用户名: 密码: 验证码:
阵列孔微细电解加工基础技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于杂散电场腐蚀和小间隙中电解液困难,微细电解加工的实现及其加工精度的提高需考虑多方面因素,采取综合性技术措施。
     本文首先分析了影响微细电解加工的主要因素,揭示出以气泡为主的电解产物在微小加工间隙中蓄积,从而控制阳极表面电化学反应速度的机理。因此会导致当加工间隙减小到一定程度,平衡加工状态无法维持,使得微细电解的实际加工速度随加工间隙减小而降低。数值仿真了电极侧壁绝缘对加工精度的影响,结果表明侧壁绝缘膜能有效将电场约束在电极导电端面附近,从而减小孔径的扩张、抑制孔壁锥度的形成。对异型截面电极电解加工仿真表明:在电极拐角几何效应对电场分布的影响下,型孔拐角呈圆弧过渡,且整个孔形有随加工时间延长向圆形演化的趋势。
     研制了微细电解加工装置,包括机械本体、运动伺服控制系统、高频脉冲电源和电解液循环系统等几部分。核心的伺服进给机构运动分辨率0.1μm、阶跃运动峰值时间10ms,重复定位精度约0.55μm,可实现工具电极高精度进给和快速回退。控制系统以PMAC多轴控制器为核心,采取“NC嵌入PC”的架构,并行实现人机交互、过程控制和位置伺服控制,保证了控制过程的实时性和可靠性。
     研究了用于电解加工的微细电极制备方法。基于电场分析,提出一种在线电解制备直径一致性好的微细电极轴的方法。研究实现了LIGA工艺制备微细阵列电极用于微细阵列孔加工。针对高质量微细孔电解加工,提出采用旋涂环氧树脂制备电极侧壁绝缘膜的工艺,以有效抑制杂散电场腐蚀,为提高微细孔电解加工精度提供了一可行的技术途径。
     采用单电极和阵列电极进行了微细电解加工基础实验和典型型孔加工实验。优化工艺参数,加工出11×11阵列、边长130~140μm、侧壁半锥角小于3°、截面形状特征明显、一致性较好的三角形、方形和圆形微细阵列孔。
The stray current corrosion and the difficulty of electrolyte renewal in the micro machining gap impair the performance of micro ECM. Influening factors should be considered and comprehensive techniques should be adopted to improve machining accuracy.
     The main influencing factors on machining performance are discussed, especially the effect of electrolytic products. The accumulation of electrolytic products (mainly the hydrogen bubbles) in the machining gap is the key factor controlling the anodic dissolution rate. In the feeding procedure of electrode, as the gap decreased to a certain extent, the electrolytic products can not be removed immediately from the gap, leading to the decrease of anodic dissolution rate and the breakdown of balance state of machining, therefore, the practical machining rate of micro ECM usually decreases with the decrease of the gap. Thus, the servo control strategy of intermittent retraction of electrode during feeding procedure is employed to remove electrolytic products and promote the machining efficiency.
     The effect of side-insulated electrode on machining accuracy is numerically simulated. The results indicate that the side insulation layer can effectively confine the electric field to the area near the conducting end face of the electrode, thus restraining the growth of diameter and taper angle of the hole. Results also indicate that the section shape of hole tend to be rounded even if the electrodes with triangle or square sections are applied in micro ECM because of the geometry effect of the corner on the distribution of electric field.
     A micro ECM setup is developed, which includes mechanical body, servo control and gap status detection system, pulse power supply and electrolyte circulation system. The spindle, driven by a linear moving coil actuator, can provide accurate smoothly positioning and rapid servo response, the feed resolution of which is 0.1μm, the peak time is less than 10ms in step response, and the repetitive positioning accuracy is about 0.55μm. The control system, based on a programmable multi axes controller embedded in an industrial computer, can concurrently and real-timely implement human-computer interaction, process control and position servo control with high reliability.
     A process to fabricate micro pin with uniform diameter is proposed. The mechanism that affecting the shape and the diameter of micro pin is discussed by analyzing the distribution of electric field. Micro array electrodes are fabricated by LIGA process. To confine electric field and restrain stray current corrosion, a side insulating process based on spin-coating is developed. Uniform and compact epoxy films are coated on the surface of electrode by centrifugal force. The spin-coating process provides a feasible technical approach to improve the machining accuracy of micro ECM.
     A serial of experiments are carried out in which side insulating of electrode, micro machining gap servo control, high frequency vibration of electrode, low concentration passivating electrolyte and other techniques are synthetically adopted to improve the performance of micro ECM. By optimizing machining parameters, various micro array holes, with 130~140μm edge length or diameter and less than 3°taper angle, are simultaneously machined by using side-insulated array electrodes and have obvious and uniform shape feature.
引文
[1] K.P. Rajurkar, G. Levy, A. Malshe, M.M. Sundaram, J.A. McGeough, X.Hu, R. Resnick, A. De Silva. Micro and nano machining by electro-physical and chemical processes. Annals of the CIRP, 2006, 55(2):643-666.
    [2] M. Datta. Applications of electrochemical microfabircation: an introduction. IBM Journal of Research and Development, 1998, 42(5):563-566.
    [3] B.Bhattacharyya, J.Munda, M.Malapati. Advancement in electrochemical micro-machining. International Journal of Machine Tools and Manufacture, 2004, 44(15):1577-1589.
    [4] K.P. Rajurkar, D. Zhu, J.A. McGeough, et al. New developments in electro-chemical machining. Annals of the ClRP, 1999, 48(2):567-579.
    [5] J.A. McGeough. Advanced methods of machining. London: Chapman and Hall, 1988.
    [6]刘晋春,赵家齐,赵万生主编.特种加工.北京:机械工业出版社, 2004.
    [7] Peter Heyl, Thomas Olschewski, R.W. Wijnaendts. Manufacturing of 3D structures for micro-tools using laser ablation. Microelectrocnic Engineering, 2001, 57-58:775-780.
    [8] Ricciardi, G.,Cantello,M., Mariotti,F., et al, Micromachining with excimer laser,Annals of the CIRP,1998,47(1):145-148.
    [9]张晓兵.激光小孔加工技术在航空工业中的应用及进展.航空制造技术,1995,S1:18-20.
    [10]赵葛霄,黄玉辉.电子束加工技术在微细弯孔中的应用研究.电加工与模具, 2000, (6):28-29.
    [11]过骐千.电子束、离子束加工技术简介.电工技术杂志, 1994, (05):31-33.
    [12] Z.Y. Yu, K.P. Rajurka, A.Tandon. Study of 3D micro-ultrasonic machining. Journal of Manufacturing Science and Engineering, 2004, 126:727-732.
    [13]欧阳红兵.超声波孔加工技术进展.机械制造. 1997,5:7-9.
    [14] Takahata, K, Gianchandani,YB. Batch mode micro-electro-discharge machining. Journal of Microelectromechanical Systems, 2002, 11(2):102-111.
    [15]王振龙,赵万生,刘光状,基于分层制造原理的微细电火花加工技术研究,机械工程学报.2002,38(2):22-26.
    [16]王建业,徐家文.电解加工原理及应用.北京:国防工业出版社, 2001.
    [17]徐家文,云乃彰,王建业.电化学加工技术—原理·工艺及应用.北京:国防工业出版社,2008.
    [18]荒田伸治.电解去毛刺.柴油机, 1988,(3):45-49.
    [19] T. Masuzawaa, S. Sakaib. Quick finishing of WEDM products by ECM using a mate-electrode. CIRP Annals– Manufacturing Technology, 1987, 36(1):123-126.
    [20]翟小兵,王辉,李洪友.工件材料对脉冲电化学光整加工表面质量的影响.机床与液压, 2008, 36(1):9-11.
    [21] Madhav Datta. Fabrication of an array of precision nozzles by through-mask electrochemical micromachining. J.Electrochem.Soc, 1995, 142(11):3801-3805.
    [22] Harmen S.J. Altena. EDM and ECM for mass production Philips DAP. Journal of Materials Processing Technology, 2004, 149:18-21.
    [23]朱荻,张朝阳,明平美等.微细电化学加工技术的研究与发展. 2005年中国机械工程学会年会论文集:46-54.
    [24]朱荻.国外电解加工的研究进展.电加工与模具, 2000,(1):11-16.
    [25]李小海,王振龙,赵万生.微细电化学加工研究新进展.电加工与模具, 2004, (2):1-5.
    [26] A.L. Trimmer, J.L. Hudsona, M. Kock, et al. Single-step electrochemical machining of complex nanostructures with ultrashort voltage pulses. Applied Physics Letters, 2003, 82(19):3327-3329.
    [27] J. Kozak, K.P. Rajurkar, Y. Makkar. Study of pulse electrochemical micromachining. Journal of Manufacturing Processes. 2004, 6(1):7-14.
    [28] J.Y. Wang, A. De Silva, Yu Yanqing, et al. New approach to enhance the accuracy of ECM high-precision short pulses ECM (HSPECM). Journal of Materials Processing Technology. 2004, 149:382–383.
    [29] A.K.M. De Silka, H.S.J. Altena, JA. McGeough. Influence of electrolyte concentration on copying accuracy of precision-ECM. CIRP Annals- Manufacturing Technology. 2003, 52(1):165-168.
    [30]朱树敏.低浓度硝酸钠电解液的特性和应用.电加工与模具, 1983,(04):11-15.
    [31]朱树敏,陈淑芬,张海岩.低浓度复合电解液的性能及应用.电加工与模具, 1985, (06):1-9.
    [32]周锦进,王晓明,庞桂兵.非传统光整加工技术研究.大连理工大学学报, 2003, 43(1):51-56.
    [33]周锦进,翟小兵,庞桂兵.脉冲电化学光整加工实验研究.大连理工大学学报, 2003, 43(3):311-314.
    [34]郭永丰,黄荣和,李常伟,等.非导电材料的电化学电火花复合加工工艺研究.电加工与模具, 1998, (6),23-25.
    [35] T.K.K.R. Mediliyegedara, A.K.M. De Silva, D.K. Harrison, et al. New developments in the process control of the hybrid electro chemical discharge machining (ECDM) process. Journal of Materials Processing Technology. 2005, 167:338–343.
    [36]李常伟,郭永丰,刘晋春.非导电超硬材料UGEECM复合加工及工艺研究,电加工,1999,(6):19-22.
    [37]朱永伟,王占和,李红英,等.电解复合超声频振动微细加工机理与试验研究.中国机械工程,2008,19(15):1786-1792.
    [38] M. Datta, D. Harris. Electrochemical micromachining: An environmental friendly, high speed processing technology. Electrochimica Acta, 1997, 42(20-22):3007-3013.
    [39] R.V. Shenoy, M. Datta. Effect of mask wall angle on shape evolution during through-mask electrochemical micromachining. Journal of electrochemical society, 1996, 143:544-549.
    [40] M. Datta, D. Landolt. Fundamental aspects and applications of electrochemical microfabrication. Electrochimica Acta. 2000, 45:2535–2558.
    [41] M. Datta. Microfabrication by electrochemical metal removel. IBM Journal of Research and development. 1998, 42(5):655-669.
    [42] M. Datta. Fabrication of an array of precision nozzles by through-mask electrochemical micromachining. J. Electrochem. Soc, 1995, 142(11):3801-3805.
    [43] D. Landolt, P.F. Chauvy, O. Zinger. Electrochemical micromachining, polishing and surface structuring of metals: fundamental aspects and new developments. Electrochimica Acta, 2003, 48:3185-3201.
    [44]施文轩,张明歧,殷旻等.电射流加工工艺研究和发展[J].电加工与模具, 2001(1):36-39.
    [45] J. Kozak, K.P. Rajurkar, R. Balkrishna. Study of electrochemical jet machining process. Journal of Manufacturing Science and Engineering-Transactions of The Asme, 1996, 118(4):490-498.
    [46] Mohan Sen, H.S. Shan. A review of electrochemical macro- to micro-hole drilling processes. International Journal of Machine Tools and Manufacture, 2005, 45(2):137-152.
    [47] Nakamura Y, Mera Y, Maeda K. A reproducible method to fabricate atomically sharp tips for scanning tunneling microscopy. Review of scientific instruments, 1999, 70(8):3373-3376.
    [48] A.B.M.A. Asad, Takeshi Masaki, M. Rahman, et al. Tool-based micro-machining.Journal of Materials Processing Technology, 2007, 192-193:204-211.
    [49] T. Masuzawa, M. Fujino, K. Kobayashi, et al. Wire electro-discharge grinding for micro-machining. Annals of the CIRP, 1985, 34(1):431-434.
    [50] Liu Anwei, Hu Xiaotang, Liu Wenhui, et al. An improved control technique for the electrochemical fabrication of scanning tunneling microscopy microtips, Review of scientific instruments, 1997, 68(10):3811-3813.
    [51]胡小唐,郭育,刘安伟,等.微探针电化学加工机理及针尖尺寸控制技术.化工学报, 1995, 46(5):557-561.
    [52]胡小唐,刘安伟,郭育,等.一种新型的超微针加工系统.仪器仪表学报, 1995, 16(1):217-222.
    [53] Young-Mo Lim, Soo Hyun Kim. An electrochemical fabrication method for extremely thin cylindrical micropin. International Journal of Machine Tools & Manufacture, 2001, 41:2287-2296.
    [54] T. Kurita, K. Chikamorib, S. Kubotac, et al. A study of three-dimensional shape machining with an ECuM system. International Journal of Machine Tools & Manufacture, 2006, 46:1311-1318.
    [55]王建业.高频窄脉冲电解加工的机理研究.华南理工大学学报(自然科学版), 2001, 30(1):6-11.
    [56] J. Kozak, K.P. Rajurkar, Y. Makkar. Selected problems of micro electro-chemical machining. Journal of Materials Processing Technology, 2004,149(1-3):426-431.
    [57] A.K.M. De Silva, H. S. J. Altena, J. A. McGeough. Precision ECM by process characteristic modeling. Annals of the ClRP, 2000, 49(7):151-155.
    [58] B. Bhattacharyya, M. Malapati, J. Munda. Experimental study on electrochemical micromachining. Journal of Materials Processing Technology, 2005, 169:485-492.
    [59] Li Yong, Zheng Yunfei, Yang Guanga, et al. Localized electrochemical micromachining with gap control. Sensors and Actuators. 2003, 108:144-148.
    [60] LI Xiao-hai, ZHAO Wan-shen, Wang Zhen-long, et al. Electrochemical micromachining based on multifunction machine tool. Nanotechnology and Precision Engineering. 2005, 3(1):29-35.
    [61]李小海,王振龙,赵万生.基于多功能加工平台的微细电解加工工艺.上海交通大学学报, 2006, 40(6):909-913.
    [62]王明环,朱荻,徐惠宇.微螺旋电极在改善微细电解加工性能中的应用.机械科学与技术, 2006, 25(3):348-351.
    [63] Rolf Schuster, Viola Kirchner, Philippe Allongue, Gerhard Ertl. Electrochemical micromachining. Science, 2000, 289:98-101.
    [64] Viola Kirchner, Laurent Cagnon, Rolf Schuster, et al. Electrochemical machining of stainless steel microelements with ultrashort voltage pulses. Applied Physics Letters, 2001, 79(11):1721-1723.
    [65] M. Kock, V. Kirchner, R. Schuster. Electrochemical micromachining with ultrashort voltage pulses- a versatile method with lithographical precision. Electrochimica Acta, 2003, 48:3213-3219.
    [66] Se Hyun Ahn, Shi Hyoung Ryu, Deok Ki Choi,et al. Electro-chemical micro drilling using ultra short pulses. Precision Engineering, 2004, 28:129–134.
    [67] Bo Hyun Kim, Byung Jin Park, Chong Nam Chu. Fabrication of multiple electrodes by reverse EDM and their application in micro ECM. Journal of Micromechanics and Microengineering, 2006, 16:843–850.
    [68] B.J. Park, B.H. Kim, C. N. Chu. The effects of tool electrode size on characteristics of micro electrochemical machining. Annals of the CIRP, 2006, 55(1):197-200.
    [69] Min Soo Park, Chong Nam Chu. Micro-electrochemical machining using multiple tool electrodes. Journal of Micromechanics and Microengineering, 2007, 17:1451-1457.
    [70] D. Zhu, K. Wang, N. S. Qu. Micro wire Electrochemical cutting by using in situ fabricated wire electrode. Annals of the CIRP, 2007, 56(1):241-244.
    [71]章海军,黄峰.基于扫描离子电导显微术的电化学微细加工方法.电子显微学报, 1999, 18(1):90-93.
    [72] Masayuki Suda, Kunio Nakajima, Kazuyoshi Furuta, et al. Electrochemical and optical processing of micro structures by Scanning Probe Microscopy(SPM). Ninth Annual International Workshop On Micro Electro Mechanical Systems, IEEE Proceedings, 1996:296-300.
    [73] Qijin Chi, Jingdong Zhang, Esben P.Friis,et al. Creating nanoscale pits on solid surfaces in aqueous environment with scanning tunneling microscopy. Surface Science, 2000, 463(2):L641-L648.
    [74]史先传,朱荻,徐惠宇.电解加工中最小间隙检测方法.传感器技术, 2005, 24(5):69-76.
    [75]王希,赵东标,云乃彰.基于信息融合的电解加工间隙检测.机械科学与技术, 2006, 25(5):594-597.
    [76] Ing.C. Bignon, E.S.C. Bedrin, R.Weill. Application of eddy currents to in-process measurement of the gap in ECM. Annual CIRP, 1982, 31 (1):115-119.
    [77] B. Wei, K.P. Rajurkar, S. Talpallikar. Identification of interelectrode gap sizes in pulse electrochemical machining. Journal of the Elect rochemical Society. 1997,144 (11):3913-3919.
    [78] A.K.M. De Silva, J.A. McGeough. Process monitoring of electrochemical micromachining. Journal of Materials Processing Technology, 1998, 76:165–169.
    [79] Altena, S.J. Hermanus, Holstlaan. Method and arrangement for the electrochemical machining of workpiece. Patent NO:WO 99/51381. 1999-10-14.
    [80]史先传,朱荻,徐惠宇.电解加工的间隙监测与控制.机械科学与技术, 2005, 24(5):536-539.
    [81] D. Clifton, A.R. Mount, G.M. Alder, et al. Ultrasonic measurement of the inter-electrode gap in electrochemical machining. International Journal of Machine Tools & Manufacture, 2002, 42:1259-1267.
    [82]陆永华,赵东标,云乃彰,等.基于六维力电解加工间隙在线检测试验研究.机械工程学报, 2006, 42(7):126-131.
    [83]王希,赵东标,云乃彰.基于力信号和智能控制的电解加工间隙检测与控制.东南大学学报(自然科学版), 2005, 35(5):719-723.
    [84] AllenJ.Bard, Larry R.Faulkner. Electrochemical methods– fundamentals and applications. NewYork, 1994.
    [85] A.J. Bard, L.R. Faulkner著.邵元华,朱果逸,董献维等译.电化学方法原理和应用(第二版).北京:化学工业出版社, 2005.
    [86]李荻主编.电化学原理(修订版),北京:北京航空航天大学出版社,1999.
    [87]贾梦秋,杨文胜主编.应用电化学.北京:高等教育出版社,2004.
    [88] M.M. Lohrengel, I. Kluppela, C. Rosenkranza, et al. Microscopic investigations of electrochemical machining of Fe in NaNO3. Electrochimica Acta, 2003, 48(20-22):3203-3211.
    [89] Rosenkranz C, Lohrengel MM, Schultze JW. The surface structure during pulsed ECM of iron in NaNO3. Electrochimica Acta, 2005, 500(10):2009-2016.
    [90] MM. Lohrengel. Pulsed electrochemical machining of iron in NaNO3: Fundamentals and new aspects. Materials and Manufacturing Processes, 2005, 20(1):1-8.
    [91]刘今起.试论超钝化溶解及其电解液.电加工与模具, 1980,(3):1-6.
    [92]吴锐,徐家文,赵建社.基于间隙特性的数控展成电解加工效率.中国机械工程, 2009, (03):257-261.
    [93] B. Bhattacharyya, M. Malapati, J. Munda. Experimental study on electrochemical micromachining. Journal of Materials Processing Technology, 2005, 169:485-492.
    [94] B. H. Kim, C. W. Na, Y. S. Lee, et al. Micro Electrochemical machining of 3D micro structure using dilute sulfuric acid. Annals of the CIRP, 2005,54(1):191-194.
    [95] K.P. Rajurkar, B. Wei, J. Kozak. Modeling and monitoring interelectrode gap in pulse electrochemical Machining. CIRP Annals - Manufacturing Technology, 1995, 44(1):177-180.
    [96]张也影.流体力学(第二版).北京:高等教育出版社, 1999.
    [97]范植坚,钟玲,李福援,等.基于电化学过程的电解加工间隙电场的研究.兵工学报, 2003, 24(4):516-519.
    [98] J. Munda, M. Malapati, B. Bhattacharyya. Control of micro-spark and stray-current effect during EMM process. Journal of Materials Processing Technology, 2007, 194:151–158
    [99]沈洪.数控电火花机床结构和布局的新发展.电加工, 1996(2):7-9.
    [100]杨国哲,王立平,郁鼎文.三坐标精密运动平台底底座的设计.机械工程师, 2005, (7):21-22.
    [101]彭书志.花岗岩在精密仪器上的应用.光学精密工程, 1998, (5):53-56.
    [102]李海波,赵坚,李俊如,等.花岗岩动态压缩力学特性的实验以及理论研究.辽宁工程技术大学学报(自然科学版), 2001, 20(4):474-477.
    [103] SMAC. SMAC actuators user manual. 2002.
    [104]张大卫,冯晓梅.音圈电机的技术原理.中北大学学报(自然科学版), 2006, 27(3):224-228.
    [105]高慧莹.音圈电机在探头机构中的应用.电子工业专用设备, 2008, 37(12):37-41.
    [106]常雪峰,陈幼平,艾武等.音圈直线电动机设计、控制及应用综述,微电机, 2008, 41(11):66-69.
    [107]钱军,朱荻,刘正埙.基于电流的电解加工全程控制.电加工, 1996, (2)10-12.
    [108]陆永华,赵东标,云乃彰,等.基于电流信号的电解加工间隙在线检测试验研究.中国机械工程, 2008, 19(24):2999-3002.
    [109]王贤成,狄士春,迟关心,等.间隙平均电流检测在高频窄脉冲电解加工中的应用.航空精密制造技术, 2006, 42(2):36-38.
    [110]裴景玉,郭常宁,邓琦林,等.双路绝缘栅型场效应管亚微秒级电火花脉冲电源.上海交通大学学报, 2004, 38(7):1138-1142.
    [111] Timothy A Fofonoff ,Sylvain M Martel. Microelectrode array fabrication by electrical discharge machining and chemical etching. IEEE transactions on biomedical engineering, 2004, 51(6):126 - 129.
    [112]翁明浩,王振龙.微细阵列方形轴孔的电火花和电化学组合加工工艺研究.电加工与模具, 2007,(5):5-8.
    [113] E.W. Beckera, W. Ehrfeldb, P. Hagmannc, et al. Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic moulding (LIGA process). Microelectronic Engineering, 1986, 4(1):35-56.
    [114]李勇,龚姗姗,陈旭鹏,等.阵列微细型孔的电化学加工工艺.中国, ZL200510073178.X. 2005-11-23.
    [115] K. Takahata, N. Shibaik, H. Gucket. High-aspect-ratio WC-Co microstructure produced by the combination of LIGA and micro-EDM. Microsystem technologies. 2000, 6(5):175-178.
    [116]邹丽芸,张院春,彭良强,等.基于LIGA技术的制细电火花加工优化研究.电加工与模具, 2004, (z1):39-41.
    [117]王力衡.薄膜技术.北京:清华大学出版社. 1991:1-31.
    [118]王银川.真空镀膜技术的现状及发展.现代仪器. 2000(6):1-4
    [119]田民波.薄膜技术与薄膜材料.北京:清华大学出版社. 2006:376-594.
    [120]司磊,王玉霞,刘国军.光学薄膜制备技术.长春理工大学学报, 2004, 27(2):37-40.
    [121]李淑英,王华,马力,等.微孔阳极氧化膜的制备及膜的耐蚀性研究.表面技术, 2000, (4):9-10
    [122]王海潮,彭桥,王啸宇,等.电化学研究铝阳极氧化膜的抗腐蚀性.腐蚀与防护, 2006, 27(8):391-393.
    [123]马胜利,井晓天,葛利玲.铝阳极氧化膜的显微组织与性能研究.热加工工艺, 1999(1):11-12.
    [124]吴成双.对化学转化膜的新看法.电镀与环保, 2007, (2):32-33.
    [125]槐瑞托,于志豪.一种新的金属电极绝缘方法.生物学通报, 2006(1):2.
    [126] Takashi Endo, Takayuki Tsujimoto, Kimiyuki Mitsui. Study of vibration-assisted micro-EDM– The effect of vibration on machining time and stability of discharge. Precision Engineering, 2008, 32(4):269-277.
    [127] Hao Tong, Yong Li, Yang Wang. Experimental research on vibration assisted EDM of micro-structures with non-circular cross-section. Journal of Materials Processing Technology, 2008, 208(1-3):289-298.
    [128]古文才,郭钟宁,于兆勤,等.微细阵列孔加工技术及其应用.机电工程技术, 2008,37(10):13-17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700