用户名: 密码: 验证码:
小型球形潜水器喷水推进系统设计及数值分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对小型球形潜水器因其完全对称的形状,在各个方向受到的阻力相同的特点,使用传统的螺旋桨或导管螺旋桨推进系统难以满足小型球形潜水器运行需求的难点问题,提出使用内流式的喷水推进系统用于小型球形潜水器的推进,喷水推进系统安装在潜水器的内部,由四个喷水推进装置组成喷水推进系统,喷水推进系统四个喷口设计在潜水器的后部,组成一个推进面,通过改变喷口喷射水流的流量,引起推进面的变形,操纵小型球形潜水器运动。这种设计方法能够很好地控制喷水推进泵产生的噪音,基本上不产生由于推进装置的安装增加的附体阻力。通过对这种全新的喷水推进系统形成推进面推进小型球形潜水器的推进方式研究,解决当今操纵小型球形潜水器的技术难题。
     目前,国内外的研究者对应用于大中型船舶的喷水推进系统进行了广泛深入的研究,对于本文应用于小型球形潜水器的小尺寸喷水推进系统推进小型球形潜水器方式、推进系统入口对小型球形潜水器的影响、喷水推进系统多个喷口喷射水流互相耦合对小型球形潜水器的影响和喷水推进系统驱动小型球形潜水器的运行参数等研究很少涉及。本文针对上述问题,结合小型球形潜水器的特点进行了研究,主要研究工作如下:
     1、在参阅分析大量国内外潜水器、球形潜水器和喷水推进系统研究成果的基础上,分析了小型球形潜水器形状和水下运行阻力的特点,指出使用一个喷水推进装置形成的点推进方式和两个喷水推进装置的线推进方式很难达到小型球形潜水器运动需求,设计了使用喷水推进系统的面推进方式推进小型球形潜水器的方案,方案为小型球形潜水器内部进水,通过统一入口与外部流体交换水流,四个喷水推进装置布置在小型球形潜水器内部通过导管连接到壳体的喷口上,喷口喷射水流形成推进面,通过推进面变形推进小型球形潜水器运动。
     2、利用喷水推进系统的入口速度分布不均匀性现象与入口速度比IVR相关的特点,提出喷水推进系统使用统一入口降低/巧?,来消除入口速度分布不均匀性现象对小型球形潜水器的影响这个技术难题。结合小型球形潜水器自身特点,应用FLUENT软件分析了喷水推进系统统一入口在不同/巧?条件下,对小型球形潜水器航速的影响,即在/视^0.5时可以消除喷水推进系统统一入口速度分布不均匀性现象的出现。使用数值计算数据验证了优化方法的可行性,并对本文设计的喷水推进系统优化后的统一入口面积进行了数值计算,提出在小型球形潜水器最高速度达到lm/s时,小型球形潜水器统一的入口面积至少应该设计为50cm2。
     3、设计的喷水推进系统是由四个喷水推进装置组成推进面推进小型球形潜水器运动,四个喷口喷射出的水流互相的干扰不可避免的会对小型球形潜水器的运行产生影响,针对这个目前其他研究者很少涉及的问题,通过对喷水推进系统喷口喷射出来水流的理论分析,结合小型球形潜水器喷口设计的特点,提出当喷水推进系统相邻的两个喷口圆心与球心连线的的半角0=2.480°时,能够最大可能地保证喷水推进系统为小型球形潜水器即能提供加速所需的最大效率推力,又能提供姿态调整的最大扭矩,减小喷射水流对小型球形潜水器影响的优化方法,并用数值分析的方法进行了仿真,仿真结果表明优化方案符合喷水推进系统喷口设计的要求。
     4、喷水推进系统设计在小型球形潜水器后部,由四个喷水推进装置的喷口喷射水流组成一个推进面推进小型球形潜水器运动,用数值分析的方法对推进面推进小型球形潜水器方式进行了详细的分析,通过与国内外的研究者研究的典型潜水器比较,小型球形潜水器喷水推进系统推进面操纵性能能够达到使用四个导管螺旋桨和方向舵的鱼雷形潜水器效果。
     5、由于设计小型球形潜水器直径为0.3m,潜水器内部的空间有限,安装在这个小型潜水器上的四个喷水推进装置为小尺寸推进泵,已经成型的大型喷水推进系统运行状况的研究结果不适用于这种小型的推进系统。本文通过壁面积分数值分析方法,结合试验得到了详细的小型球形潜水器喷水推进系统的运行状态数据,对喷水推进系统产生的垂直方向力学分量对推力和喷口压力的影响进行了分析,分析结果表明本文设计的喷水推进系统fFRd5可以忽略这种影响,对喷水推进系统推进小型球形潜水器的空间运动进行了数值分析,分析结果表明喷水推进的小型球形潜水器能够实现空间运动,基本上能够实现原地回转,最小回转半径0.018m。
The small spherical submersible due to the symmetrical shape, have the same resistancein all directions, using a conventional propeller or ducted propeller propulsion system isdiiffcult to meet the needs of small spherical submersible running problems, put forwardusing the propiision system for small spherical submarine propulsion, water-jet jet propulsionsystem installed in the submersible internal, consisting of water-jet propulsion system consistsof four water-jet propulsion system, jet propulsion rear system four nozzle design in divingapparatus, consisting of a face, by changing the nozzle jet lfow, the deformation caused bypromoting, small spherical submersible maneuvering motion. This design method couldcontrol the water-jet pimp noise,basically does not produce the appendage resistance andpropulsion devices increase. By spraying wateron the new propulsion system to promote theresearch way, solve the technical problemsof today's manipulation of small sphericalsubmersibles.
     The present domestic and foreign researchon applied to large and medium-sized marinewater-jet propulsion system conducted in-depth research, for the purpose of this paper isapplied to a small spherical submersible small size water-jet propulsion system promote thesubmersible propulsion system way, entrance for small spherical submersible impact, multiplejet propulsion nozzle jet lfow coupled to each other small spherical submersibles and theeffects of water-jet propulsion system driving a small spherical vehicle operating parametersresearch very little involves the. This article in view of the above problems, combined with asmall spherical submersible characteristics were studied, the main research work is asfollows:
     1. Refer to the analysis of the domestic and foreign submairne, spherical submersiblesand water-jet propulsion system on the basis of research results, analysis of spherical shapeand small submersible underwater running resistance characteristics, pointed out that the useof a water-jet propulsion unit formed the advance mode and two water-jet propulsion deviceline propulsion mode is dififcult to achieve a small spherical submersible motor needs,designthe use of water-jet propulsion system to advance the way small spherical submersiblescheme, scheme for small spherical submersible internal water, through a uniifed entrancewith external lfuid exchange lfow,ofur water-jet propulsion device is arranged in the smallspherical submersible interior through the catheter is connected to the casing nozzle ejectorwater, promote the formation of surface, through the promotion of surface deformation pushing small spherical submersible motor.
     2. Water-jet propulsion system entrance velocity distribution non-uniformity phenomenaand entrance velocity ratio IVR correlation, put forward water-jet propulsion system can usethe uniifed entrance to reduce IVR eliminate entrance velocity distribution non-uniformityphenomena on a small spherical submersible effects, combined with a small spherical divingdevice characteristic, applied FLUENT software to analyze the water-jet propulsion theimiifed entrance imder different IVR conditions, on a small spherical submersible speed, geton IVRdS can solve the water-jet propulsion system imiifed entrance velocity distirbutionimevenness phenomenon, the use of numerical data proved that the optimization method isfeasible, and the design of water-jet propulsion system after optimization of the uniifedentrance area numerical computation is carired out, raised in a small spherical submersiblereached a maximum speed of lm/s, a small spherical submersible imiifed entrance area atleast should be designed as50cm2.
     3. Design of water-jet propulsion system is composed of four water-jet propulsion unitadvance advance small spherical submersible motor, through the water-jet propulsion systemout of the jet lfow nozzle theoretical analysis, combined with the small spherical submersiblenozzle design characteristic, put forward water-jet propulsion system of the two adjacentnozzle circle and sphere the angle0=2°.480to maximize the probability that the water-jetpropulsion system for small spherical diving device that can provide acceleration needed ofrmaximum eiffciency of thrust, and can provide attitude adjustment of the maximum torque,reducing the injection water lfow on the impact of small spherical submersible optimizationmethod, and the numerical analysis method of simulation simulation results show that theoptimized scheme,with water-jet propulsion system vent design requirements.
     4. Water-jet propulsion system design in small spherical submersible rear, composed offour water-jet propulsion imit nozzle jet composed of a pushing surface pushing smallspherical submersible motor, with the method of numerical analysis advance advance smallspherical submersible mode are analyzed in detail, with domestic and foreign research typicalsubmarine, a small spherical submersible water-jet propulsion system manipulationperformance can be achieved using four propeller and rudder torpedo shaped submersibleeffect.
     5. In order to meet the needs of design task, a small spherical submersible0.3m diameter.Submersible internal space is limited, installed in the small submarine on the four water-jetpropulsion unit for small size propulsion pimp, already formed large water-jet propulsionsystem operation situation results do not apply to this small propulsion system. This article through the wall surface integral numerical analysis method, combining with the test to get adetailed miniature spherical submersible propulsion system operation status data, on water-jetpropulsion system generated perpendicular to the direction of the mechanical components ofthe thrust and nozzle pressure were analyzed, the paper design of water-jet propulsion systemIVR^0.5can ignore this effect, on the water-jet propulsion system of small sphericalsubmarine space motion was studied by numerical analysis, analysis results show that thewater-jet propulsion of small spherical diving device can achieve space motion, basically toachieve the minimum turning radius of gyration,0.018m.
引文
[1]S.K.Das, S.N. Shome,S. Nandy,D. Pal,“Modeling a hybrid reactive-deliberativearchitecture towards realizing overall dynamic behavior of an AUV”,ProcediaConputer Science,2010,1(1),pp.259-268
    [2]Jan Petrich, Daniel J. Stilwell,“Model simpliifcation ofr AUV pitch-axis control design”,Ocean Engineering,2010,37(7):638-651
    [3]Y‘‘uh J.,Design and Control of Autonomous Underwater Robots: A Sirve"y, AutonomousRobots,2000, pp.7-24
    [4]Z. H. Ismail, N. Sarman and M. W. Dunnigan",Dynamic Region Boundary-Based ControlScheme ofr Multiple Autonomous Underwater Vehicles”, in Proceedings of theOCEANS2012MTS/IEEE,eosu, Republic of Korea,2012.
    [5]赵进平.发展海洋检测技术的思考与实践.海洋出版社,2005
    [6]朱光文.提升国家海洋技术总体实力.推进我国海洋强国建设.海洋技术.2002,21(1);4-6
    [7]J.G. Bellingham,Platforms:"Autonomous Underwater Vehicles”,Encyclopedia of OceanSciences (Second Edition),2009,pp.473-484
    [8]Satomi Ohata, Ka“zuo Ishii, An autonomous imderwater vehicle for observation of"imderwater structure, International Congress Series,2006,pp.277-280
    [9]E. Bovio, D. Cecchi,F. Baralli",Autonomous imderwater vehicles for scientiifc and navaloperations", Annual Reviews in Control,2006,30(2),pp.117-130
    [10]J“. Yuh, Design and Control of Autonomous Underwater Robots: A s”irvey,Autonomous Robots,8(1),2000,pp.7-24,
    [11]L. Lapierre, D. Soetant and A. Pascoal,"Coordinated Motion Control of Marine Robots”,in Proceedings of6th IF AC Conference on Maneuvering and Control of Mairne Craft,Girona, Spain,2003
    [12]X. Li", S.P. Hou and C. C. Cheah,Adaptive Region Tracking Control for AutonomousUnderwater Vehicle”, in Proc of the11th Int. Conf. on Control, Automation, Roboticsand Vision,Singapore,2010, pp.2129-2134
    [13]S. P. Hou and C. C. Cheah,"Multiplicative Potential Energy Fiuiction for SwarmControl", in Proc. of the2009IEEE/RSJ Int. Conf. on Intelligent Robots and Systems,St. Louis, USA,2009,pp.4363-4368
    [14]Z. H. Ismail and M. W. Dunnigan“,A Region Boundary-Based Control Scheme for anAutonomous Underwater Vehicle”, Ocean Engineeirng,38(17-18),2011,pp.2270-2280
    [15]Z. H. Ismail and M. W. Dunnigan,“Geometric Formation-Based Region BoundaryControl Scheme for Multiple Autonomous Underwater Vehicles”, in Proc. of the Int.Conf. on Electrical, Control and Computer Engineeirng,Pahang, Malaysia,2011,pp.491-496
    [16]Z. H. Ismail, B.M. Mokhar and M. W. Dunnigan,"Tracking Control for an AutonomousUnderwater Vehicle Based on Multiplicative Potential Energy Fiuiction", inProceedings of the OCEANS2012MTS/IEEE,Yeosu, Republic of Korea,2012
    [17]蒋新松,封锡盛,王棣棠.水下机器人.沈阳:辽宁科学技术出版社,2000
    [18]Wei Sinr,Ai-Gong X“u? Yang Gao, Strapdown gyrocompass algorithm for AUV attitudedetermination using a digital iflter“,Measurement,46(1)2013,in press, pp.815-822
    [19]Kihun Kim,Hang,S. Choi,"Analysis on the controlled nonlinear motion of a test bedAUV-SNUUV”,Ocean Engineering,34(8—9),2007,pp.1138-1150
    [20]Lionel Lapierre",Robust diving control of an AUV", Ocean Engineeirng,36(1),2009,pp.92-104
    [21]Jan Petrich“, Daniel J. Stilwell, Model simpliifcation for AUV pitch-axis control design”,Ocean Engineering,37(7),2010, pp.638-651
    [22]Xinqian Bian,Zheping Yan,Tao Chen,D.L. Yu,Yufei Zhao,“Mission management andcontrol of BSA-AUV for ocean surve"y, Ocean Engineering,55(1),2012,pp.161-174
    [23]C. Silvestre, A. Pascoal,“Control of the INFANTE AUV using gain scheduled staticoutput feedback”,Control Engineering Practice,12,(12),2004,pp.1501-1509
    [24]Harry F. Hemond,Amy V. Mueller, Michael Hemond“,Field Testing of Lake WaterChemistry with a Portable and an AUV-based Mass Spectrometer", Journal of theAmerican Society for Mass Spectrometry,19(10),2008,pp.1403-1410
    [25]J. Y"uh, Jing Nie,Application of non-regressor-based adaptive control to underwaterrobots: experiment”,Computers&Electrical Engineering,26(2),2000,pp.169-179
    [26]T.W. Kim, J. Yuh,"Application of on-line neuro-ifizzy controller to AUVs”,InformationSciences,145(1-2),2002,pp.169-182
    [27]K.D. Do,Z.P. Jiang,J. Pan,H. Nijmeijer“,A global output-feedback controller forstabilization and tracking of underactuated ODIN: A spherical imderwater vehicle”,Automatic a,40(1),2004,pp.117-124
    [28]M. Chyba,T. Haberkom,R.N. Smith,S.K. Choi“,Design and implementation of timeeiffcient trajectories for autonomous imderwater vehicles”,Ocean Engineeirng,35(1),2008,Pages63-76
    [29]M. Chyba,T. Haberkorn,S".B. Singh, R.N. Smith, S.K. Choi,Increasing imderwatervehicle autonomy by reducing energ"y consumption, Ocean Engineeirng,36,(1),2009,pp.62-73
    [30]P. Ridao, A. Tiano, A. El-Fakdi, M. Carreras, A. Zirilli,“On the identiifcation ofnon-linear models of unmanned imderwater vehicles", Control Engineeirng Practice,12(12),2004,pp.1483-1499
    [31]Ahmad Bagheri,Jalal Javadi Moghaddam,"Simulation and tracking control based onneural-network strategy and sliding-mode control for imderwater remotely operatedvehicle”,Neirocomputing,7(7—9),2009,pp.1934-1950
    [32]Louis Goodman, Zhankun Wang,"Turbulence Observations in the Northern Bight ofMontere”y Bay from a Small AUV,Journal of Mairne Systems,77(4),2009,pp.441-458
    [33]Mugdha S. Naik, Sahjendra N. Singh“, State-dependent Riccati equation-based robustdive plane control of AUV with control constraints", Ocean Engineeirng,34(11—12),2007,pp.1711-1723
    [34JE.A. de Barros,A. Pascoal,E. de Sa",Investigation of a method for predicting AUVderi"vatives, Ocean Engineering,35(16),2008,pp.1627-1636
    [35JH.M.T. Khaleed,Z. Samad, A.R. Othman, M.A. Mujeebu, A.B. Abdullah, M.M. Zihad,"Work-piece optimization and thermal analysis ofr lfash-less cold forging of AUVpropeller hubs一FEM simulation and expeirment", Journal of ManufactuirngProcesses,13(1),2011,pp.41-49
    [36]F.^elik, M. Giiner“,Energy saving device of stator for marine propellers", OceanEngineering,34,(5—6),2007,pp.850-855
    [37]Stephen McPhail", Autosub6000: A Deep Diving Long Range AUV", Journal of BionicEngineering,6(1),2009,pp.55-62
    [38]Martin Jonathan Doble, Alexander L. Forrest, Peter Wadhams, Bernard E. Laval,"Through-ice AUV deployment: Operational and technical experience rfom twoseasons of Arctic field work", Cold Regions Science and Technology,56,(2—3),2009,pp.90-97
    [39]Farhood Azarsina, Christopher D. Williams,"Manoeuvring simulation of the MUNExplorer AUV based on the empirical hydrodynamics of axi-symmetric bare hulls”,Applied Ocean Research,32,(4),2010,pp.443-453
    [40]Mo-qin He,Christopher D. Williams, Peter Crocker, David Shea, Neil Riggs, RalfBachmayer,“A simulator developed for a twin-pod AUV,the Marport SQX-500”,Joirnal of Hydrodynamics,Ser. B,22(5.1),2010,pp.184-189
    [41]Minqiang Tang, Zhiqiang Zhang, Yuqing Xing,"Analysis of New Developments andKey Technologies of Autonomous Underwater Vehicle in Marine S”iu*vey,ProcediaEnvironmental Sciences,10(Part C),2011,pp.1992-1997
    [42]A. Alvarez, A. Caffaz,A. Caiti, G. Casalino, L. Gualdesi, A. Turetta, R. Viviani,"Folaga:A low-cost autonomous underwater vehicle combining glider and AUV capabilities",Ocean Engineering,36(1),2009,pp.24-38
    [43]J.G". Bellingham,Platforms: Autonomo”us Underwater Vehicles,Encyclopedia of OceanSciences (Second Edition),2009,pp.473-484
    [44]E.A. de Barros,J.L.D. Dantas,“Effect of a propeller duct on AUV maneuverabilit"y,Ocean Engineering,42,2012, pp.61-70
    [45]P. Jagadeesh, K. Mirali, V.G. Idichand"y,Experimental investigation of hydrodynamicforce coefficients over AUV hull form”,Ocean Engineering,36(1),2009,pp.113-118
    [46]Warn-Gyu Park, Young-Rae Jiuig, Chan-Ki Kim", Numeircal lfow analysis ofsingle-stage d"ucted marine propulsor, Ocean Engineeirng,32(10),2005,pp.1260-1277
    [47]吕晓军,周其斗,纪刚,潘雨村,方斌.导管螺旋桨敞水性能的预报和比较.海军工程大学学报.2010
    [48]Keim W. Lee, Sahjendra N. Singh,“Noncertainty-eqmvalent multi-vairable adaptivecontrol of submersibles using filtered signals”,Ocean Engineering,53(15),2012,pp.98-110
    [49]JS Carlton, Marine Propellers and Propulsion (Second Edition),2007,pp.355-365
    [50]J.S. Carlton, Marine Propellers and Propulsion (Third Edition),2012,pp.363-371
    [51]J.S. Carlton, Marine Propellers and Propulsion (Third Edition),2012,pp.11-28
    [52]Volker Bertram, Practical Ship Hydrodynamics (Second Edition),2012,pp.73-141
    [53]Liang Yun, Alan Bliault, Theory&Design of Air Cushion Cratf,2000,pp.487-576
    [54]Molland,Anthony F.,The Maritime Engineering Reference Book,2008,pp.344,346-482
    [55]Volker Bertram, Practical Ship Hydrodynamics (Second Edition),2012,pp.265-268
    [56]Doug Woodyard,Poiuider's Mairne Diesel Engines and Gas Turbines (Ninth Edition),2009, pp.829-864
    [57]Suraj P. Rawal, John W. Goodman, Comprehensive Conposite Materials,6,2000,pp.279-315
    [58]Suraj P. Rawal, John W. Goodman, Comprehensive Conposite Materials,6,2000,pp.19-60
    [59]Robert Latorre, Encyclopedia of Physical Science and Technology (Third Edition),2003,pp.343-360
    [60]A. Fuller, K. Alexande,Conprehensive Renewable Energy,6,2012,pp.435-466
    [61]Andreas W. Momber,Hydroblasting and Coating of Steel Structures,2003,pp.183-197
    [62]王云,吕浩福.船舶喷射推进技术发展综述.舰船科学技术.2008
    [63]何秦珊.喷水推进装置推进泵空泡分析.广东造船.2009
    [64]王立祥,周加建,金平仲.国外喷水推进技术发展概况.喷水推进技术译文集.2005
    [65]孙存楼,王永生,徐文珊.喷水推进船负推力减额机理研究.水动力学研究与进展A辑.2011
    [66]张拯,王立祥.关于喷水推进装置平进口边界层影响系数估算的探讨.船舶.2008:10-14
    [67]杨友胜,贾晓君,朱玉泉.正排量泵喷水推进理论研究.中国机械工程.2011
    [68]杨友胜,冯辅周,朱玉泉,罗小辉.喷口内壁压力分布的研究.机械工程学报.2011
    [69]Moon-Chan Kim, Ho-Hwan Chun,"Experimental Investigation into the performance ofthe Axial-Flow-Type Waterj et according to the Variation of Impeller Tip Clearance",Ocean Engineering,34(2),2007, pp.275-283
    [70]丁江明,王永生.喷水推进器进水流道参数化设计方法.哈尔滨工程大学学报.2011
    [71]V.V. Krlo"v, E. Porteous, Wave-like aquatic propulsion of mono-hull marine vessels"y,Ocean Engineering,37(4),2010,pp.378-386
    [72]Moon-Chan Kim, Ho-Hwan Chun, Hyun Yul Kim, Warn Kyu Park, Un Hwa Jung,"Conparison of waterjet performance in tracked vehicles by impeller diameter", OceanEngineering,36(17-18),2009,pp.1438-1445
    [73]Sebnem Helvacioglu, Ismail Hakki Helvacioglu, Burak T"uncer, Improving the rivercrossing capability of an amphibious vehicle", Ocean Engineering,38(17—18),2011,pp.2201-2207
    [74]Umesh A. Korde”, Study of a jet-propulsion method for an imderwater vehicle”,OceanEngineering,31(10),2004,pp.1205-1218
    [75]苏永生,王永生,段向阳.实船喷水推进泵空化识别试验.上海交通大学学报.2012
    [76]段向阳;王永生;苏永生.喷水推进泵空化特征联合分类识别.上海交通大学学报.2011
    [77]孙存楼,王永生,黄斌.船舶喷水推进器特殊工况性能研究.哈尔滨工程大学学报.2011
    [78]黄斌,王永生.喷水推进船避免喷泵气蚀的仿真研究.中国造船.2011
    [79]丁江明;王永生.喷水推进器推进性能曲线的两种表示方法.哈尔滨工程大学学报.2010
    [80]蔡佑林,焦松,王立祥,刘建国.应用可控速度矩法设计的喷水推进混流泵试验研究.流体机械.2010
    [81]杨琼方,王永生,李翔.喷水推进泵通用特性曲线的计算流体动力学分析.清华大学学报(自然科学版).2010
    [82]靳栓宝,王永生,杨琼方.基于CFD喷水推进泵性能分析及其优化设计.船海工程.2010
    [83]刘承江,王永生,张志宏,刘巨斌.流场控制体对喷水推进器性能预报影响的研究.船舶力学.2010
    [84]Au"“ngier, R.H., Centrifugal compressors, AS ME Press, New York,2000
    [85]Raul Bariro, Jorge Parrondo, Eduardo Blanco,"Numerical analysis of the unsteady lfowin the near-tongue region in a volute-type centrifugal pump for different operatingpoints", Computers&Fluids,39(5),2010, pp.859-870
    [86]Jidong Li, Yongzhong Zeng, Xiaobing Liu, Huiyan Wang,"Optimum design on impellerblade of mixed-lfow pump based on CFD", Procedia Engineering,31,2012, pp.187-195
    [87]Nicolas Go‘urdain, Stephane Burguburu, Francis Leboeuf, Guy Jean Michon,‘Simulationof rotating stall in a whole stage of an axial compressor", Computers&Fluids,39(9),2010,pp.1644-1655
    [88]Antonio Posa, Antonio Lippolis, Roberto Verzicco, Elias Balaras,"Large-eddysimulations in mixed-lfow pumps using an immersed-boundary method", Computers&Fluids,47(1),2011, pp.33-43
    [89]常书平,王永生,丁江明,苏永生.混流式喷水推进器的性能试验与数值计算.哈尔滨工程大学学报.2012
    [90]常书平,王永生.采用k-s湍流模型的喷水推进器性能预报.华中科技大学学报(自然科学版).2012
    [91]常书平,王永生,庞之洋,丁江明.进速比对喷水推进器进水流道性能影响研究.武汉理工大学学报(交通科学与工程版).2010
    [92]Hong Gao, Wanlai Lin, Zhaohui Du,"Numerical lfow and performance analysis of awater-jet axial lfow pump", Ocean Engineering,35(16),2008, pp.1604-1614
    [93]Warn-Gyu Park, Jin Ho Jang, Ho Hwan Chun, Moon Chan Kim,"Numerical lfow andperformance analysis of waterjet propulsion system", Ocean Engineering,32(14-15),2005,pp.1740-1761
    [94]刘海波.水下机器人喷水矢量推进与液压驱动技术研究.硕士论文.国防科学技术大学.2011
    [95]Warn-Gyu Park, Hyun Suk Yun, Ho H"wan Chun, Moon Chan Kim, Numerical lfowsimulation of lfush type intake duct of wateijet", Ocean Engineeirng,32(17—18),2005,pp,2107-2120
    [96]Wojciech Kowalczyk, Antonio Delgado",Simulation of Fluid Flow in a Channel Inducedby Three Types of Fin-Like Motion”,Joirnal of Bionic Engineering,4(3),2007,pp.165-176
    [97]孙存楼,王永生.喷水推进器推力预报的两种不同方法比较.船舶力学.2010
    [98]孙存楼;王永生,刘巨斌.混合推进系统喷水推进器与螺旋桨相互作用研究.中国造船.2010
    [99]董新国.混流式喷水推进泵动叶轮、导叶体结构强度分析.硕士论文.上海交通大学.2011
    [100]De-sheng ZHANG, Wei-dong SHI, Bin CHEN,Xing-fan GUAN",Unsteady lfowanalysis and experimental investigation of axial-lfo"w pump, Journal ofHydrodynamics, Ser. B,22(1),2010,pp.35-43
    [101]Yongxiang Dong, Xiangjie Duan, Shunshan Feng, Zhiyu Shao“, Nimeircal Simulationof the Overall Flow Field for Underwater Vehicle with Pimp Jet Thruster", ProcediaEngineering,31,2012, Pages769-774
    [102]刘润闻,黄国富.入口唇角对喷水管道流动性能影响的数值分析.中国造船.2011
    [103JJ.A. SZANTYR,“The crucial contemporary problems of the computational methods ofrship propulsor hydrodynamics”,Archives of Civil and Mechanical Engineeirng,8(1),2008,pp.69—95
    [104]Singiresu S. Rao, The Finite Element Method in Engineering (Fifth Edition),2011, pp.549-569
    [105]D“. M. Boure. Physies for game developers". Reilly&Associates? Inc.2002,pp.1:107
    [106]Zhao Jinxin, Su Yumin, Ju Lei, Cao Jian,“Hydrodynamic performance calculation andmotion simulation of an AUV with appendages", Electronic and MechanicalEngineering and Information Technology (EMEIT),2,2011,pp.657-660
    [107]P. Jagadeesh, K. Murali, V.G. Idichandy,"Expeirmental investigation of hydrodynamicforce coeiffcients over AUV hull form’’,Ocean Engieermg,36,2009,pp.113-118,
    [108]Hiroyoshi Suzuki, Naomi Kato, Tomohisa Katayama,Yo Fukui,’’Moiton Simulation ofan Underwater Vehicle with Mechanical Pectoral Fins Using a CFD-based MotionSimulator",2007, pp.384-390
    [109]H tore A de Barros, Joao L. D. Dantas, An tonio M. Pascoal,El识r de Sa",Investi^tionofNormal Force and Moment Coeiffcients for an AUV at Nonlinear Angle of At tackand Sideslip Ran^n, IEEE JOURNAL OF OCEANIC ENGINEERING,33,2008,pp.538-549
    [110]Xianzhao Yu, Yumin Su,"Hydrodynamic performance calculation on mini-automaticimderwater vehicle", Proceedings of the2010IEEE International Conference onInformation and Automation,2010,pp.1319-1323
    [111]Lihong Wu,"Applying Dynamic Hybrid Grids Method to Simulate AUV Docking witha Tube’’,Proceedings of the2010IEEE International Conference on Information andAutomation,2010,pp.1363-1366
    [112]赵晓明.基于空气静压技术的非接触眼压测量方法与装置的研究.重庆大学硕士论文.2009
    [113]Singiresu S. Rao, The Finite Element Method in Engineering (Fifth Edition),2011,pp.549-569
    [114]D. M. Boure.“Physies for game developers". Reilly&Associates, Inc.2002,pp.1:107
    [115]Subhasish Dey,Tushar K.Nath, Sujit K. Bose“,Fully rough submerged plane wall-jets",Joirnal of Hydro-environment Research,4(4),2010,pp.301-316
    [116]Zahra BARATIAN-GHORGHI,Nigel B. KAYE,Abdul A. KHAN, Jeffrey R.SMITH”, The merging of two unequal axisymmetric parallel t”urbulent jets,Journal ofHydrodynamics, Ser. B,24(2),2012,pp.257-262
    [117]Matthew J. Bays, Apoorva Shende,Daniel J. Stilwell, Signe A. Redfield,“Theory andexperimental results for the multiple aspect coverage problem”,Ocean Engineering,54(1),2012,pp.51-60
    [118]Bong-Huan Jun, Jin-Yeong Park, Fill-Youb Lee, Pan-Mook Lee, Chong-Moo Lee,Kihun Kim, Young-Kon Lim,J"un-Ho Oh, Development of the AUV ‘ISiMI’ and arfee running test in an Ocean Engineering Basin”,Ocean Engineering,36(1),2009,pp.2-14
    [119]Farhood Azarsina,Chrisotpher D. Williams", Manoeuvring simulation of the MUNExplorer AUV based on the empirical hydrodynamics of axi-symmetric bare h”ulls,Applied Ocean Research,32(4),2010,pp.443-453
    [120]W“. GALOR,The effect of ship's impact on sea bed in shallow water", Archives ofCivil and Mechanical Engineering,7(3),2007,pp.105-114
    [121]Elias Revestido Herrero,Francisco J. Velasco Gonzale"z,Two-step identiifcation ofnon-linear manoeuvring models of marine vessels”,Ocean Engineering,53(15),2012,pp.72-82
    [122]Yao-jun LI“, Fu-jun WANG, Numerical Investigation of Performance of an Axial-FlowP”imp With Inducer,Journal of Hydrodynamics,Ser. B,19(6),2007,pp.705-711

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700