用户名: 密码: 验证码:
长期冬种绿肥对红壤性水稻土质量和生产力可持续性影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以农业部衡阳红壤环境重点野外科学观测基地长期冬种绿肥稻田为平台,研究了双季稻种植下长期冬种油菜、紫云英、黑麦草等不同绿肥对红壤性水稻土的主要物理性质、水稳性团聚体含量与分布、耕层土壤各粒径水稳性团聚体内有机碳和氮素的含量与分布及储量、土壤肥力特征、微生物特性及酶活性和生产可持续性的影响,探讨长期冬种绿肥一紫云英、黑麦草和油菜等对双季稻种植下红壤性水稻土质量的影响及其评价,为提升红壤性水稻土肥力和土壤质量,提高农田利用率以及发展提高水稻土养分利用效率的可持续性有效技术提供理论依据。主要研究结果如下:
     长期冬种绿肥的稻-稻-油菜(R-R-RP)、稻-稻-紫云英(R-R-MV)和稻-稻-黑麦草(R-R-RG)处理土壤容重显著地低于稻-稻-冬闲(R-R-WF)处理,而孔隙度、耕层土壤田间持水量以及不同上水势(-10,-33和-100 kPa)下的持水量显著地高于R-R-WF处理。长期冬种绿肥处理的土壤团聚体的平均重量直径和标准平均重量直径也高于长期冬闲处理。与R-R-WF处理相比,R-R-RP、R-R-MV和R-R-RG处理0.25-5mm水稳性团聚体的含量明显要高。在同一粒径下R-R-RP、R-R-MV和R-R-RG处理团聚体稳定性大于R-R-WF处理。游离结合态C和与R2O3结合态C与土壤团聚体的稳定性呈显著相关。
     R-R-RP、R-R-MV和R-R-RG处理有机碳主要富集在1-5mm粒径的水稳性团聚体内,其次在>5mm粒径的水稳性团聚体内,而R-R-WF处理有机碳则主要富集在>0.5mm粒径水稳性团聚体内。全N主要富集在较大粒径水稳性团聚体内,尤其是>2mm粒径水稳性团聚体内。证明大粒径水稳性团聚体在土壤全N的转化过程中起着十分重要作用,大粒径水稳性微团聚体对土壤有机碳、氮具有强富集和物理保护作用。长期冬种绿肥的R-R-RP、R-R-MV和R-R-RG处理水稳性团聚体内的有机碳和全N含量明显高于R-R-WF处理。大粒径团聚体内C/N比小粒径团聚体内的高,且以2-5mm粒径团聚体内的C/N为最高,从总体上来看,C/N随土壤团聚体粒径的减小而呈下降的趋势。长期冬种绿肥处理可提高2.5mm粒径团聚体C/N,对其它各粒径团聚体C/N的影响不大。所有处理>5mm粒径水稳性团聚体和<0.25mm粒径水稳性微团聚体的土壤有机碳和全氮储量较高,长期冬种绿肥尤其是紫云英绿肥可提高<5mm各粒径水稳性团聚体内有机碳和全N储量。
     R-R-RP、R-R-MV和R-R-RG处理土壤的土壤全有机碳(TOC)、活性有机质(LOM)、全氮(TN)、速效氮(AN)、缓效钾(SLK)和速效钾(AK)含量均高于R-R-WF处理,但土壤pH值下降,且电导率变化差异不明显。长期冬种绿肥翻压处理,上述土壤养分状况比冬季休闲处理都得到了明显的改善,长期冬种紫云英翻压处理效果最为明显。长期双季稻冬种绿肥处理的生产力高于长期双季稻冬闲处理,同时长期双季稻冬种绿肥翻压向处理土壤归还的有机物多于长期双季稻冬闲处理,土壤全有机碳和活性有机质明显提高。
     R-R-RP、R-R-MV和R-R-RG处理可显著增加土壤细菌、真菌和放线菌数量,不仅土壤微生物种群数量高于R-R-WF处理,微生物生物量碳和土壤呼吸也显著高于R-R-WF处理,而代谢熵低于R-R-WF处理。长期双季稻冬种绿肥可以保持和提高土壤的微生物学特性,提高土壤的生物特性。长期冬种油菜、紫云英和黑麦草在增强酶活性方面存在差异。总体来看,长期冬种紫云英处理的土壤脲酶、转化酶和脱氢酶活性高于长期冬种油菜和黑麦草处理,说明长期冬种紫云英翻压入土可为水稻稳产高产创造更好的生物化学环境。相关分析表明,微生物种群数量、微生物生物量、脲酶、脱氢酶与土壤全有机碳、全氮、速效氮、缓效钾和速效钾呈密切相关;细菌、真菌、放线菌、微生物生物量碳和代谢熵与水稻产量呈极显著相关。
     R-R-RP、R-R-MV和R-R-RG处理提高了可持续产量指数(SYI)和偏生产力(PFP),能明显地改善红壤性水稻土的养分状况,提高土壤健康和土壤肥力,提高红壤性水稻土生产的可持续性。粮食产量变化趋势、SYI和PFP可以作为衡量长期肥料管理的理想工具。土壤全有机碳(OC)含量,与肥料管理措施对产量的影响的一致性最小。
     采用非线性评价模型对28年双季稻种植下连续冬种绿肥对土壤质量的影响进行了评价,选择土壤容重(BD)、最大持水量(MWHC)、孔隙度(POR)、标准化平均重量直经(MNWD)、pH、阳离子交换量(CEC)、有效养分、土壤有机质(SOM)、微生物生物量碳(MBC)、土壤酶和作物生产力等参数作为评价指标,并根据不同指标所具有的功能归纳为:1)抗物理退化;2)养分供应和贮藏;3)抗生物化学退化;4)保持作物生产力的能力。以以上4项功能指标为基础划分土壤质量指数(SQI)。结果证明,冬种绿肥处理条件下土壤抗物理退化、土壤养分供应和贮藏、抗生物化学退化和保持作物生产力的功能都明显强于冬闲处理。R-R-RG处理土壤抗物理退化功能最强;R-R-MV土壤养分供应和贮藏功能最强;抗生物化学退化功能,R-R-MV处理和R-R-RP处理最强;保持作物生产力功能R-R-RP处理最强。四个处理的SQI等级范围为0.552 (R-R-WF处理)到0.632(R-R-MV处理),R-R-MV处理的SQI值和土壤功能等级最高,三个冬种绿肥处理都明显高于冬闲处理。长期冬种绿肥可明显改善红壤性水稻土土壤物理、化学和生化性质,从而提高了土壤的综合质量。
A long-term field experiment was conducted to study the effect of long-term inputs of green manure on soil physical properties, content of water-stable aggregates and its size distribution, content and distribution and storage of aggregate-associated organic carbon and nitrogen, characteristics of soil fertility, microbial properties, enzyme activities, Sustainable productivity and soil quality of a reddish paddy soil based on a double cropping system from Key Field Monitoring Experimental Station for Red Soil Eco-environment of Ministry of Agriculture, Qiyang County, Hunan, China. It can provide the theoretical basis for improving the soil fertility and soil quality in the reddish paddy soil, the utilization of farmland, and developing the sustainable and effective technology to improve the nutrient use efficiency. The main results were as follows:
     The soil bulk density in all green manure treatments was significantly reduced compared with the winter fallow treatment. Soil porosity under green manure applications was significantly higher than under the winter fallow. The 0.25-5 mm water stable aggregates and aggregates stabilities in the plow layer (0-15 cm depth) were higher in green manure treatments than in the fallow treatment. The mean weight diameter and normalized mean weigh diameter of aggregates were larger in the green manure treatment than in the winter fallow treatment. Soil given green manure retained both a higher water holding capacity in the plow layer soil, and a larger volume of moisture at all matric potentials (-10,-33 and -100 kPa). The free and weakly combined C and R2O3-combined C were significantly correlated with the stability of soil aggregates.
     Organic carbon is mainly enriched in 1-5mm water stable aggregates, followed by the >5mm water stable aggregates after a long-term winter planting green manure, and organic carbon is mainly enriched in >0.5mm water-stable aggregates in long-term winter fallow plot treated. Total N is mainly enriched in the larger size water-stable aggregates, in particular,>2mm water-stable aggregates, which indicated that large-size water-stable aggregates plays an important role in transformation of soil total N. Large-size water-stable micro-aggregates have a strong enrichment and physical protection on soil organic carbon and nitrogen. Long-term winter planting green manure can increase the content of organic carbon and total N of water-stable aggregates. C/N ratio of large aggregate is higher than that of small aggregate, C/N ratio of 2-5mm aggregate is the highest, C/N ratio is decreasing tendency with the decrease of particle size of soil aggregates. Long-term winter planting green manure treatment can improve C/N ratio of 2-5mm aggregates, and which has little effect on the C/N ratio of other size aggregates. Soil organic carbon and nitrogen stocks higher in >5mm water-stable aggregates and <0.25mm water-stable micro-aggregates in all plot treated. Long-term winter planting green manure, especially Chinese milk vetch can improve the storage of <5mm aggregate-associated organic carbon and nitrogen.
     Long-term winter planting green manure incorporation treatments increased soil total organic carbon (TOC), liable organic matter (LOM), total nitrogen (TN), available nitrogen (AN), slowly available potassium (SLK) and available potassium (AK) compared with the R-R-WF treatment. The soil nutrient status in treatments with long-term winter planting green manure incorporation were significantly improved compared with the winter fallow treatment; all these properties in the treatment with winter planting Chinese milk vetch were the most obvious. In the meantime, long-term winter planting green manure incorporation treatments could significantly decrease the soil pH in the Typic Hapllc-Stagnic Anthrosis (pH6.6 in initial soil). The productivity of long-term winter planting green manure plots treated was higher than that of the winter fallow-treated plots. Compared with the winter fallow-treated plots, the organic matter returned to the soil, soil organic matter and labile organic matter were higher in the winter planting green manure plots treated.
     The amounts of microbial populations, microbial biomass carbon (SMBC), microbial biomass nitrogen (SMBN), soil respiration, activities of urease, lnverstase and dehydrogenase were increased, and metabolic quotient (qCO2) was decreased in long-term winter planting green manure incorporation treatments. The microbial characteristics in the treatments with long-term winter planting green manure incorporation were significantly improved as compared with the winter fallow treatment. All these properties in the treatment with winter planting Chinese milk vetch were the most obvious. In the meantime, amounts of microbial populations, SMBC, urease and dehydrogenase were positively correlated with TOC, TN, AN, SLK and AK. Amounts of microbial populations, SMBC and qCO2 were positively correlated with rice yield.
     Sustainable yield index (SYI) and partial productivity (PFP) of long-term winter planting green manure treated plot was improved. Long term winter planting green manure and incorporate can significantly improve the nutrient status of paddy soil, soil health, soil fertility, and sustainable rice production of reddish paddy soil. Trends in grain yield, SYI and PFP of fertilizer appear promising tools to measure sustainability of fertilizer management practices. Soil organic carbon content, showing the least consistency with the effect of fertilizer management practice on yield, did not prove a reliable index of sustainability in this study.
     A soil quality index (SQI) based on four soil functions (i.e. the soil ability to resist physical degradation, supply plant nutrients and storage, resist biochemical degradation and sustain crop productivity) was derived for each treatment using bulk density (BD), maximum water holding capacity (MWHC), porosity (POR), normalized mean weight diameter (NMWD), pH, cation exchange capacity (CEC), plant available nutrients, soil organic matter (SOM), microbial biomass, soil enzymes and rice yield. The soil ability to resist physical degradation, to supply plant nutrients and storage, to resist biochemical degradation and to sustain crop productivity of the winter green manure treatments is much stronger than the winter fallow treatment. The soil ability to resist physical degradation of R-R-RG treatment is the strongest. The soil ability to supply plant nutrients and storage of R-R-MV treatment is the strongest. The soil ability to resist biochemical degradation of R-R-RP treatment and R-R-MV treatment are the strongest. The ability to sustain crop productivity R-R-RP treatment is the strongest. Soil quality index ratings ranged from 0.552(R-R-WF treatment) to 0.632(R-R-MV treatment) among the four treatments. SQI and soil functional class of the R-R-MV treatment are the highest, the three winter green manure treatments are higher than the winter fallow treatment obviously. Long-term winter planting-green manure improved the physical, chemical and biochemical properties of reddish paddy soil and therefore improved the comprehensive soil quality.
引文
1. Acosta-Martinez V, Reicher Z, Bischoff M, et al. The role of tree leaf mulch and nitrogen fertilizer on turf grass soil quality[J]. Biology and Fertility of Soils,1999,29:55-61.
    2. Adesodun J K, Mbagwu J S C, Oti N. Distribution of carbon, nitrogen and phosphorus in water-stable aggregates of an organic waste amended Ultisol in southern Nigeria [J]. Bioresource Technology,2005,96:509-516.
    3. Albaladejo J, Lopez J, Boix-Fayos C, et al. Long-term Effect of a Single Application of Organic Refuse on Carbon Sequestration and Soil Physical Properties [J]. J. Environ. Qual. 2008,37:2093-2099.
    4. Alexander M. Agriculture Resposibility in Establishing Soil Quality Criteria [A], In Environmental Improvement-Agricultural Challenge in the Seventies[C]. National Academy of Science, Washington, DC,1971:66-71.
    5. Alvarez R, Diaz RA, Barbero N, et al. Soil organic C, microbial biomass and CO2-C production from three tillage system [J]. Soil Tillage Research,1995,33(1):17-28
    6. Anderson J P E. Soil respiration, In. Page A L, Miller R H, Keeney D R (eds), Methods of Soil Analysis. Part 2. Soil Science Society of America, Madison, WI,1982a:831-872.
    7. Anderson T H, Domsch K H. Applicaton of eco-physiological quotients on microbial biomasses from soils of different cropping histories [J]. Soil Biology and Biochemistry,1990,22: 251-255.
    8. Anderson T H, Domsch K H. Ratios of microbial biomass carbon to total organic carbon in arable soils [J]. Soil Biology and Biochemistry,1989,21(4):471-479.
    9. Andrews S S, Karlen D L, Cambardella C A. The soil management assessment framework:A quantitative soil quality evaluation method [J]. Soil Science Society of America Journal,2004, 68:1945-1962.
    10. Andrews S S, Karlen D L, Mitchell J P. A comparison of soil quality of indexing methods for vegetable production systems in northern Califonia [J]. Agriculture, Ecosystems and Environment,2002,90:25-45.
    11. Aoyama M, Angers D A, N'Dayegamiye A, et al. Protected organic matter in water-stable aggregates as affected by mineral fertilizer and anural applications. Canadian Journal of Soil Science,1999,79(3):419-425.
    12. Baker B J, Fausey N R, Islam K R. Comparison of soil physical properties under two different water table management regimes[J]. Soil Science Society of America Journal,2004,68, 1973-1981.
    13. Baldoek J A, Oades JM, Waters A G, et al. Aspects of the chemical structure of soil organic materials as revealed by solid-state 13C NMR spectroscopy[J]. Biogeochemistry,1992,15:1-42.
    14. Beri V, Meelu O P. Substitution of nitrogen through green manure in rice [J]. Indian Fanning. 1981,31(2),3-4.
    15. Bohme L, Langer U, Bohme F. Microbial biomass, enzyme activities and microbial community structure in two European long-term field experiments [J]. Agriculture, Ecosystems and Environment,2005,109:141-152.
    16. Boparai B S, Singh Y, Sharma B D. Effect of green manuring with Sesbania acculeata on physical properties of soil and on growth of wheat in rice-wheat and maize-wheat cropping systems in a semi-arid region in India [J]. Arid Soil Research Rehabilitation. 1992,6(2):135-143.
    17. Bronick C J, Lal R. Manuring and rotation effects on soil organic carbon concentration for different aggregate size fractions on two soils in northeastern Ohio, USA [J]. Soil and Tillage Research,2005,81 (2):239-252.
    18. Bronick C J, Lai R. Soil structure and management:a review [J]. Geodenna,2005,124(1-2): 3-22.
    19. Cambardella C A, Elliott E T. Carbon and nitrogen distribution in aggregates from cultivated and native grassland soils [J]. Soil Science Society of America Journal,1993,57(4):1071-1076.
    20. Campbell C A, Mcconkey B G, Zentner R P, et al. Tillage and crop rotation effects on soil organic C and N in a coarse-textured Typic Haploboroll in southwestern Saskatchewan [J]. Soil and Tillage Research,1996,37:3-14.
    21. Casida J L E, Klein D A, Santoro T. Soil dehydrogenase activity[J]. Soil Science,1964,98(6): 371-376.
    22. Casida J L E, Klein D A, Santoro T. Soil dehydrogenase activity [J]. Soil Science,1964,98 (6):371-376.
    23. Cassman K G, Gines G C, Dizon M A, et al. Nitrogen use efficiency in tropical lowland rice system:contributions from indigenous and applied nitrogen [J]. Field Crops Research,1996,47: 1-12.
    24. Cassman K G, De Datta S K, Olk D C, et al. Yield decline and the nitrogen economy of long-term experiments on continuous, irrigated rice-wheat systems in the tropics. In:Lal R., Stewart B A (Eds.), Soil Management:Experimental Basis for Sustainability and Environmental Quality. Lewis Publishers, Boca Raton, FL,1995,181-222.
    25. Chander K, Goyal S, Mundra M C, et al. Organic Matter, microbial biomass and enzyme activity of soils under different crop rotations in the tropics[J]. Biology and Fertility of Soils, 1997,24,306-310.
    26. CIMMYT (Centro International de Mejoramiento de Maiz y Trigo), Rice-wheat cropping systems in the tarai areas of Nainital, Rampur and Pilibhit districts in Uttar Pradesh, India. In: Diagnostic Surveys of Fanners'Practices and Problems, and Needs for Further Research. CIMMYT, Mexico,1990:55.
    27. CIMMYT (Centro International de Mejoramiento de Maiz y Trigo), Rice-wheat in Karnal and Kurukshetra districts, Haryana, India. In:Exploratory Surveys of Farmers' Practices and Problems, and an Agenda for Action. CIMMYT, Mexico,1992:44.
    28. Deoyani V S, Comerford N B, Jokela E J, et al. Aggregation and aggregate carbon in a forested southeastern coastal plain Spodosol[J]. Soil Science Society of America Journal,2007,71 (3): 1779-1787.
    29. Dick R P. A review:long-term effect of agricultural systems on soil biochemical and microbial parameters [J]. Agricultural, Ecosystem and Environment,1992,40:25-36.
    30. Dick W A, Tabatabai M A. Significance and potential uses of soil enzymes. In Metting F B (ed.) Soil Microbial Ecology:Applications in Agriculture and Environmental Management. New York:Marcel Dekker.1992:95-130.
    31. Dilly O, Munch J C. Microbial biomass content, basal respiration and enzyme activities during the course of decomposition of leaf litter in a black alder (Alnus glutinosa L. Gaertn) forest [J]. Soil Biology and Biochemistry,1996,28(8):1073-1081.
    32. Doran J W, Sarrantomio M, Liebig M A. Soil health and sustainability [J]. Advances in Agronomy,1996,56:2-5.
    33. Doran J W, Parkin T B. Defining and assessing soil quality [A]. Madison, Wisconsin, USA: Soil Science Society of American,1994(35):3-21.
    34. Douglas L K, Eric G H, Susan S A, et al. Crop rotation effects on soil quality at three northern corn/soybean Belt locations [J]. Agronomy Journal,2006,98:484-495.
    35. Duxbury J M, Nkambule S V. In:Defining Soil Quality for a Sustainable Environment [M]. SSSA, Inc., Madison, Wisconsin USA,1994:125-146.
    36. Elliot E T. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils [J]. Soil Science Society of America Journal,1986,50:627-633.
    37. Glover J D, Reganold J P, Andrews P K. Systematic method for rating soil quality of conventional, organic, and integrated apple orchards in Washington State [J]. Agriculture, Ecosystems and Environment,2000,80:29-45.
    38. Golchin A, Oades J M, Skjemstand J O, et al. Study of free and occluded particulate organic matter in soils by solid state 13CCP/MAR spectroscopy and scanning electron microscope[J]. Australian. Journal of Soil Research,1994,32:285-309.
    39. Green V S, Cavigelli M A, Dao T H, et al. Soil physical properties and aggregate-associated C, N and P distribution in organic and conventional crop systems[J]. Soil Science,2005,170 (10): 822-831.
    40. Guggenberger G. Microbial contributions to the aggregation of a cultivated grassland soil amended with starch [J]. Soil Biology and Biochemistry,1999,31:407-419.
    41. Hassink J. Density fractions of soil macroorganic matter and microbial biomass as predictors of C and N mineralization [J]. Soil Biology and Biochemistry,1995,27(8):1099-1108.
    42. Haynes R J, Swift R S, Stephen R C. Influence of mixed cropping rotations (pasture-arable) on organic matter content, water stable aggregation and clod porosity in a group of soils [J]. Soil and Tillage Research,1991,19:77-87.
    43. Haynes, R J, Naidu R. Influence of lime, fertilizer, and manure applications on soil organic matter content and soil physical conditions:A review [J]. Nutrient Cycling in Agroecosystems, 1998,51:123-137.
    44. Hernandez T, Garcia C, Reinhardt I. Short term effect of wildfire on the chemical, biochemical and microbiological properties of Mediterranean pine forest soils [J]. Biology and Fertility of Soils,1997,25:109-116.
    45. Hinsinger P, Dufey J E, Jaillard B. Biological weathering of micas in the rhizosphere related to potassium absorption by plant roots [A]. In:B.L. McMichael and H. Persson(eds.). Plant roots and their environment [C].1991:98-105.
    46. Hinsinger P, Elsass F, Jaillard B, et al. Root-induced irreversible transtormatinn of trioctahodral mica in the rhizosphere of rape [J]. Journal of Soil Science,1993b,44:535-545.
    47. Hinsinger P, Jaillard B, Dufey J E. Rapid weathering of a trioctahedral mica by the roots of ryegrass [J]. Soil Science Society of America Journal,1992,56(3):977-982.
    48. Hinsinger P, Jaillard B. Root-indued release of interlayer potassium and vermiculitization of phlogopite as related to potassium deleption in the rhizosphere of ryegrass [J]. Journal of Soil Science,1993a,44:525-534.
    49. Huang Y, Wang S I, Feng Z W, et al. Changes in soil quality due to introduction of broad-leaf trees into clear felled Chinese-fir forest in the mid-subtropics of China [J]. Soil Use and Management,2004b,20(4):418-425.
    50. Huang Y, Wang H, Zou D S, et al. Effects of planting Eulaliopsis binata on soil quality in red soil region of southern China [J]. Soil Use and Management,2004a,20(2):150-156.
    51. Hussain I, Olson K R, Wander M M, et al. Adaptation of soil quality indices and application to three tillage systems in southern Illinois [J]. Soil and Tillage Research,1999,50(3-4).237-249.
    52. IITA (International Institute of Tropical Agriculture), Medium-Term Plan 1994-1998. IITA, Ibadan, Nigeria,1992.
    53. Insam H, Mitchell C C, Dormaar J F. Relationship of Soil microbial biomass and activity with fertilization practice and crop yield of three ultisols [J]. Soil Biology and Biochemistry,1991, 23:459-464.
    54. Jastrow J D. Soil aggregate formation and the accrual of particulate and mineral-associated organic matter [J]. Soil Biology and Biochemistry,1996,28:665-676.
    55. John B, Yamashifa T, Ludwig B, et al. Storage of organic Carbon in aggregate and density fractions of silty soils under different types of land use [J]. Geoderma,2005,128:63-79.
    56. Katyal J C. Influence of organic matter on the chemical and electro-chemical properties of some flooded soils [J]. Soil Biology and Biochemistry,1977,9:259-266.
    57. Khind C S, Jugsujinda A, Lindau CW, et al. Effect of Sesbania straw in a flooded soil on soil pH, redox potential, and water-soluble nutrients[J]. International Rice Research Newsletter, 1987,12(3):42-43.
    58. Kuo S, Sainju U M, Jellum H J. Winter cover crop effects on soil organic carbon and carbohydrate in soil [J]. Soil Science Society of America Journal,1997,61:145-152.
    59. Ladha J K, Dawe D, Ventura T S, et al. Long-Term Effects of Urea and Green Manure on Rice Yields and Nitrogen Balance [J]. Soil Science Society of America Journal,2000,64: 1993-2001.
    60. Ladha J K, Kundu D K. Legumes for sustaining soil fertility in lowland rice. In:Rupela O P, Johansen C, Herridge D F (Eds.). In:Extending Nitrogen Fixation Research to Fanners' Fields: Proceedings of an International Workshop on Managing Legume Nitrogen Fixation in the Cropping Systems of Asia. ICRISAT Asia Centre, Patancheru, India,1997:76-102.
    61. Lal R, Kimble J M, Follett R F, et al. Need for research and need for action. In:Lal R, et al. Eds, Management of Carbon Sequestration in soil (advances in soil science) [M]. CRC Press, Boca Raton, FL,1998:447-454.
    62. Larry M Z, Joe M B. Soil aggregation, aggregate carbon and nitrogen, and moisture retention induced by conservation tillage [J]. Soil Science Society of America Journal,2007,71 (3): 793-802.
    63. Larson W E, Pierce F J. Conservation and enhancement of soil quality [A]. In:Proc. Of the Int. Workshop on Evaluation for Sustainable Land management in the Developing World[C]. Bangkok, Thailand. IBSRAM Proc. Int. Board for Soil Res. And Management.1991,12(2).
    64. Lefroy R D B, Blair G J, Strong W M. Changes in soil organic matter with cropping as measured by organic carbon fractions and 13C natural isotope abundance[J]. Plant and Soil, 1993,155-156(1):399-402.
    65. Leigh R A. Johnston A E. Long-Tenn Experiments in Agricultural and Ecological Sciences. In:Proceeding of a conference to celebrate the 150th anniversary of Rothamsted Experimental Station., held at Rothamsted,14-17, July 1993. Printed and bound in the UK at University Press, Cambridge,1994.
    66. Letey J, Sojka R E, Upchurch D R, et al. Deficiencies in the soil quality concept and application[J]. Soil Water Conservation,2003,58(4):180-187.
    67. Lu S G. Role of organic matter in formation and stability of aggregates in mulberry plantation soils [J]. Pedosphere,2001,11(2):185-188.
    68. Lynam J, Herdt R. Sense and sustainability:sustainability as an objective in international agricultural research [J]. Agricultural Economics,1989,3(4):381-398.
    69. MacRae R J, Mehuys G R. The effect of green manuring on the physical properties of temperate-area soils [J]. Advances in soil sciences,1985,3:71-94.
    70. Mahapatra B S, Sharma G L. Integrated management of Sesbania, Azolla and urea nitrogen in lowland rice under rice-wheat cropping system [J]. The Journal of Agricultural Science,1989, 113(2):203-206.
    71. Manna M C, Swarup A, Wanjari R H, et al. Long-term effect of fertilizer and manure application on soil organic carbon storage, soil quality and yield sustainability under sub-humid and semi-arid tropical India [J]. Field Crops Research,2005,93(2-3):264-280.
    72. Margesin R, Zimmerbauer A, Schinner F. Monitoring of bioremesiation by soil biological activities [J]. Chemophere,2000,40:339-346.
    73. Masto R E, Chhonkar P K, Singh D, et al. Soil quality response to long-term nutrient and crop management on a semi-arid Inceptisol[J]. Agriculture, Ecosystems and Environment,2007, 118:130-142.
    74. McVay K A, Budde J A, Fabrizzi K, et al. Management effects on soil physical properties in long-term tillage studies in Kansas [J]. Soil Science Society of America Journal,2006, 70:434-438.
    75. Meelu O P, Rekhi R S. Fertilizer use in rice-based cropping systems in northern India [J]. Fertiliser News,1981,26(9),16-22.
    76. Mersi W, Schimmer F. An improved and accurate method for determining the dehydrogenase activity of soils with iodomitrotetrazalium chloride [J]. Biology and Fertility of soils,1991,11: 216-220.
    77. Mikha M M, Rice C W. Tillage and manure effects on soil and aggregate-associated carbon and nitrogen [J]. Soil Science Society of America Journal,2004,68:809-816.
    78. Monokrousos N, Papatheodorou E M, Diaamantopoulod J D, et al. Soil quality variables in organically and conventionally cultivated field sites [J]. Soil Biology and Biochemistry,2006, 38:1282-1289.
    79. Morenoa J L, Garcia C, Landib L, et al. The ecological dose value(ED50)for assessing Cd toxicity on ATP content and dehydrogenase and urease activities of soil[J]. Soil Biology and Biochemistry,2001,33:483-489.
    80. Moria de la Paz J. Soil quality:a new index based on microbiological and biochemical parameters [J]. Biology and Fertility of Soils,2002,35:302-306.
    81. Moscatelli M C, Fonck M, Angelis P D, et al. Mediterranean natural forest living at elevated carbon dioxide:soil biological properties and plant biomass growth[J]. Soil Use and Management,2001,17:195-202.
    82. Nagarajah S, Neue H U, Alberto M C R. Effect of Sesbania, Azolla and rice straw incorporation on the kinetics of NH4, K, Fe, Mn, Zn and P in some flooded soils[J]. Plant Soil,1989,116: 37-48.
    83. Odum E. Trends expected in stressed ecosystems [J]. Biology Science,1985,35:419-422
    84. Pagiola, S. Environmental and Natural Resource Degradation in Intensive Agriculture in Bangladesh:Environment Economics Series Paper No.15. The World Bank, Environment Department, Washington DC, USA,1995.
    85. Pankhurst C E, Hawke B G, McDonald H J, et al. Evaluation of soil biological properties as potential bioindicators of soil health [J]. Australian Journal of Experimental Agriculture,1995, 35:1015-1028.
    86. Perucci P, Bonciarelli U, Bianchi A A, et al. Effect of rotation, nitrogen fertility and management of crop residues on some chemical, microbiological and biochemical activity of soils under cultivation[J]. Biology and Fertility of Soils,1997,13:242-247.
    87. Pinheiro E F M, Pereira M G, Anjos L H C. Aggregate distribution and soil organic matter under different tillage systems for vegetable crops in a Red Latosol from Brazil [J]. Soil Tillage Research:2004,77:79-84.
    88. Power J F, Myers J K. The maintenance or improvement of fanning systems in North America and Australia [A].In:Strewart JWB, eds. Soil quality in semi-arid agriculture [C]. Saskatoon, Saskatchewan, Canada:Proc. Of an Int. Conf. Sponsored Int. Development Agency,1989, 11-16.
    89. Quilchano C, Maranon T. Dehydrogenase activity in Mediterranean forest soils [J]. Biology and Fertility of Soils,2002,35:102-107.
    90. Reginald E M, Pramod K C, Dhyan S, et al. Soil quality response to long-term nutrient and crop management on a semi-arid incepotisol [J]. Agriculture, Ecosystems and Environment, 2007,118:130-142.
    91. Robert M, Berthelin J. Role of biological and biochemical factors in soil mineral weathering [A] In:Huang P M and Schnitzer M (eds.). Interaction of soil minerals with natural organic and microbes [C]. Soil Science Society of America Special Publication No.17,1986,453-496.
    92. Ros M, Hernandez M T, Garcia C. Soil microbial activity after restoration of a semiarid soil by organic amendments [J]. Soil Biology and Biochemistry,2003,35:463-469.
    93. Schutter M E, Sandeno J M, Dick R P. Seasonal, soil type, and alternative management influences on microbial communities of vegetable cropping systems [J]. Biology and Fertility of Soils,2001,34(6):397-410.
    94. Sharma K L, Mandal U K, Srinivas K, et al. Long-term soil management effects on crop yield and soil quality in a dryland Alfisol [J]. Soil and Tillage Research,2005,83:246-259.
    95. Singh R B, Paroda R S. Sustainability and productive of rice-wheat systems in the Asia-Pacific region:research and technology development needs [A]. In:Paroda R S, woodhead T, Singh R B. Sustainability of Rice-wheat Product Systems in Asia[C]. Bangkok:FAO,1994:1-35.
    96. Singh R P, Das S K, Bhaskara Rao U M, et al. Towards Sustainable Dryland Agricultural Practices. CRIDA, Hyderabad, India,1990.
    97. Singh S, Singh J S. Microbial biomass associated with water-stable aggregates in forest, savanna, and cropland soils of seasonally dry tropical region, India [J]. Soil Biology and Biochemistry,1995,27(8):1027-1033.
    98. Singh S, Singh J S. Water-stable aggregates and associated organic matter in forest, savanna, and cropland soils of seasonally dry tropical region, India [J]. Biology and Fertility of Soils, 1996,22(1-2):76-82.
    99. Singh Y, Singh B, Khind C S. Nutrient transformations in soils amended with green manures [J]. Advances in soil sciences,1992,20:237-309.
    100. Singh Y, Singh B, Ladha J K, et al. Long-term effects of organic inputs on yield and soil fertility in the rice-wheat Rotation [J]. Soil Science Society of America Journal,2004,68: 845-853.
    101. Singh Y, Singh B, Maskina M S, et al. Response of wetland rice to nitrogen from cattle manure and urea in a rice-wheat rotation [J]. Tropical Agriculture (Trinidad),1995,72:91-96.
    102. Six J, Elliott E T, Paustian K. Aggregate and soil organic matter dynamics under conventional and no-tillage systems [J]. Soil Science Society of America Journal,1999,63:1350-1358.
    103. Song S K, Huang P M. Dynamics of potassium release from potassium-bearing minerals as influenced by oxalic and citric acids [J]. Soil Science Society of America Journal, 1988,52:383-390.
    104. Tabatabai M A. Soil enzymes, In. Page A L, Miller R H, Keeney D R (eds), Methods of Soil Analysis. Part 2. Soil Science Society of America, Madison, WI,1982:903-948.
    105.Takkar P N, Nayyar V K. Integrated approach to combat micronutrient deficiency. Paper presented at the seminar on Gowth and modernisation of the fertilizer industry,15-17 December 1986, FAI, New Delhi, India.
    106. Timima J, Commor D J. Productivity and management of rice-wheat cropping systems:issues and challenges [J]. Field Crops Research,2001,69:93-132.
    107. Tisdall J M, Oades J M. Organic matter and water stable aggregates in soil [J]. Journal of Soil Science.1982,33(2):141-163.
    108. Van Gestel M, Merckx R, Vlassak K. Spatial distribution of microbial biomass in soil aggregates and the relation with the resistance to microorganisms to soil drying [J]. Soil Biology and Biochemistry,1996,28:503-510.
    109. Van Veen J A, Kuikman P J. Soil structural aspects of decomposition of organic matter by micro-organisms [J]. Biochemistry,1990,11:213-223.
    110. Vos J, van der Putten P E L, Hussein M H, et al. Field observations on nitrogen catch crops:Ⅱ. Root length and root length distribution in relation to species and nitrogen supply [J]. Plant Soil, 1998,201(1):149-155.
    111. Wagger M G, Cabrea M L, Ranells N N. Nitrogen and carbon cycling in relation to cover crop residue quality[J]. Journal of Soil and Water Conservation,1998,53(3):214-218.
    112. Wang J G, Zhang F S, Zhang X L, et al. Release of potassium from K-bearing minerals:Effect of plant roots under P-deficiency Nutrient Cycling in Agroecosystem,1999, (In Press).
    113. Waring S A, Bremner J M. Ammonium production in soil under waterlogged condition as and index of nitrogen availability [J]. Nature,1964,201:951-952
    114. Warkentin B P, Fletcher H F. Soil Quality for Intensive Agriculture [A]. In Proceedings of International Seminar on Soil Environment and fertility management in intensive Agriculture[C].Tokyo, Japan,1977,593-598.
    115. Welp G. Inhibitory effects of the total and water-soluble concentrations of nine different metals on the dehydrogenate activity of a loess soil [J]. Biology and fertility of soils,1999, 30(1-2):132-139.
    116. Whalley W R, Dumitru E, Dexter A R. Biological effects of soil compaction [J]. Soil and Tillage Research,1995,35:53-68.
    117. Widmer F, Rasche F, Hartmalm M, et al. Community structures and substrate utilization of bacteria in soils from organic and conventional fanning systems of the DOK long-term field experiment [J].Applied Soil Ecology,2006,33(3):294-307.
    118. Wu J, Joergensen R G, Pommerening B, et al. Measurement of soil microbial biomass C by fumigation-extraction an automated procedure [J]. Soil Biology and Biochemistry,1990, 22(8):1167-1169.
    119. Yadav R L. Factor productivity trends in a rice-wheat cropping system under long-term use of chemical fertilizers [J]. Experimental Agriculture,1998,34:1-18.
    120. Yadav R L, Dwivedi B S, Pandey P S. Rice-wheat cropping system:assessment of sustainability under green manuring and chemical fertilizer inputs [J]. Field Crops Research, 2000,65:15-30.
    121. Yadav R L, Dwivedi B S. Yield trends, and changes in soil organic-C and available NPK in a long-term rice-wheat system under integrated use of manures and fertilizers [J]. Field Crops Research,2000,68:219-246.
    122. Yadav R L, Yadav D S, Singh R M, et al. Long term effects of inorganic fertilizer inputs on crop productivity in a rice-wheat cropping system[J]. Nutrient Cycling in Agroecosystems, 1998,51(3):193-200.
    123. Yang X M, Drury C F, Reynolds D W, et al. Impacts of long-term and recently imposed tillage practices on the vertical distribution of soil organic carbon [J]. Soil and Tillage Research,2008, 100(1):120-124.
    124. Yang Z H, Singh B R, Hansen S. Aggregate associated carbon, nitrogen and sulfur and their ratios in long-term fertilized soils [J]. Soil and Tillage Research,2007,95:161-171.
    125. Zhang B, Horn R. Mechanisms of aggregate stabilization in Ultisols from subtropical China. Geoderma,2001,99:123-145.
    126. Zhang F S, Ma J, Cao Y P. Phosphorus deficiency enhances root exudation of low-molecular weight organic acids and utilization of sparsely soluble inorganic phosphates by radish (Raghaus satiuvs L.) and rape (Brassica napus L.) plants [A] In:Ando et al (eds.). Plant nutrition for sustainable food production and environment[C]. KLuwer Academic Publishers, 1997,301-304.
    127. Zhang M K, Fang L P. Effect of tillage, fertilizer and green manure cropping on soil quality at an abandoned brick making site[J]. Soil and Tillage Research,2007,93:87-93.
    128. Zhang M K, He Z L, Chen G C, et al. Formation and water stability of aggregates in red soils as affected by organic matter [J]. Pedosphere,1996,6(1):39-45.
    129.包兴国,邱进怀,刘生成,等.绿肥与化肥配合施用对提高地力和节肥增产效应的研究[J].甘肃农业科技,1993,3:37-39.
    130.曹永绵,李荣华,张志明,等.红壤的酶活性与土壤肥力[J].土壤通报,1986,17(7):15-19.
    131.曹志洪.土壤质量演变规律与持续利用研究的进展[A].面向农业与环境的十壤科学(综述篇)[C].北京:科学出版社,2004:354-364.
    132.常新刚,黄国勤,熊云明,等.双季稻与黑麦草水旱轮作的产量和土壤理化性状分析[J].耕作与栽培,2005,4:16-17.
    133.陈恩凤,关连珠,汀景宽,等.土壤特征微团聚体的组成比例与肥力评价[J].土壤学报,2001,38(1):49-53.
    134.陈恩凤,周礼恺,邱凤琼,等.土壤肥力实质的研究Ⅱ.棕壤[J].土壤学报,1985,22(2)113-119.
    135.陈恩凤,周礼恺,武冠云.微团聚体的保肥供肥性能及其组成比例在评断土壤肥力水平中的意义[J].土壤学报,1994,31(1):18-25.
    136.陈惠哲,朱德峰.全球水稻生产与稻作生态系统概况[J].杂交水稻,2003,18(5):1-4.
    137.陈礼智·中国绿肥研究文集[C].1992:275.
    138.陈利军,周礼恺,张岫岚.土壤保肥-供肥机理及其调节Ⅲ,棕壤型菜园土的N素保持与供应[J].应用生态学报,1999,10(6):676-678.
    139.陈文新,陈文峰.发挥生物固氮作用减少化学施氮肥用量[J].中国农业科技导报,2004,6:3-5.
    140.崔建宇,王敬国,张福锁.肥田萝卜、油菜对金云母中矿物钾的活化与利用[J].植物营养与肥料学报,1999,5(4):328-334.
    141.邓维安,叶家颖.冬种绿肥对水稻黄泥田脲酶活性的影响[J].河池师专学报(理科),1995,15(2):104-107.
    142.董莉丽,郑粉莉,秦瑞杰.基于LB法不同植被类型下土壤团聚体水稳性研究[J].干旱地区农业研究,2010,28(2):191-196.
    143.董亚辉,戴全厚,邓伊晗,等.喀斯特山区退耕地水稳性团聚体演变特征及土壤养分效应[J].水土保持通报,2010,30(2):138-141.
    144.樊军.黄十高原旱地长期定位试验土壤酶活性研宄[D].杨凌:西北农林科技大学,2001.
    145.方玲.作物残体还田对赤红壤有机质状况的影响[J].土壤学报,1999,3(1):137-142.
    146.方勇,章红兵.南方红壤区种植黑麦草的效应研究[J].草业科学,2005,22(4):69-71.
    147.高菊生,徐明岗,秦道珠.长期稻.稻.紫云英轮作对水稻生长发育及产量的影响[J].湖南农业科学,2008,(6):25-27.
    148.高喜,曹建华,程阳,等.绿肥种植对石灰土脲酶活性与十壤肥力的影响[J].安徽农业科学,2008,36(31):13725-13728.
    149.关连珠,张伯泉,颜丽.不同肥力黑土、棕壤微团聚体组成及其胶结物质的研究》J].土壤学报,1991,28(3):260-267.
    150.关松荫等.我国主要土壤剖面酶活性状况.全国土壤酶学研究文集[C].沈阳:辽宁科学技术出版社,1988,16-29.
    151.官会林,刘士清,张无敌,等.紫云英轮作与退化山地红壤肥力恢复研究[J].农业现代化研究,2007,28(4):494-497.
    152.郭菊花,陈小云,刘满强,等.不同施肥处理对红壤性水稻土团聚体的分布及有机碳、氮含量的影响[J].土壤,2007,39(5):787-793.
    153.和文祥,陈会明,冯贵预,等.汞铬砷元素污染土坡的礴监测研究[J].环境科学学报,2000,20(3):338-343.
    154.胡月明,万洪富,吴志峰,等.基于GIS的土壤质量模糊变权评价[J].土壤学报,2001,38(3):266-274.
    155.黄不凡.施用绿肥和小麦秸秆对土壤团聚体和有机质特性的影响[J].土壤学报,1984,2l(2):113-122.
    156.黄庆裕.紫云英压青对水稻产量的影响[J].土壤肥料,1998(2):29-31.
    157.黄宇,王华,冯宗炜,等.南方红壤地区种植龙须草对土壤质量的影响[J].生态学报,2003,23(12):2599-2606.
    158.惠竹梅,李华,张振文,等.西北半干旱地区葡萄园生草对土壤水分的影响[J].干旱地区农业研究,2004,22(4):123-126.
    159.季春娟,周燕.绿肥不同还田量对水稻产量的影响[J].上海农业科技,2007,5:144-145.
    160.姜培坤,徐秋芳,周国模,等.种植绿肥对板栗林土壤养分和生物学性质的影响[J].北京林业大学学报,2007,29(3):120-123
    161.姜培坤,蒋秋怡,钱新标,等.有机肥料对杉木根际土壤生化性质的影响[J].热带亚热带土壤科学,1995,4(3):147-150.
    162.姜培坤,徐秋芳,周国模,等.种植绿肥对板栗林土壤养分和生物学性质的影响[J].北京林业大学学报,2007,29(3):120-123.
    163.姜培坤,周国模,徐秋芳.雷竹高效栽培措施对土壤碳库的影响[J].林业科学,2002,38(6):6-11.
    164.赖庆旺,李插苟,黄庆海.红壤性水稻土无机肥连施与土壤结构特性的研究[J].土壤学报,1992,29(2):168-174.
    165.冷延慧,汪景宽,李双异.长期施肥对黑土团聚体分布和碳储量变化的影响[J].生态学杂志,2008,27(12):2171-2177.
    166.黎国喜,李厚金,杨中艺,等.“黑麦草-水稻”草田轮作系统的根际效应Ⅴ.意大利黑麦草(Lolium multiflorum)根茬腐解物中存在促水稻生长活性物质的证据[J].中山大学学报(自然科学版),2008,47(4):88-93.
    167.李发林,黄炎和,刘长全,等.土壤管理模式对幼龄果园根际土壤养分和酶活性影响初探[J].福建农业学报,2002,17(2):112-115.
    168.李红陵,王定勇,石孝均.不均衡施肥对紫色土稻麦产量的影响[J].西南农业大学学报(自然科版),2005,27(4):487-490.
    169.李辉信,袁颖红,黄欠如,等.不同施肥处理对红壤性水稻土团聚体有机碳分布的影响[J].土壤学报,2006,43(3):422-429.
    170.李辉信,袁颖红,黄欠如,等.长期施肥对红壤性水稻土团聚体活性有机碳的影响[J].土壤学报,2008,45(2):259-266.
    171.李会科,张广军,赵政阳,等.渭北黄土高原旱地果园生草对土壤物理性质的影响[J].中国农业科学,2008,41(7):2070-2076.
    172.李健梅,曹一平.磷胁迫条件下油菜、肥田萝卜对难溶性磷的活化与利用[J].植物营养与肥料学报,1995,1(34):36-41.
    173.李江涛,张斌,彭新华,等.施肥对红壤性水稻土颗粒有机物形成及团聚体稳定性的影响[J].土壤学报,2004,41(6):912-917.
    174.李江涛,钟晓兰,赵其国.耕作和施肥扰动下土壤团聚体稳定性影响因素研究[J].生态环境学报,2009,18(6):2354-2359.
    175.李娟,赵秉强,李秀英,等.长期有机无机肥料配施对土壤微生物学特性及土壤肥力的影响[J].中国农业科学,2008,41(1):144-152
    176.李秀英,李燕婷,赵秉强,等.褐潮土长期定位不同施肥制度土壤生产功能演化研究[J].作物学报,2006,32(5):683-689.
    177.李阳兵,魏朝富,谢德体,等.岩溶山区植被破坏前后土壤团聚体稳定性研究[J].土壤肥料科学,2005,21(10):232-234.
    178.李映强,曾觉廷.不同耕作制度下水稻土有机质变化及其团聚作用[J].土壤学报,1991,28(4):404-409.
    179.李忠芳,徐明岗,张会民,等.长期不同施肥模式对我国玉米产量可持续性的影响[J].玉米科学,2009,17(6):82-87.
    180.李忠佩,林心雄,程励励.施肥条件瘠薄红壤的物理肥力恢复特征[J].土壤,2003,2:112-117.
    181.廖育林,郑圣先,聂军,等.长期施用化肥和稻草对红壤水稻土肥力和生产力持续性的影响[J].中国农业科学,2009,42(10):3541-3550.
    182.刘恩科,赵秉强,梅旭荣,等.不同施肥处理对土壤水稳定性团聚体及有机碳分布的影响[J].生态学报,2010,30(4):1035-1041.
    183.刘国顺,罗贞宝,王岩,等.绿肥翻压对烟田土壤理化性状及土壤微生物量的影响[J].水土保持学报,2006,20(1):95-98.
    184.刘京,常庆瑞.连续不同施肥对土壤团聚性影响的研究[J].水土保持通报,2000,20(4):24-26.
    185.刘明,李忠佩,张桃林.不同利用方式下红壤微生物生物量及代谢功能多样性的变化.土壤,2009,41(5):744-748
    186.刘晓利,何园球,李成亮,等.不同利用方式和肥力红壤中水稳性团聚体分布及物理性质特征[J].土壤学报,2008,45(3):459-464.
    187.刘晓利,何园球.不同利用方式和开垦年限下红壤水稳性团聚体及养分变化研究[J].土壤,2009,41(1):84-89.
    188.刘毅,李世清,李生秀.黄土高原不同类型土壤团聚体中氮库分布的研究[J].中国农业科学,2007,40(2):304-313.
    189.刘英,王允青,张祥明,等.种植紫云英对土壤肥力和水稻产量的影响[J].安徽农学通报,2007,13(1):98-99,189.
    190.刘芷字.根际研究法[M].南京:江苏科学技术出版社,1997.
    191.卢萍,单玉华,杨林章,等.绿肥轮作还田对稻田土壤溶液氮素变化及水稻产量的影响[J].土壤,2006,38(3):270-275.
    192.鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000.
    193.鲁艳红,杨曾平,郑圣先,等.长期施用化肥、猪粪和稻草对红壤水稻土化学和生物化学性质的影响[J].应用生态学报,2010,21(4):921-929
    194.马承豪,叶家颖,邓业成.石灰性烂滥田冬种紫云英对土壤酶活性的研究[J].广西师范大学学报(自然科学版),1998,16(3):85-88.
    195.马健,王周琼,李述刚.小麦根际石灰十酶活性变化研究[J].干旱区研究,1998,15(2):60-65.
    196.马敬,曹一平,李春俭,等.磷胁迫下植物根系有机酸的分泌及其对土壤难溶性磷的活化[A].现代农业中的植物营养与施肥[C].北京:中国农业科技出版社,1995:149-152.
    197.南京土壤所编.土壤微生物研究法[M].北京:科学出版社.1985.
    198.聂军,郑圣先,杨曾平,等.长期施用化肥、猪粪和稻草对红壤性水稻土物理性质的影响[J].中国农业科学,2010,43(7):1404-1413.
    199.聂军,杨曾平,郑圣先,等.长期施肥对双季稻区红壤性水稻十质量的影响及其评价[J].应用生态学报,2010,21(06):1453-1460.
    200.庞欣,张福锁,王敬国.根际土壤微生物量氮周转率的研究[J].核农学报,2001,15(2):106-110.
    201.彭新华,张斌,赵其国.红壤侵蚀裸地植被恢复及土壤有机碳对团聚体稳定性的影响[J].生态学报,2003,23(10):2176-2183.
    202.彭新华,张斌,赵其国.红壤侵蚀裸地植被恢复及土壤有机碳对团聚体稳定性的影响[J].生态学报,2003,23(10):2176-2183.
    203.任天志.持续农业中的石灰土生物指标研究[J].中国农业科学,2000,33(1):68-75.
    204.沈洁,陆炳章,陈正斌,等.绿肥对土壤有机质的影响[J].土壤,1989b,21(1):32-34.
    205.沈洁,陆炳章,陈正斌,等.绿肥对滨海盐渍十水稻的生长及改土效果[J].耕作与栽培,1989a.2:37-42.
    206.沈善敏.长期石灰土肥力试验的科学价值[J].植物营养与肥料学报,1995,1(11):1-9.
    207.施卫明.根系分泌物与养分有效性[J].土壤,1996,28(3):252-256.
    208.苏宝林.水稻栽培技术[M].北京:金盾出版社,1997.
    209.孙波,赵其国,张桃林,等.土壤质量与持续环境.Ⅲ:土壤质量评价的生物学指标[J].土壤,1997,29(5):225-234.
    210.孙波,赵其国.红壤退化中的土壤质量评价指标及评价方法[J].地理科学进展,1999,18(2):118-128.
    211.孙宏德,李军,安卫红,等.黑土肥力和肥料效益定位监测研究 第三报 施肥及种植方式对土壤物理性状的影响[J].吉林农业科学,1993,4:41-44.
    212.孙明德,刘宝存,吴静,等.原位土壤溶液采样技术的应用[J].北京农业科学,2001(4):31-33.
    213.孙天聪,李世清,邵明安.长期施肥对褐土有机碳和氮素在团聚体中分布的影响[J].中国 农业科学,2005,38(9):1841-1848.
    214.唐志军,吴承河,张晓梅.油菜压青植蔗的增产增糖效果[J].甘蔗,2003,10(4):25-27.
    215.田舜,王志刚,卜义霞,等.黑麦草-水稻种植模式生态经济评价[J].农业现代化研究,2006,27(5):380-382.
    216.王斌瑞,史常青,张光灿.土内保墒措施在黄土高原对油松生长的影响[J].干旱区研究,2000,17(1):12-16.
    217.王改兰,段建南,贾宁凤,等.长期施肥对黄土丘陵区土壤理化性质的影响[J].水土保持学报,2006,20(4):82-85,89.
    218.王虹艳,吴士文,马海洋,等.浙南易蚀土壤的团聚体稳定性及其稳定机理[J].土壤通报,2010,41(2):429-433.
    219.王华,黄宇,阳柏苏,等.中亚热带红壤地区稻-稻-草轮作系统稻田土壤质量评价[J].生态学报,2005,25(12):3271-3281.
    220.王居里,余一江.紫云英对水稻理化性状的影响[J].安徽农学通报,1997,3(4):54-55.
    221.王俊明.施用紫云英对水稻产量的影响[J].农技服务,2007,24(4):39.
    222.王丽宏,曾昭海,杨光立,等.前茬冬季覆盖作物对稻田十壤的生物特征影响[J].水土保持学报,2007,21(1):164-167.
    223.王丽宏,杨光立,曾昭海,等.稻田冬种黑麦草对饲草生产和土壤微生物效应的影响(简报)[J].草业学报,2008,17(2):157-161.
    224.王丽宏,曾昭海,杨光立,等.人种稻田土壤冬季种植黑麦草功能效应研究[J].作物学报,2007,33(12):1972-1976.
    225.王效举,龚子同.红壤丘陵小区域不同利用方式下土壤变化的评价和预测[J].土壤学报,1998,35(1):135-139.
    226.王岩,蔡大同,史瑞和.土壤生物量-碳和-氮与土壤有机碳、氮及施肥的关系[J].南京农业大学学报,1993,16(3):59-63.
    227.王永和,曹翠玉,史瑞和.有机肥对石灰性土壤无机磷组分的影响[J].土壤,1996,4:180-182.
    228.王允青,张祥明,刘英,等.施用紫云英对水稻产量和土壤养分的影响[J].安徽农业科学,2004,32(4):699-700.
    229.魏朝富,陈世正.长期施用有机肥料对紫色水稻土有机无机复合性状的影响[J].土壤学报,1995,32(2):159-166.
    230.魏朝富,谢德体,陈世正.紫色水稻土有机无机复合与土粒团聚的关系[J].土壤学报,1996,33(1):70-77.
    231.文倩,赵小蓉,陈焕伟,等.半干旱地区不同土壤团聚体中微生物量碳的分布特征[J].中国农业科学,2004,37(10):1504-1509.
    232.吴金水,林启美,黄巧云,等.十壤微生物生物量测定方法及其应用[M].北京:气象出版 社,2006:65-74.
    233.吴萍,胡南河,叶爱青,等.种植紫云英的效益及其对土壤肥力的影响[J].安徽农业科学,2006,34(11):2466-2468.
    234.向艳文,郑圣先,廖育林,等.长期施肥对红壤水稻土水稳性团聚体有机碳、氮分布与储量的影响[J].中国农业科学,2009,42(7):2415-2424.
    235.谢建吕,周健民,Hardter R.钾与中国农业[M].南京:河海人学出版社,2000.
    236.辛国荣,李雪梅,杨中艺.“黑麦草-水稻”草田轮作系统根际效应研究Ⅳ.黑麦草根际土壤性状及其对水稻幼苗生长的影响[J].中山大学学报(白然科学版),2004,43(1):62-66.
    237.辛国荣,杨中艺.“黑麦草-水稻”草田轮作系统的研究[C]Paper collection of International conference on Grassland Science and industry.北京:中国农学通报(增刊),2001:338-341.
    238.辛国荣,岳朝阳,李雪梅,等.“黑麦草-水稻”草田轮作系统的根际效应3.黑麦草根系对十壤生物性状的影响[J].中山大学学报(自然科学版),1998b,37(6):94-96.
    239.辛国荣,岳朝阳,李雪梅,等.“黑麦草.水稻”草田轮作系统的根际效应Ⅱ.冬种黑友草对十壤物理化学性状的影响[J].中山大学学报(自然科学版),1998a,37(5):78-82.
    240.辛国荣,郑政伟,徐亚幸,等.“黑麦草-水稻”草田轮作系统的研究6.冬种黑麦草期间施肥对后作水稻生产的影响[J].草业学报,2002,ll(4):21—27.
    241.熊顺贵,成春彦.翻压绿肥对京郊沙质潮十腐殖质结合形态及土壤物理性状的影响[J].北京农业大学学报,1991,17(3):58-61.
    242.徐江兵,李成亮,何园球,等.不同施肥处理对旱地红壤团聚体中有机碳含量及其组分的影响[J].土壤学报,2007,44(4):675-682.
    243.徐刚春,沈其荣,阿炜.长期免耕与施用有机肥对土壤微生物生物量碳、氮、磷的影响.土壤学报,2002,39(1):89-96.
    244.徐阳春,沈其荣.长期使用不同有机肥对土壤各粒级复合体中C、N、P含量与分配的影响[J].中国农业科学,2000,33(5):65-71.
    245.颜丽,关连珠,王铁宇,等.不同肥力水平棕壤型水稻土各级微团聚体中N、P养分状况的研究[A].迈向21世纪的土壤科学[M].沈阳:辽宁科学技术出版社,1999:115-118.
    246.杨长明,欧阳竹,杨林章,等.农业土地利用方式对华北平原土壤有机碳组分和团聚体稳定性的影响[J].生态学报,2006,26(12):4148-4155.
    247.杨春霞,李国华,李春丽.经济绿肥覆盖对西双版纳胶园土壤性状的综合影响[J].中国农学通报,2005,21(2):280-283.
    248.杨玉海,蒋平安,艾尔肯,等.种植苜蓿对土壤肥力的影响[J].干旱区地理,2005,28(21:248-251.
    249.杨中艺,潘静澜.“黑麦草-水稻”草田轮作系统的研究.2.意大利黑麦草引进品种在南亚热带地区免耕栽培条件下的生产能力[J].草业学报,1995,4(4):46-51.
    250.杨中艺,辛国荣,岳朝阳,等.“黑麦草-水稻”草田轮作系统的根际效应Ⅰ.接种稻田土壤微生物对黑麦草生长和氮素营养的影响[J].中山大学学报(自然科学版),1997b,36(2):1-5.
    251.杨中艺,岳朝阳,辛国荣,等.稻田冬种黑麦草对后作水稻生长的影响及其机理初探[J].草业科学,1997a,14(4):20-24.
    252.杨中艺.“黑麦草.水稻”草田轮作系统的研究4.冬种意大利黑麦草对后作水稻生长和产量的影响[J].草业学报,1996,5(2):38-42.
    253.姚贤良,于德芬.关于集约农作制下的土壤结构问题.1.有机物料及其利用方式对土壤结构的影响[J].土壤学报,1985,22(3):241-250.
    254.叶家颖,杨林林,覃国粹.稻田冬种绿肥对土壤肥力效应的研究.陈礼智.绿肥在持续农业中的地位和作用—中国绿肥研究论文集[C],沈阳:辽宁大学出版社,1992:274-276.
    255.叶家颖.不同施肥水平对花生根际土壤酶活性的影响[J].广西农业科学,1990,(2):27-29.
    256.尹春梅,谢小立,钟石仑.长期不同养分投入对土壤养分和水稻生产持续性的影响[J].生态学报,2009,29(6):3059-3065.
    257.袁颖红,李辉信,黄欠如,等.不同施肥处理对红壤性水稻土微团聚体有机碳汇的影响[J].生态学报,2004,24(12):2961-2966.
    258.岳永华,杨瑞古,牛俊义,高玉红.复种饲料油菜对麦茬耕层土壤酶活性的影响[J].草业学报,2007,16(6):47-53
    259.张丹,陈红,高庭艳,等.生态果园建设对土壤物理特性的影响[J].西南农业学报,2007,20(6):1262-1266.
    260.张定琪,陶丙炎.杂交水稻栽培与气象[M].北京:气象出版社,1985.
    261.张福锁,王激清,张卫峰,等.中国主要粮食作物肥料利用率现状与提高途径[J].土壤学报,2008,45(5):915-924.
    262.张靓,梁成华,杜立宇,等.长期定位施肥条件下蔬菜保护地土壤微团聚体组成及有机质状况分析[J].沈阳农业大学学报,2007,38(3):331-335.
    263.张镜清.农作物根茬培肥石灰土的作用[J].石灰土通报,1986,17(3):138-141.
    264.张美良,刘经荣,吴建富,等.不同施肥结构对稻田氮素循环和能量流动影响的分析[J].江西农业大学学报,2003,25(4):501-504.
    265.张穗生,叶家颖.冬种绿肥对新会橙果园土壤蛋白酶活性的影响[J].广州园艺,2002,2(总第41期):8-9.
    266.张心昱,陈利顶,傅伯杰,等.农田生态系统不同土地利用方式与管理措施对土壤质量的影响[J].应用生态学报,2007,18(2):303-309.
    267.张旭辉,李恋卿,潘根兴.不同轮作制度对淮北白浆土团聚体及其有机碳的积累与分布的影响[J].生态学杂志,2001,20(2):16-19.
    268.张亚丽,沈其荣,曹翠玉.有机肥料对土壤有机磷组分及生物有效性的影响[J].南京农业大学学报,1998,21(3):59-63.
    269.张治,乔治 克莱顿,韦恩 林德沃尔.保护性耕作对加拿大西部地区土壤质量的影响[J].农村牧区机械化,2006,(2):47-48.
    270,章明奎,何振立,陈国潮,等.利用方式对红壤水稳定性团聚体形成的影响[J].土壤学报,1997,34(4):359-366.
    271.章明奎,郑顺安,王丽平.利用方式对砂质土壤有机碳、氮和磷的形态及其在不同大小团聚体中分布的影响[J].中国农业科学,2007,40(8):170-1711.
    272.赵其国,孙波,张桃林.土壤质量与持续环境[J],土壤,1997,(3):113-120.
    273.赵其国.红壤物质循环及其调控[M].北京:科学出版社,2002.
    274.赵小社,毕玉芬,孙涛,等.金沙江流域退耕还草对土壤物理性质的影响[J].云南农业大学学报,2007,22(5):726-730,735.
    275.郑洪元,周礼恺,张德生.石灰土酶活性[M].北京:科学山版社,1976.
    276.中国科学院林业土壤研究所等.全国土壤酶学研究文集[C].辽宁科学技术出版杜,1988:78.
    277.中国科学院南京石灰土研究所微生物室.石灰土微生物研究法[M].北京:科学出版社,1985:36-46.
    278.中国科学院南京土壤研究所编.熊毅文集[M].北京:科学出版社,2003:307-308.
    279.中国科学院南京土壤研究所土壤物理研究室主编.土壤物理性质测定法[M].北京:科学出版社,1978:1-88.
    280.中国科学院南京土壤研究所微生物室.十壤微生物研究法[M].北京:科学出版社,1985:54-179.
    281.中国农业科学院土壤肥料研究所.中国肥料[M].上海:科技出版社,1994:363-389.
    282.钟继洪,唐淑英,谭军.广东红壤类土壤结构特征及其影响因素[J].土壤与环境,2002,11(1):61-65.
    283.周斌,乔木,王周琼.长期定位施肥对灰漠土农田土壤质量的影响[J].中国生态农业学报,2004,18(6):68-70.
    284.周健民.新世纪土壤学的社会需求与发展.中国科学院院刊[M],2003,18(5):348-352.
    285.周礼恺.石灰土酶活性的总体在评价石灰土肥力水平中的作用[J].石灰土学报,1983,20(4):413-417.
    286.周礼恺.土壤酶学[M].北京:科学出版社,1987.
    287.周萍,潘根兴.长期不同施肥对黄泥土水稳性团聚体颗粒态有机碳的影响[J].土壤通报,2007,38(2):256-261.
    288.朱捍华,黄道友,刘守龙,等.稻草异地还土对丘陵红壤团聚体碳氮分布的影响[J].水土保持学报,2008,22(2):135-140.
    289.朱军,石书兵,马林,等.不同时期套种绿肥对免耕春小麦光合生理特性及产量的影响[J].新疆农业科学,2008,45(6):990-995.
    290.朱权宝,陈励文.冬玉米混种紫云英效果好[J].热带亚热带土壤科学,1994,3(2):117-119.
    291.朱兆良.合理使用化肥充分利用有机肥 发展环境友好的施肥体系[J].中国利学院院刊,2003,18(2):89-93.
    292.诸海焘,余廷园,田吉林.绿肥-水稻轮作体系中氮肥适宜用量研究[J].上海农业学报,2008,24(4):60-64.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700