用户名: 密码: 验证码:
盾构掘进设备中的管片拼装机机构设计方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在掘进隧道的施工方法中,盾构法是一种应用非常广泛的施工方法。本文结合国内近年来对盾构开发的迫切需要,在国家重点基础研究发展计划(973计划)的支持下,对盾构掘进设备中用于给盾构开挖后的隧道表面贴上管片的重要部件——管片拼装机进行了详细的分析。本文的研究主要包括以下三个方面:
     1管片拼装机的构型与性能分析
     为将管片更快更好的安装到指定位置,管片拼装机需要做空间的多维运动,管片拼装机的空间多维运动包括三个主运动:轴向平移运动,径向平移运动,周向回转运动,以及三个姿态调整运动:横摇,俯仰,偏转。根据运动形式,对构型的问题进行分析,确定了构型后,进行运动学分析,并验证运动学方程的准确性,最后根据管片拼装机的实际工作状况,结合并联机构的特点,设计一种带有球面二自由度并联机构的新型管片拼装机。
     2管片拼装机的主要部件及驱动油缸的受力分析
     管片拼装机作为一种大型设备,要平稳,安全的进行拼装作业,各个驱动油缸的设计至关重要。驱动油缸主要有俯仰油缸,偏转油缸,升降油缸,平移油缸。本文针对管片拼装机的转动平台,左右提升横梁,旋转盘体以及平移机构进行受力分析,研究各个驱动液压缸的受力变化情况。
     3 CAD模型的建立及数值算例
     利用三维建模软件建立盾构及管片拼装机的CAD模型,再利用该软件中的Mechanic模块,给管片拼装机的各个连接加上运动副,给各个油缸加上驱动,动画实现管片拼装机的工作过程。根据第二章得到的运动学方程,以及第三章计算得到的管片拼装机主要部件和驱动油缸受力方程,第四章得到的部件结构尺寸,给出具体数值算例,并通过数学软件,得到了管片拼装机抓取管片后的回转运动时以及姿态调整时,各个驱动油缸受力变化情况。
     本文的研究为盾构掘进设备中的六自由度管片拼装机机构设计及驱动油缸的结构强度设计提供了依据。
Shield tunneling method has a widespread application. With the support of National Key Basic Research and Development Scheme, a comprehensive research on segment erector which is used in segment lining for the new surface during shield tunneling is developed. The research in this paper mainly includes three aspects, as followed.
     1 Type synthesis and performance analysis of segment erector mechanism
     To make the segment lining faster and better, the segment erector is required to undergo the multidimensional movements which include three main movements: namely translation along the axis; translation along radial, gyration and three orientation adjustable movements: traversing, pitching and deflexion. Base on the different motion patterns, the mechanism is confirmed and the kinematics analysis is performed. Also, the kinematic equations are verified. At last, a new type of segment erector with 2-DOF spherical parallel mechanism is proposed.
     2 Force analysis
     The driven oil cylinders include traversing oil cylinders, lifting oil cylinder, pitching oil cylinders and deflexion oil cylinders. The analysis is aimed at the turning platform, left and right lifting beam, gyration body and translation mechanism.
     3 CAD modeling and examples
     The CAD model of shield machine and segment erector are built up with the software Pro/engineer. The working process is also simulated. According to the kinematic equations obtained from chapter 2, the force equations about the driving from chapter 3 and the dimensions of the parts from chapter 4, an example is given. Through the software Maple, the curves about the force on the driven oil cylinders are drawn during the machine making the gyration movement and the adjustable movement.
     All the analysis above lay foundation for the design of segment erector mechanism and the strength design of hydraulic cylinders structure.
引文
[1] 侯祥明. 浅析盾构技术. 机械与电子. 2007, 18, 103-104.
    [2] 何其平. 海瑞克盾构在南京地铁工程中的应用[J]. 工程机械. 2003(02): 12~15.
    [3] 杨华勇, 龚国芳. 盾构掘进机发展战略研究[J]. 城市交通隧道工程最新技术——2003 上海国际隧道工程研讨会论文集,2003.
    [4] 崔国华, 王国强, 何恩光, 张英爽. 盾构机的研究现状及发展前景[J]. 矿山机械. 2006, 6(34): 24~27.
    [5] 丁书福. 盾构管片拼装机电液控制系统研究. 浙江大学硕士学位论文, 2005.
    [6] Pitman Ptess, Barbara Stack. Handbook of Mining and Tunneling Machinery. Great Britain. 1982(1).
    [7] Yukinori Koyama. Present Status and Technology of Shield Tunneling Method in Japan. Tunneling and Underground Space Technology,2003(18).
    [8] 张凤祥, 朱合华, 傅德明. 盾构隧道. 北京:人民交通出版社,2003.
    [9] G. Wayne Clough, Eric Leca. EPB Shield Tunneling in Mixed Face Conditions. J. Geotech. Engrg. 119, 1640 (1993).
    [10] National Research Council Staff. Drilling and Excavation Technologies for the Future, National Academies Press, 1994.
    [11] Thomas Kaspera, Günther Meschke. On the influence of face pressure, grouting pressure and TBM design in soft ground tunneling. Tunneling and Underground Space Technology. 21(2006): 160~171.
    [12] 汪茂祥. 海瑞克土压平衡式盾构机. 工程机械与维修[J]. 2003, 66(1), 65~66.
    [13] D. T. C. Yao, J. H. Guo, H. C. Chao. Earth Pressure Linings of Shield Tunnel, ASCE Conf. Proc. 199, 32(2006).
    [14] 胡胜利. 乔世珊. 泥水式盾构机.建筑机械[J]. 2000(4):21~25
    [15] 邢彤, 龚国芳, 胡国良, 杨华勇. 盾构刀盘驱动液压系统设计. 液压与驱动[J]. 2005(4): 22~23.
    [16] 黄旭就. 关于国内盾构机开发的探讨. 装备制造技术[J],2006(2): 3~7.
    [17] 刘永强, 王连锁, 谭晶辉, 邢丽英. 天津城建一号 Φ 6.34m土压平衡式盾构机. 天津市政工程[J]. 2004(4): 25~28.
    [18] 王志新,殷琨. 盾构技术在我国地下空间的利用和新发展.建筑技术开发[J]. 2006(8): 36~39.
    [19] 白杉, 周洁. 中国盾构掘进机的发展和应用.筑路机械与施工机械. 2004(7).
    [20] 杜守峰. 南京地铁盾构机掘进与参数选择. 隧道建设[J]. 2004, 24(2): 67~70.
    [21] 韩亚丽, 陈馈. 南京地铁盾构隧道管片拼装技术. 隧道建设[J]. 2003, 23(2): 16~17.
    [22] Masahiro Maeda, Kotaro Kushiyama. Use of compact shield tunneling method in urban underground construction, Tunneling and Underground Space Technology ,20 (2005): 159~166.
    [23] Yukinori Koyama. Technology of shield tunneling method in Japan. Tunneling and UndergroundSpace Technology. 24 (2003): 158~164.
    [24] Watanabe Takashi, Tanaka Toshiharub, Abe Tsuyoshic, Mukuno Katsuhiko. Development of a new composite structure segment for large diameter shield tunnel. Tunneling and Underground Space Technology. 19 (2004): 449~450.
    [25] http://www.csce.org.cn/xdzl/20/6.asp.
    [26] http://www.biaoshu.com/dgj/dgj.htm.
    [27] 管会生, 黄松和, 徐济平. 盾构管片拼装机设计研究, 矿山机械[J].2005,33(03): 15~16
    [28] 张凤祥, 杨宏燕. 对我国发展盾构技术的一点看法. 验室力学与工程学报[J]. 1999, 18(5): 611~614
    [29] 孙善辉. 城陵矶长江穿越隧道管片拼装技术. 隧道建设. 2004, 24(16):15~17
    [30] Y. Tanaka. Automatic segment assembly robot for shield tunneling machine. Microcomputers in Civil Engineering. 1995, 10(5): 325~337
    [31] Koyama, Y. Study on the Improvement of Design Method of Segments for Shield-driven Tunnels (in Japanese). RTRI Report: Special No. 33. RTRI p. 114.
    [32] 蔡自兴. 机器人学. 清华大学出版社, 2000.
    [33] 熊有伦, 丁汉, 刘恩沧. 机器人学. 机械工业出版社, 1993.
    [34] Robert L.Norton. Design of Machinery–An Introduction to the Synthesis and Analysis of Mechanisms and Machines. McGraw-Hill Companies, 1992.
    [35] C.Y. Ho, Jen Sriwattanathamma. Robot kinematics: symbolic automation and numerical synthesis. Norwood, N.J.: Ablex Pub. Corp.,1990.
    [36] J.M. McCarthy. The Kinematics of robot manipulators. Cambridge, Mass. : MIT Press, 1987.
    [37] Matthew T. Mason, J. Kenneth Salisbury, Jr. Robot hands and the mechanics of manipulation . Cambridge, Mass.: MIT Press, 1985.
    [38] Osborne, David M. Robots, an introduction to basic concepts and applications. Detroit, Mich.: Midwest Sci-Tech Publishers, 1983.
    [39] 楼鸿棣, 邹慧君. 高等机械原理. 高等教育出版社, 1990.
    [40] Niku, Saeed B., 孙富春, 朱纪洪, 刘国栋. Introduction to robotics: analysis, systems, applications. 电子工业出版社, 2004.
    [41] Doughtie, Venton Levy, James, Walter H., 敖仲宁, 林永仁. 机构学. 世界图书出版公司北京公司重印, 1994.
    [42] Shigley, Joseph Edward, 聂新. 机械原理与机构学. 科学技术文献出版社重庆分社, 1987.
    [43] Tarricone, Paul. Civil Engineering. Motown Tunneling. Apr 1992; 62, 4; ABI/INFORM Global pg60
    [44] Hulme, T.W. Recent developments in tunneling systems. Seventh Australian Tunneling Conference. 1990, p132~158
    [45] 同济大学理论力学教研室. 理论力学. 同济大学出版社, 1990.
    [46] 中川宪治, 蒋鉴, 蒋鉴, 庄立球. 工科一般力学. 高等教育出版社, 1990.
    [47] 赵纯恒, 刘克广. 理想刚体静力学. 轻工业出版社, 1992.
    [48] Harer, G., Schonlechner, C., Vigl, A. Koralm's vertical shield driven shaft. Journal article (JA). 2005, p 21~23.
    [49] Kitamura, I., Ito, S., Fujiwara, T. Shield tunneling performance and behavior of soft ground. Proc., North American Rapid Excavation and Tunneling Conf., Society of Mining Engineers, 201~220.
    [50] Japan Society of Civil Engineers (JSCE). Japanese Standard for shield Tunneling, English edition of the Japanese Standard for Tunneling Subcommittee, 2000.
    [51] Shao, Y., Macari, E. J., Xia, M., Ye, X. Construction principles for large-sized grid shield tunneling in soft clay. Proc., Int. Symp. Geotechnical Aspects of Underground Construction in Soft Ground, Balkema, Rotterdam, The Netherlands, 1999: pp299~304.
    [52] Maidl, B., Herrenknecht, M., Anheuser, L. Mechanised shield tunneling, Ernst & Sohn, VCH, Berlin, 1996.
    [53] Skibniewski,M.J., Russell, J.S. Robotic applications to construction. Cost Eng.(Morgantown, W.Va), 1989,3 1(6): 10~18.
    [54] Koyama, Y. Shield tunneling method. Tunneling and Underground Space Technology, 2003(04), No.2: 182~186.
    [55] Mashimo, H. Ishimura, T. Evaluation of the load on a shield tunnel lining in gravel. Modern Tunneling Science and Technology, 2001(1): 259~264.
    [56] AIber.Michae. Advance rates of hard rock TBMs and their effects on project. Tunneling and Underground Space Technology. 2000, 15(1): 24~30.
    [57] Potapov Yu F, Khmelev N. Construction of the no.1 hydraulic pressure tunnel with the use of the Robbins Tunneling machines. Geomechanics Abstracts, 1997, 1997(5): 342~347.
    [58] Brox D. First TBM tunnel for the Greek railways. Geomechanics Abstracts, 1997, 1997(5): 342~348.
    [59] Louis Wassmer, Oscar Treceno, Enrico Andreossi, Swiss Re. Tunnel Boring Machine (TBM) applications in soft ground conditions. IMIA Meeting, 2001.
    [60] Einar Broch, Eivind Grov, Kjell Inge Davik. The inner lining system in Norwegian traffic tunnels. Tunneling and Underground Space Technology, 2002, 17(2): 305~314.
    [61] Gertsch L,Field A,Nilsen B,Gertsch R. Use of TBM muck as construction material. Tunnelling and Underground Space Technology, 2000, 15(4): 379~402.
    [62] Harp J C. Design considerations and parameters for the analysis of TBM excavation segmental lining systems. Geomechanics Abstracts, 1997(5): 340~346.
    [63] H.Mashimo, T.lshimura. Evaluation of the load on a shield tunneling in gravel. Public Works Research Institute, Independent Administrative Institution. Tsukuba, Japan, 1995.
    [64] SwobodaG, Abu-KrishaA. Three-Dimensional numerical modeling for TBM Tunneling in consolidated clay. Tunneling and Underground Space Technology, 1999, 114(3): 5~9.
    [65] Jun Liu, Zhong kuiLi, Zhuoyuan Zhang. Stability analysis of block in the surrounding rock mass of a large underground excavation. Tunneling and Underground Space Technology, 2004, 19(1): 35~44.
    [66] M M Baligh. Strain path method. ASCE Journal of Geotechnical Engineering, 1985, 111(9): 1108~1136.
    [67] Nishioka K, Tudor R A, O'Connor D P. Record TBM performance documents improved Tunneling technology in Nevada at River Mountains tunnel No.2. International Journal of Rock Mechanics and Mining Sciences&Geomechanics Abstracts, 1997, 34(4): 609~613.
    [68] Strohhausl S. TBM tunneling with high overburden. Geomechanics Abstracts, 1997(l): 51~54.
    [69] Lombardi G, Panciera A. Problems with TBM and linings in squeezing ground. Geomechanics Abstracts, 1997(5): 340~342.
    [70] Liu P Liang, W H. Design considerations for construction of the lining tunnel using TBM. Tunneling and Underground Space Technology, 2000, 15(2): 139~146.
    [71] Matsumoto, Y., Arai, T., Hatagoshi, A. An experimental study of multi-circular face shield tunneling. J. Japan. Soc. Civ. Eng., 1994, 406(18): 291~300.
    [72] Murayama, S., Suematsu, N., Kawase, Y. Slip failure along the tunnel face driven by shield. J. Japan. Soc. Civ. Eng., 1989, 406(12): 301~304.
    [73] Nomoto, T., Imamura, S., Hagiwara, T., Kusakabe, O., Fujii, N. Shield tunnel construction in centrifuge. J. Geotech.Geoenviron. Eng., 1999, 125(4): 289~300.
    [74] Shimizu, Y., Suzuki, M. Study of the moving characteristics of a shield tunneling machines. J. Japan. Soc. Mech. Eng., 1992, 550(58): 155~161.
    [75] Tomizawa, A. Shield behavior at the sharp curve alignment. Tunn. Undergr., 1988, 19(1): 31~38.
    [76] 温建民, 于广滨, 左晓英. Pro/E 野火中文版产品设计应用范例. 清华大学出版社, 2006.
    [77] 张继春, 杨建国. 装配设计与运动仿真及 Pro/E 实现. 国防工业出版社,2005.
    [78] 二代龙震工作室. Pro/Mechanism/MECHANICA Wildfire 2.0 机构/运动/结构/热力分析. 电子工业出版社, 2006.
    [79] 孙非. Maple 6 实例教程. 中国电力出版社, 2001.
    [80] 何青, 王丽芬. Maple 教程. 科学出版社, 2006.
    [81] 张韵华, 王新茂. 符号计算系统 Maple 教程. 中国科学技术大学出版社, 2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700