用户名: 密码: 验证码:
列车牵引电机低速运行优化控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:一方面,社会生活和经济发展对交通运输能力的要求不断提高,列车运行速度越来越高,另一方面人们越来越重视列车乘坐舒适性,这就要求列车控制在起动、制动等各个运行过程中做到既快又稳。同时,能源和环境问题是全球化重要课题,而列车牵引电机功率非常大,所以效率优化对于列车牵引电机控制具有重要意义。为此,本文针对列车起动、制停过程等低速运行工况下牵引电机优化控制问题进行了研究。
     首先,本文分析了列车运行性能与牵引电机控制之间的关系,从而明确如何改进电机控制才能提高列车运行性能。具体来说,列车运行舒适度主要受牵引力/制动力曲线影响;平稳制动、准确停车要依靠先进的制动技术;而提高牵引电机运行效率是实现节能减排的重要途径之一。在此基础上,本文对提高牵引电机控制精度的关键技术及现有研究成果进行了总结和讨论。
     接着,本文根据列车运行要求对牵引电机控制器进行了优化设计,主要包括牵引力曲线优化设计、制动力优化设计和效率优化控制3个部分。(a)牵引力曲线优化设计:根据列车起动过程快速性和舒适度两方面的要求,本文采用脉冲基3次多项式S曲线作为牵引力曲线,根据列车速度实时计算牵引力参考值,并且进行列车运行阻力计算误差校正。(b)制动力优化设计:在对比各种列车制动方式优缺点的基础上,论文选择再生电制动作为主要制动方式;列车制停过程制动力参考值计算方法与起动过程相似;此外,论文还讨论了行车制动和驻车制动之间的切换配合问题。(c)效率优化控制:矢量控制方式下,根据电机工作点调整励磁电流和转矩电流、合理分配电机的铁损和铜损可以提高其运行效率。在此过程中,等效铁损电阻计算是重要一环,只有准确估算出铁损电阻效率优化控制才能发挥出应有效果。
     由于牵引电机测速编码器分辨率比较低,列车低速运行时速度测量采样率进一步降低容易导致磁场定向准确度下降。为了提高电机低速运行时磁场定向准确度,本文对磁链观测器做了进一步研究,在分析各种磁链观测器模型特点的基础上,提出了一种改进电压型磁链观测器。电压模型磁链观测器精度主要受反电动势零漂、定子电阻误差和定子电压计算误差影响,本文围绕反电动势零漂和定子电阻误差的辨识和校正对电压型磁链观测器做了改进。根据磁链观测结果直流分量与反电动势零漂之间的关系,以磁链观测值直流分量作为反馈进行反电动势零漂估计和校正,通过闭环控制达到去零漂的效果。在分析定子电阻误差对磁链观测影响的基础上,本文构造了一个以两相同步旋转坐标系下电流分量为自变量、能够反映定子电阻误差大小和符号的变量,通过闭环控制使该中间变量趋近于0从而消除定子电阻误差。
     针对列车速度测量编码器分辨率低的实际情况,论文提出了一种连续中断T法速度测量方法:利用DSP捕获单元检测编码器脉冲上升沿和下降沿(双沿检测),通过软件方法实现每次捕获都触发捕获中断并在中断子程序中进行速度计算,从而提高速度采样率、减小测速时间延迟;同时,通过合理计算方法规避了编码器非50%占空比对双沿检测速度测量的影响。该方法能够最大程度地利用编码器脉冲的有效信息,而且不需要增加或改动硬件设施,只需合理设置和使用DSP捕获单元即可实现。对有两路输出脉冲的编码器而言,采用这种测速方式后测速延时比通常方法减小一半,电机低速运行动态性能和稳态性能有明显提高。
     目前,大多数交流牵引列车制停过程中会在速度较低时从电制动切换为空气制动,空气制动方式虽然可靠但缺点也很明显,如精确控制难度大,制动盘磨损、定期更换增加人力、财力成本,并且制动盘粉尘、噪音也会造成环境污染。如果能够完全利用电制动实现列车制停、空气制动仅作为驻车制动,就能很好地解决这些问题。电制动制停的关键在于低速区制动力输出能力、制停过程平稳和列车到达零速时电制动、空气制动的平滑切换。因为列车质量和系统惯性非常大,所以列车速度变化缓慢,可以认为速度是连续变化的。根据这一特点和魏尔斯特拉斯(Weierstrass)定理,本文利用多项式曲线拟合进行列车速度估算,并且采用最小二乘法确定多项式系数进一步提高拟合和估算精度。仿真结果表明根据曲线拟合估算值进行零速判断更加准确。
     本论文研究内容的相关实验在交流传动互馈试验系统上进行,所以本文还对试验系统稳定性进行了分析,主要包括试验系统主电路结构稳定性和电机控制扰动对系统稳定性的影响两部分。在分析试验系统主电路结构稳定性时,假设逆变器-电机处于理想控制,并把它们等效为一个由直流电压和电机工作点决定的受控电流源,进而利用小信号模型分析系统参数对稳定性的影响。然后,通过理论推导得到逆变器直流母线电压/电流变化量与电机控制扰动之间的传递函数,根据各传递函数的频率特性分析了电机控制扰动对直流母线电压/电流的影响。理论分析和实验验结果都表明直流母线电感越大、阻尼电阻越小、直流母线电容越小、电机速度越低、直流母线电压越低、负载转矩越大,系统稳定性越差。
     图93幅,表3个,参考文献104篇。
ABSTRACT:Society and economy development require stronger transportation ability, so locomotive need higher speed and start-up/brake quickly to raise average velocity. Meanwhile, people need ride comfort, which implies locomotive speed should be regulated stably especially during start-up/brake process. There is a conflict between these two demands. Furthermore, energy and environment problem are global important issues, thus efficiency optimization is very meaningful for so large power AC traction motor. To overcome these problems, this thesis researches optimization control strategy of low speed operation and associated technical points.
     First of all, this thesis analyzes relationship between locomotive operation performance and traction motor control, which is useful for making sure how to optimize motor control. Specifically speaking, ride comfort is mainly determined by traction/braking force curve and their control accuracy; steady deceleration and accurate position shut down depends on braking technique; and motor efficiency optimization is one of the most important methods for low cost operation. Based on the analysis, this thesis discusses key techniques for high performance motor control, sums up existent research and studies remaining problems.
     Then, this thesis proposes a traction motor optimization controller, which includes three parts:traction force curve optimization, braking force optimization and motor efficiency optimization.(a) Traction force curve optimization:To realize quick and comfort start-up, pulse template polynomial S-curve is used for traction force reference calculation, and locomotive operation resistance force calculation error is corrected.(b) Braking force optimization:Among many kinds of braking force, regenerative electric brake is chosen. Braking force reference calculation is similar to traction force. During braking, motor controller detects running speed, estimates remaining time for shut down, and sends signal to air braking system in ahead for staying brake.(c) Efficiency optimization is realized through assigning copper loss and iron loss by adjusting magnetizing current and torque current in vector control system. And equivalent iron loss resistance estimation is very important for efficiency optimization control.
     Flux orientation is realized by integrating stator angle frequency in indirect vector control system, but orientation accuracy would deteriorate when traction motor operates in low speed area because of speed measurement sampling frequency decrease. After comparing several kinds of flux model, this thesis proposes an improved voltage model flux observer. The main demerits of voltage model are DC offset in EMF and stator resistance error, because they will result in magnitude and phase error in estimation. Here, a new kind of EMF drift and motor stator resistance error estimator is proposed, with which the errors can be estimated and compensated online.
     Generally, speed encoder mounted on locomotive has low resolution, so this thesis proposes a consecutive interrupt T-method for speed measurement. Both up-edge and down-edge are captured for speed calculation and every capture generates an interrupt request by setting DSP capture unit with software. Besides, speed calculation uses a smart method to evade encoder pulse duty coherence error. With this method, speed measurement time delay decreases obviously. What's more, this method does not need any hardware modification; it is realized by rational DSP configuration in software. Motor control performance in low speed area is improved evidently with this method.
     At present, most vehicles mount multi kinds of braking force, and electric braking would be cut off when speed is low, leaving air-braking only until locomotive stops. Air-braking is dependable, but it results in too much human and financial cost, noise and dust. Pure electric brake is very meaningful, while the problem is how to improve motor control performance and zero speed detection during braking down. Based on large inertia and mass of locomotive, traction motor speed could be considered as continuous, so polynomial curve fitting is reasonable. With least-squares polynomial estimation results, both zero speed detection and motor control performance can be improved.
     At last, this thesis does research on test-bed stability. The analysis is achieved by two steps. First step:assume induction motor is under ideal control, and DC bus stability is analyzed with small signal model of test-bed. Second step:transfer functions between motor variables disturbance and DC bus voltage/current displacement are derived. With frequency characteristic of these transfer functions, test-bed stability is compared with ordinary AC-DC-AC driving system, and oscillation phenomena during experiment have a rational theory explanation.
引文
[1]俞展猷.日本新干线高速列车的发展历程.机车电传动.2003.(2).pp:1-7.
    [2]刘友梅.论电力牵引轨道交通的技术发展.电力机车技术.2000.(3).pp:1-4,7.
    [3]S Sone, M Ashiya.An innovative traction system from the viewpoint of braking.Developments in Mass Transit Systems,1998. International Conference on (Conf. Publ. No.453).1998.20-23 Apr 1998.pp:36-41.
    [4]T-W Chun, M-K Choi, B K Bose.A novel startup scheme of stator-flux-oriented vector-controlled induction motor drive without torque jerk.IEEE Transactions on Industrial Applications.2003.39(3).pp:776-782.
    [5]C Guarino, Lo Bianco, M Romano. Bounded velocity planning for autonomous vehicles.Intelligent Robots and Systems,2005. (IROS 2005).2005 IEEE/RSJ International Conference on.2005.2-6 Aug.2005.pp:685-690.
    [6]S Kwangsoo, L Youngbum, S Yongsoo, et al.Ride Comfort Analysis based on Heart Rate and Blood Pressure Variability according to Changed Tilting Angle at Tilting Train Simulator.Smart Manufacturing Application,2008. ICSMA 2008. International Conference on.2008.9-11 April 2008.pp:570-574.
    [7]S J Chen, H D Li, B Z Ma, et al.Ride comfort control of electrical vehicle in the process of speed regulation. WCICA2006.2006.pp:8297-8300.
    [8]P A Cook. Stable control of vehicle convoys for safety and comfort. IEEE Transactions on Automatic Control.2007.52(3).pp:526-531.
    [9]O Gerelli, C G L Bianco.A discrete-time filter for the on-line generation of trajectories with bounded velocity, acceleration, and jerk.Robotics and Automation (ICRA),2010 IEEE International Conference on.2010.3-7 May 2010.pp:3989-3994.
    [10]万国亮.关于客货列车平稳操纵的探讨.内燃机车.2003.(5).pp:22-25.
    [11]刘毅.对列车起动时平稳操纵的探讨.内燃机车.2002.(5).pp:13-14.
    [12]尚志伟.25k快速客车运行中纵向冲动原因浅析.铁道机车车辆.2001.(1).pp:45.
    [13]何洲红.CRH2动车组车钩缓冲装置及其性能分析.科技信息.2008.(20).pp:433-434.
    [14]M D Henshaw.Developments in Control Systems for Diesel-Electric Locomotives.Transactions of the American Institute of Electrical Engineers.1947.66(1).pp:233-241.
    [15]池耀田.轻轨车辆的制动系统.地铁与轻轨.2001.(4).pp:35-39.
    [16]旭望月,姚永康.纯电制动.变流技术与电力牵引.2005.(5).pp:18-19.
    [17]曾辉.轨道交通车辆软制动系统设计[学位论文].上海.上海交通大学.2009.pp:12-14.
    [18]R Barrero, J Mierlo, X Tackoen.Energy savings in public transport.Vehicular Technology Magazine, IEEE.2008.3(3).pp:26-36.
    [19]W Gunselmann.Technologies for increased energy efficiency in railway systems.Power Electronics and Applications,2005 European Conference on.2005.1-10.
    [20]R D Lorenz, S M Yang.Efficiency-optimized flux trajectories for closed-cycle operation of field-orientation induction machine drives.Industry Applications, IEEE Transactions on.1992.28(3).pp:574-580.
    [21]A L Allegre, A Bouscayrol, P Delarue, et al.Energy Storage System With Supercapacitor for an Innovative Subway.Industrial Electronics, IEEE Transactions on.2010.57(12).pp:4001-4012.
    [22]J N Verhille, R Bearee, A Bouscayrol.Causal-based generation of velocity reference for automatic subways.Vehicle Power and Propulsion Conference (VPPC),2010 IEEE.2010.1-3 Sept.2010.pp:1-6.
    [23]T Der-Min, L Cheng-Feng.Asymmetrical inputs for minimizing residual response.2005 IEEE International Conference on Mechatronics.2005.10-12 July 2005.pp:235-240.
    [24]Y O Kim, H In-Joong.Time-optimal control of a single-DOF mechanical system considering actuator dynamics.Control Systems Technology, IEEE Transactions on.2003.11(6).pp:919-932.
    [25]S Macfarlane, E A Croft.Jerk-bounded manipulator trajectory planning:design for real-time applications.Robotics and Automation, IEEE Transactions on.2003.19(1).pp:42-52.
    [26]S Brock, T Kaczmarek.2D command preprocessor with jerk limit for machine tools drives.Industrial Electronics,1996. ISIE'96., Proceedings of the IEEE International Symposium on.1996.17-20 Jun 1996.pp:230-235.
    [27]N Kim Doang, I M Chen, N Teck-Chew. Planning algorithms for s-curve trajectories. Advanced intelligent mechatronics,2007 IEEE/ASME international conference on.2007.4-7 Sept. 2007.pp:1-6.
    [28]K D Hurst, T G Habetler, G Griva, et al.Zero speed tacholess IM torque control simply a matter of stator voltage integration.IEEE Transactions on Industry Applications.1998.34(4). pp:790-795.
    [29]张旭,瞿文龙.一种低速下磁链观测补偿的新方法.电工电能新技术.2003.22(3).pp:50-54.
    [30]B K Bose, N R Patel.A Programmable Cascaded Low-Pass Filter-Based Flux Synthesis for a Stator Flux-Oriented Vector-Controlled Induction Motor Drive.IEEE Transactions on Industrial Electronics.1997.44(1).pp:140-143.
    [31]王宇,邓智泉,王晓琳.一种新颖的电机磁链辨识算法.中国电机工程学报.2007.27(6).pp:39-44.
    [32]何志明,廖勇,向大为.定子磁链观测器低通滤波器的改进.中国电机工程学报.2008.28(18).pp:61-65.
    [33]贾洪平,贺益康.一种适合DTC应用的非线性正交反馈补偿磁链观测器.中国电机工程学报.2006.26(1).pp:101-105.
    [34]高金文,温旭辉,陈静薇等.新型锁相环定子磁链观测器.中国电机工程学报.2006.27(18).pp:41-47.
    [35]Q Gao, C S Spiteri, G M Asher, et al.Sensorless speed operation of cage induction motor using zero drift feedback integration with MRAS observer.Power Electronics and Applications,2005 European Conference on.2005.1-9.
    [36]J Holtz, J Quan.Drift, parameter-compensated flux estimator for persistent zero-stator-frequency operation of sensorless controlled induction motors.IEEE Transactions on Industry Applications.2003.39(4).pp:1052-1060.
    [37]M Hasegawa.Robust-adaptive-observer design based on gamma-positive real problem for sensorless induction-motor drives.IEEE Transactions on Industrial Electronics.2006.53(1). pp:76-85.
    [38]M Hinkkanen, L Harnefors, J Luomi.Reduced-order flux observers with stator-resistance adaptation for speed-sensorless induction motor drives.IEEE TRANSACTIONS ON POWER ELECTRONICS.2010.25(5).pp:l 173-1183.
    [39]张细政,王耀南,杨民生.电动车用感应电机电阻的状态滑模观测新方法.中国电机工程学报.2009.29(15).pp:101-106.
    [40]D Chatterjee, T Nag.A model based stator resistance estimation technique in the low speed region for sensor less field oriented control of induction motor.Industrial Electronics and Applications,3rd IEEE Conference on.2008.3-5 June 2008.pp:2084-2088.
    [41]M S NaitSaid, M E H Benbouzid.Induction motors direct field oriented control with robust on-line tuning of rotor resistance IEEE Transactions on Energy Conversion.1999.14(4). pp:1038-1042.
    [42]H U Rehman, A Derdiyok, M K Guven, et al.An MRAS scheme for on-line rotor resistance adaptation of an induction machine PESC 2001.Vancouver, Canada.2001.817-822.
    [43]B Karanayil, M F Rahman, C Grantham.Rotor resistance identification using artificial neural networks for an indirect vector controlled induction motor drive.IECON.2001.1315-1320.
    [44]林飞,孙湖,胡广艳等.带有转子电阻补偿的异步电机电流型磁链观测器.电气传动.2006.36(10).pp:7-9.
    [45]Z Zhifeng, T Renyuan, B Baodong.Novel direct torque control based on space vector modulation with adaptive stator flux observer for induction motors.IEEE Transactions on Magnetics.2010.46(8).pp:3133-3136.
    [46]P L Jansen, R D Lorenz.A Physically Insightful Approach to the Design and Accuracy Assessment of Flux Observers for Field Oriented Induction Machine Drives IEEE Transactions on Industry Applications.1994.30(1).pp:101-110.
    [47]冯兴强,杨文淑.提高采样控制系统带宽的方法研究光电工程.2003.30(4).pp:20-23.
    [48]C Schauder.Adaptive speed identification for vector control of induction motors without rotational transducers.IEEE Transactions on Industry Applications.1992.28(5).pp:1054-1061.
    [49]G Yang, T-H Chin.Adaptive-speed identification scheme for a vector-controlled speed sensorless inverter-induction motor drive.IEEE Transactions on Industry Applications.1993. 29(4).pp:820-825.
    [50]M Comanescu, L Xu.Sliding-mode MRAS speed estimators for sensorless vector control of induction machine.IEEE Transactions on Industrial Electronics.2006.53(1).pp:146-153.
    [51]K Young-Jo, C Jung-Soo, K Young-Seok.Speed sensorless control of saturated induction motor using a hybrid speed estimator.TENCON 99. Proceedings of the IEEE Region 10 Conference.1999.1999.pp:367-370.
    [52]张立伟,文晓燕.动车组用异步牵引电机转速的估计方法.北京交通大学学报.2009.33(3).pp:22-25.
    [53]马艳歌,贾凯,徐方等.电机转速自适应测量方法及其在DSP上的实现.仪器仪表学报.2006.27(6).pp:2361-2364.
    [54]J Holtz, J Quan.Sensorless vector control of induction motors at very low speed using a nonlinear inverter model and parameter identification.IEEE Transactions on Industry Applications.2002.38(4).pp:1087-1095.
    [55]刘军锋.定子磁场定向无速度传感器系统研究与开发[学位论文].武汉.华中科技大学.2005.pp:37.
    [56]张俊洪,赵镜红.空间矢量逆变器死区分析及补偿.微特电机.2005.(4).pp:24-26.
    [57]N Urasakil, T Senjyul, T Funabashi, et al.Adaptive dead-time compensation strategy taking parasitic capacitance effects into account.Industrial Technology, IEEE International Conference on.2005.1109-1114.
    [58]L Ben-Brahim.On the compensation of dead time and zero-current crossing for a PWM-inverter-controlled AC servo drive.IEEE Transactions on Industrial Electronics.2004.51 (5).pp:1113-1117.
    [59]T J Summers, R E Betz.Dead-time issues in predictive current control.IEEE Transactions on Industry Applications.2004.40(3).pp:835-844.
    [60]刘亮,邓名高.一种补偿PWM逆变器死区效应的新方法.电力电子技术.2005.39(6).pp:123-125.
    [61]陈庆,黎亚元,王盂.无死区时间DTC控制技术研究.电力电子技术.2006.40(2).pp:66-68.
    [62]C Dae-Woong, S Seung-Ki.Analysis and compensation of current measurement error in vector-controlled AC motor drives.IEEE Transactions on Industry Applications.1998.34(2).pp:340-345.
    [63]W Xiaoyan, Y Zhongping, Z Liwei, et al.A novel modulation strategy based on SVPWM natural overmodulation characteristic.Industrial Electronics and Applications,2008. ICIEA 2008.3rd IEEE Conference on.2008.3-5 June 2008.pp:1092-1095.
    [64]W Xiaoyan, L Fei, T Q Zheng.Dynamic Model and Predictive Current Control of Voltage Source Converter Based HVDC.Power System Technology,2006. PowerCon 2006. International Conference on.2006.22-26 Oct.2006.pp:1-5.
    [65]S K Sul, M H Park.A novel technique for optimal efficiency control of a current-source inverter-fed induction motor.Power Electronics, IEEE Transactions on.1988.3(2).pp:192-199.
    [66]D S Kirschen, D W Novotny, T A Lipo.On-Line Efficiency Optimization of a Variable Frequency Induction Motor Drive.Industry Applications, IEEE Transactions on.1985.IA-21(3).pp:610-616.
    [67]M N Uddin, N Sang Woo.New Online Loss-Minimization-Based Control of an Induction Motor Drive.Power Electronics, IEEE Transactions on.2008.23(2).pp:926-933.
    [68]郑琼林.电牵引传动系统研究[学位论文].北京.北京交通大学.2002.pp:1-4.
    [69]李四清.2000kW交流传动试验台主电路分析与设计.机车电传动.1981.(1).pp:11-14.
    [70]郑琼林,林飞.现代轨道交通与交流传动互馈试验台.电工技术学报.2005.20(1).pp:21-25.
    [71]马志文.电力牵引交流传动互馈试验系统的研究[学位论文].北京.北京交通大学.2007.pp:5-7.
    [72]余守宪,董水金.变加速动力学与舒适性问题.物理与工程.2006.16(6).pp:35-37.
    [73]H H.Schaefer,韩才元.世界各国铁路列车阻力和机车粘着系数公式的比较.国外内燃机车..989.(2).pp:35-43.
    [74]铁道部.列车牵引计算规程.1998.pp:2-10.
    [75]张觉印,吴宏智,赵华.滚动轴承车辆(货车)起动阻力试验及研究.中国铁道科学.2001.22(3).pp:79-85.
    [76]骆礼伦.城轨列车特性曲线计算系统的实现及应用.城市轨道交通研究.2010.13(4).pp:67-69.
    [77]谢宏诚,乌正康,谢维达.城市轨道车辆牵引仿真计算.电力机车与城轨车辆.2005.28(5).pp:20-22.
    [78]张曙光.CRH2型动车组.第北京.中国铁道出版社.2008.pp:第2章12.
    [79]孙睿.动车组电空制动系统仿真研究[学位论文].成都.西南交通大学.2008.pp:34.
    [80]钱立新.350km/h高速动车组制动技术的最新进展.电力机车与城轨车辆.2004.27(1).pp:1-3.
    [81]黄文杰.上海明珠线地铁车辆空气制动系统.轨道车辆.2004.42(7).pp:7-15.
    [82]陈俊栋.轨道车辆非粘着制动技术研究[学位论文].大连.大连交通大学.2007.pp:2-4.
    [83]A Kusko, D Galler.Control Means for Minimization of Losses in AC and DC Motor Drives.Industry Applications, IEEE Transactions on.1983.IA-19(4).pp:561-570.
    [84]B K Bose现代电力电子学与交流传动.第1版.北京.机械工业出版社.2005.pp:42.
    [85]E Levi.Impact of iron loss on behavior of vector controlled induction machines.Industry Applications, IEEE Transactions on.1995.31(6).pp:1287-1296.
    [86]Y Lin.Asynchronous Motor's Maximum-Efficiency Control Considering Variable Iron Loss Equivalent Resistance by Adjusting the Ratio of Active Power to Reactive Power.Electrical and Control Engineering (ICECE),2010 International Conference on.2010.25-27 June 2010.pp:3396-3399.
    [87]G O Garcia, J C M Luis, R M Stephan, et al.An efficient controller for an adjustable speed induction motor drive.Industrial Electronics, IEEE Transactions on.1994.41(5).pp:533-539.
    [88]T Stefanski, S Karys.Loss minimisation control of induction motor drive for electrical vehicle.Industrial Electronics,1996. ISIE '96., Proceedings of the IEEE International Symposium on.1996.17-20 Jun 1996.pp:952-957.
    [89]王利军.高速动车组再生制动工况变流器控制算法研究与实现[学位论文].成都.西南交通大学.2008.pp:40.
    [90]B K Bose现代电力电子学与交流传动.第1版.北京.机械工业出版社.2005.pp:294.
    [91]K R Cho, J K Seok.Correction on current measurement errors for accurate flux estimation of AC drives at low stator frequency. IEEE Transactions on Industry Applications. 2008.44(2).pp:594-603.
    [92]X Zhuang, M F Rahman.An Adaptive Sliding Stator Flux Observer for a Direct-Torque-Controlled IPM Synchronous Motor Drive.IEEE Transactions on Industrial Electronics.2007.54(5).pp:2398-2406.
    [93]Z F Zhang, R Y Tang, B D Bai, et al.Novel Direct Torque Control Based on Space Vector Modulation With Adaptive Stator Flux Observer for Induction Motors.IEEE Transactions on Magnetics.2010.46(8).pp:3133-3136.
    [94]冯垛生,曾岳南.无速度传感器矢量控制原理与实践.第2版.北京.机械工业出版社.2006.pp:211-216.
    [95]宋刚,秦月霞,张凯等.基于普通编码器的高精度测速方法.上海交通大学学报.2002.36(8).pp:1169-1172.
    [96]T Tsuji, T Hashimoto, H Kobayashi.A Wide-Range Velocity Measurement Method for Motion Control.IEEE Trans on Industrial Electronics.2009.56(2).pp:510-519.
    [97]N Hagiwara, Y Suzuki, H Murase.A method of improving the resolution and accuracy of rotary encoders using a code compensation technique.IEEE Transactions on Instrumentation and Measurement.1992.41 (1).pp:98-101.
    [98]Z Wang, G Li, Y Sun.Effect of Erroneous Position Measurements in Vector-Controlled Doubly Fed Induction Generator.IEEE Transactions on Energy Conversion.2010.25(1).pp:59-69.
    [99]陈晓荣,陈淑芬,杨甫勤.增量式编码器的相位编码细分研究.仪器仪表‘学报.2007.28(1).pp:132-134.
    [100]方涌奎.旋转型编码器的应用.精密制造与自动化.2009.(2).pp:35-38,59.
    [101]李庆扬,王能超,易大义.数值分析.第1版.北京.清华大学出版社,施普林格出版社.2001.pp:62.
    [102]S D Sudhoff, K A Corzine, S F Glover.DC Link Stabilized Field Oriented Control of Electric Propulsion Systems.IEEE Transactions on Energy Conversion.1998.13(1).pp:27-33.
    [103]H A Peterson, P C Krause.A direct-and quadrature-axis representation of a parallel AC and DC power system.IEEE Transactions on Power Apparatus and Systems.1966.PAS-85(3).pp:210-225.
    [104]M M Ahmed, J A Taufiq, C J Goodman, et al.Electrical instability in a voltage source inverter-fed induction motor drive at constant speed.Electric Power Applications, IEE Proceedings B.1986.133(4).pp:299-307.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700