等.塔里木盆地碳酸盐岩油气聚集带[J].地质学报,2006,(03) .
    [39]周新源,杨海军,邬光辉等.塔中大油气田的勘探实践与勘探方向[J].新疆石油地质,2009,(02):149-152.
    [40]梁狄刚.塔里木盆地九年油气勘探历程与回顾(续)[J].中国石油勘探,1999,(03):398-405.
    [41]孙金山,李匡时,黎祖汉等.塔中地区古生界石油地质特征及勘探方向[J].断块油气田2004(02):10-13.
    [42]俞仁连,闫相宾,金晓辉等.塔里木盆地研究进展与勘探方向[J].石油与天然气地质,2005,(05):598-604.
    [43]贾承造.中国塔里木盆地构造特征与油气[M].北京:石油工业出版社,1997.
    [44]王嗣敏,吕修祥.塔中地区奥陶系碳酸盐岩储层特征及其油气意义[J].西安石油大学学报(自然科学版),2004,(04):72-76.
    [45]黎平,陈景山,王振宇等.塔中地区奥陶系碳酸盐岩储层形成控制因素及储层类型研究[J].天然气勘探与开发,2003,(01) :37-42.
    [46]刘春晓.塔中隆起西部围斜区奥陶系沉积与储层特征研究[D].中国科学院研究院,2010.
    [47]邬光辉,琚岩,杨仓等.构造对塔中奥陶系礁滩型储集层的控制作用[J].新疆石油地质,2010,(05) :467-470.
    [48]何治亮,陈强路,钱一雄等.塔里木盆地中央隆起区油气勘探方向[J].石油与天然气地质,2006,(06):769-778.
    [49]李铁军,闫相宾.塔里木盆地沙雅、卡塔克和巴楚隆起油气成藏主控因素对比与评价[J].石油与天然气地质,2007,(06) :721-730.
    [50]王子煜,陆克政,漆家福等.塔里木盆地塔中凸起的构造演化及其与油气藏的关系[J].石油大学学报(自然科学版),1998,(04):14-17.
    [51]王招明,张丽娟,王振宇等.塔里木盆地奥陶系礁滩体特征与油气勘探[J].中国石油勘探,2007,(06):1-8.
    [52]刘文,阎相宾,李国蓉等.塔河油田奥陶系储层研究[J].新疆地质,2002,(03):201-204.
    [53]黄擎宇.塔中地区奥陶系碳酸盐岩储层成因机理及主控因素研究[D].成都理工大学,2010.
    [54]李丕龙.塔里木盆地中央隆起带油气突破领域与勘探方向[J].石油与天然气地质,2007,(05):576-589.
    [55]何碧竹,焦存礼,王生朗等.塔里木盆地塔中地区上奥陶统近环带状台地边缘相带特征及勘探前景[J].地质学报,2009,(07):1039-1046.
    [56]李洪铎.塔中地区油气成藏条件分析及有利勘探区块预测[J].中国西部油气地质,2006,(03) :249-256.
    [57]王招明,张丽娟,王振宇等.塔里木盆地奥陶系礁滩体特征与油气勘探[J].中国石油勘探,2007,(06):1-8.
    [58]田纳新,胡俊卿等.卡塔克2、3、4区块油气成藏条件及勘探目标研究中石化河南油田分公司研究院内部研究报告.
    [59]邬光辉,李启明,张宝收等.塔中Ⅰ号断裂坡折带构造特征及勘探领域[J].石油学报,2005,(01):27-37.
    [60]计雄飞.塔里木盆地主干断裂特征及其演化过程研究[D].成都理工大学,2008.
    [61]汤良杰.略论塔里木盆地主要构造运动[J].石油实验地质,1997,19(2):108-114.
    [62]周小军.塔里木盆地卡塔克古隆起不整合和构造特征及其演化[D].北京:中国地质大学,2006.
    [63]王步清,黄智斌,马培领等.塔里木盆地构造单元划分标准、依据和原则的建立[J].大地构造与成矿学, 2009, (01):86-93.
    [64]赵宗举,周新源,范国章.塔里木盆地塔中地区主要构造圈闭形成期分布及成藏意义[J].海相油气地质,2006,(02) :1-8.
    [65]戴福贵,杨克绳,刘东燕等塔里木盆地地震剖面地质解释及其构造演化[J].中国地质, 2009,(04):747-760
    [66]陈清清.卡塔克隆起带早古生代构造样式和构造演化研究[D].北京:中国地质大学,2007.
    [67]张克银.卡塔克古隆起多旋回构造演化与油气多期动态成藏[D].成都:成都理工大学,2006.
    [68]李传新,贾承造,李本亮等.塔里木盆地塔中低凸起北斜坡古生代断裂展布与构造演化[J].地质学报. 2009(08):1073-1065.
    [69]周爱红,孙玥,冯宇.塔里木盆地塔中地区卡塔克古隆起演化和沉降-反转史[J].中国石油大学学报(自然科学版),2011,(01):28-33.
    [70]张小兵,赵锡奎.塔里木盆地塔中隆起构造演化与油气关系[J].沉积与特提斯地质,2004,(02) .
    [71]解晨,王保才,尚雅珍等.塔里木盆地塔中低隆起构造演化对油气藏的控制[J].大庆石油地质与开发,2003,(02):4-6.
    [72]刘韵,赵锡奎,李坤等.塔中卡塔克隆起古生界主要不整合面与油气成藏关系[J].新疆石油地质,2009(06):683-685.
    [73]苗继军,李明和,杜洪莲等.塔中低凸起东部构造解析及勘探领域分析[J].天然气地球科学,2010(02)::257-262.
    [74]钱利.塔中地区卡1区块构造演化与油气成藏关系[D].北京:中国地质大学(北京),2006.
    [75] Davies G R ,Smith J L B. Structurally controlled hydrothermal dolomite reservoir facies :An Overview[J]. AAPG Bulletin,2006,90(11):1641-1690.
    [76] Flügel,E. Microfacies of Carbonate Rocks. [M]. Berlin,Springer,2004.
    [77] Ahr. W. M,Geology of Carbonate Reservoir[M]. Wiley,New jersey,2008.
    [78] Cantrell,D. L. ,P. K. Swart,and R. M. Hagerty. Genesis and characterization of dolomite,Arab-D reservoir,Ghawar field,Saudi Arabia[J]. GeoArabia,2004,9(2):1–26.
    [79] Smith L B. Origin and reservoir characteristics of upper Ordovician Trenton -black river hydrothermal dolomite reservoirs in New York[J]. AAPG Bulletin,2006,90(11):1691-1718.
    [80]翟振飞.塔里木盆地塔中地区奥陶系层序地层及沉积特征研究[D].成都:成都理工大学,2010.
    [81]陈景山,李忠,王振宇等.塔里木盆地奥陶系碳酸盐岩古岩溶作用与储层分布[J].沉积学报. 2007,25(6):858-868.
    [82] Ehrenberg S N,Porosity destruction in carbonate platforms[J]. Journal of Petroleum Geology,2006,29(1): 41-52.
    [83] Land L S. The origin of massive dolomite[J]. Journal of Geological Education,1985,33:112-125.
    [84]朱井泉,吴仕强,王国学等.塔里木盆地寒武-奥陶系主要白云岩类型及孔隙发育特征[J].地学前缘,2008,15(2):67-79.
    [85]陈强路,何治亮,李思田等.塔中地区奥陶系碳酸盐岩储层与油气聚集带[J].石油实验地质,2007(4):367-372.
    [86]何碧竹,焦存礼,贾斌峰等.塔里木盆地塔中西部地区奥陶系岩溶作用及对油气储层的制约[J].地球学报,2009(3): 395-403.
    [87]李慧莉,钱一雄,沙旭光等.塔里木盆地卡塔克隆起西北倾没端良里塔格组碳酸盐岩储层发育特征与影响因素[J].石油与天然气地质,2010(01):69-75.
    [88]沈安江,王招明,杨海军等.塔里木盆地塔中地区奥陶系碳酸盐岩储层成因类型、特征及油气勘探潜力[J].海相油气地质,2006,(04):1-12.
    [89]孙玉善,韩杰,张丽娟等.塔里木盆地塔中地区上奥陶统礁滩体基质次生孔隙成因——以塔中62井区为例[J].石油勘探与开发. 2007,34(5):541-547.
    [90]李凌,谭秀成,陈景山等.塔中北部中下奥陶统鹰山组白云岩特征及成因[J].西南石油大学学报. 2007,29(1):34-36.
    [91]顾家裕.塔里木盆地下奥陶统白云岩特征及成因[J].新疆石油地质,2000,21(2):120-122.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700