用户名: 密码: 验证码:
同轴式三组元喷嘴性能分析、工程应用及设计评定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文围绕三组元喷嘴的性能评定及设计方法。采用反压冷试台、马尔文测粒仪、CCD高速摄影系统、三组元发动机热态试验台、数值仿真程序及辅助理论分析等多种技术手段和研究方法,对三种结构的同轴式三组元喷嘴深入进行了喷嘴流量特性和雾化特性、推力室燃烧性能和转工况性能研究,得到了大量重要结果。总结了同轴式三组元喷嘴设计方法。提出了一种喷嘴性能评价指标。
     ● 得到了内混式外喷嘴各喷孔流量系数的变化规律和经验公式,以及整个喷嘴的流量特性变化规律。
     ● 发现气液比是内混式外喷嘴最重要的定性参数。
     ● 给出了适应范围宽广的内混式喷嘴混合腔压力的经验公式及变化规律。
     ● 提出并深入研究了内混式喷嘴综合流量特性的概念,总结了综合流量系数的经验公式及变化规律。
     ● 提出并深入研究了内混式喷嘴工况范围的概念,总结了工况范围的变化规律。
     ● 发现了两种互相竞争的雾化作用。发现了3种主要气液混合流动形态。
     ● 总结了内混式外喷嘴雾化SMD随气液比变化的经验公式,得到了结构参数变化对SMD的影响规律。
     ● 对于三组元发动机来说,预混离心式喷嘴的燃烧性能及转工况性能均较差,内混两级离心式喷嘴燃烧效率较高,外混直流同轴式喷嘴的燃烧性能及转工况性能均较优。
     ● 对于三组元发动机的燃烧效率来说,余氧系数增加促进其提高,氢含量的增加不一定促进其提高。
     ● 首次提出了三组元发动机转工况过程的性能评价指标。初步得到了这些性能指标参数随发动机工作参数的变化规律。
     ● 提出了喷嘴“综合性能数”指标及其计算方法。总结了三组元喷嘴设计方法。
Focusing on the performance evaluating and the design of tripropellant injector, adopting the cold test rig with background pressure supply, Malvem Particle Analyzer, CCD photography system, tripropellant hot test-bed, numerical simulation software and auxiliary theoretical a nalysis, the d ischarge c haracteristic a s w ell a s a tomization p erformance o f the injector and the combustion performance as well as the mode-transition characteristic of thrust chamber are studied detailedly based on the 3 different structures of coaxial tripropellant injector, large numbers of important conclusions are gained. The design method of coaxial tripropellant injector is summarized. A parameter for evaluating the performance of the injector is presented.
     Gaining the empirical formula and the varying regularity of the discharge coefficient of the internal-mixing outer nozzle, as well as the discharge characteristic of the tripropellant injector;
     Finding the mass flux ratio of gas to liquid (i.e. ALR) is the most important parameters deciding the performance of the internal-mixing outer nozzle;
     Presenting the empirical formula and the varying regularity for the pressure at the mixing cavity of internal-mixing injector, which is widely suitable;
     Presenting the concept of Overall Discharge Characteristic (i.e. ODCH) for describing the varying regularity of the discharge characteristic of internal-mixing injector, concluding the empirical formula and the varying regularity of Overall Discharge Coefficient (i.e. ODCO) for gas and liquid;
     Presenting the concept of Operating Range, concluding the varying regularity of Operating Range;
     Discovering the two competitive atomization process, and 3 main flow shape of gas-liquid mixture;
     As to the SMD of outer nozzle, offering the empirical deciding by ALR and gaining the affecting rule of geometry variance;
     As to the tripropellant LRE, the pre-mixing injector producing the worse performance including combustion performance and the mode-transition one, while internal-mixing injector give the better combustion performance, external-mixing the better performance of both combustion and mode-transition;
     As to the combustion efficiency of tripropellant LRE, the augment of coefficient of oxidizer-remainder will lead to the increase of efficiency while the augment of hydrogen percent does not improve the efficiency;
     Presenting the evaluating parameters of mode-transition characteristic for the first time, and gaining the variance regularity of that along with the operating parameters
    
    
    
    of rocket engine;
     Presenting the "Number of Overall Performance" for injector as well as providing the calculation method. Summarizing the design method of tripropellant injector.
引文
[1] 王振国,罗世彬等.可重复使用运载器研究进展.国防科学技术报告,2000、8;
    [2] 黄志澄,仇强华.高超声速技术发展展望.载人航天发展展望(屠善澄、黄志澄主编).北京:国防工业出版社,1997;
    [3] 黄祖蔚.单级入轨火箭.载人航天发展展望(屠善澄、黄志澄主编).北京:国防工业出版社,1997;
    [4] 叶中元.空天飞机发展展望.载人航天发展展望(屠善澄、黄志澄主编).北京:国防工业出版社,1997;
    [5] 胡小平.RLV动力系统方案及关键技术研究:[博士学位论文].国防科学技术大学研究生院,2001、4;
    [6] Irina G. Lozino-Lozinskaya, Felix J. Chelkis, and Whitney. The Current Status of Tripropellant Combustion Technology. Second International Symposium on Liquid Rocket Propulsion;
    [7] B. David Goracke and Darnel J.H. Levack. Tripropellant Engine Option Comparison for SSTO. AIAA 95-3609;
    [8] 黄奕勇.以火箭为动力单级入轨飞行器推进理论研究:[博士学位论文].国防科学技术大学研究生院,1999、9;
    [9] [饿]安德列耶夫.气液喷嘴动力学.任汉芬、庄逢辰译.宇航出版社,1996、6;
    [10] 庄逢辰.液体火箭发动机喷雾燃烧的理论、模型及应用.长沙:国防科学技术大学出版社,1995、7;
    [11] [饿]巴扎罗夫.液体喷嘴动力学.任汉芬、孙纪国译.11所(京),1997;
    [12] H. Lefebvre. Atomization and Spray(No.1~No.4);
    [13] Robert Salkeld. Mixed-Mode Propulsion For The Space Shuttle. Astronautics & Aeronautics, 1971、8: 9(8), p52-58;
    [14] Robert L. Zurawski. Current Evaluation of the Tripropellant Concept. NASA Technical Paper 2602, 1986、6;
    [15] James A. Martin. Effects of Tripropellant Engines on Earth-to-Orbit Vehicles. J. Spacecraft, 1985: 22(6);
    [16] W. A. Visek, and Whitney. Design Concept for LOX/Hydrocarbon Tripropellant Booster Engine. AIAA 97-1854;
    [17] W. A. Visek, and Whitney. LOX/Hydrocarbon Booster Engine Concepts. AIAA 86-1687;
    [18] John O. Vilja, and James R. Lobitz. Bell Annular Tripropellant Engine Concept. AIAA 94-4680;
    [19] Robert J. Santoro and Charles L. Merkle. Main Chamber And Preburner Injector Technology. NASA Final Report, NCC 8-46;
    [20] T. D. Kmiec, and R. G. Carroll. Tripropellant Combustion Process. N90-28631;
    
    
    [21] M. G. Schmidt and M. M. Micci. Combustion Performance of RP-1/O2/H2 Tripropellants. AIAA 98-3686;
    [22] N. O. Rhys and C. W. Hawk. Tripropellant Combustion: Chemical Kinetics and Combustion Instability. AIAA 95-3151;
    [23] Thongsay Vongpaseuth G. Venkatasubramanyam and James A. Martin. Russian Tripropellant Engines for SSTO. AIAA 95-2952;
    [24] V. A. Turtushov, V. A. Orlov, and J. Hulka. Final Model Development and Full-Scale Testing of a Soot-Free Fuel-Rich Kerosene Tripropellant Preburner. AIAA 96-2630;
    [25] V. A. Turtushov, V. A. Orlov, S. Hulka, and C. Dexter. Development Status of a Soot-Free Fuel-Rich Kerosene Tripropellant Preburner for Reusable Liquid Rocket Engine Applications. AIAA 95-3002;
    [26] James A. Martin, Thongsay Vongpaseuth and G. Venkatasubramanyam. Russian RD-704 for Single-Stage Vehicles. J. Spacecraft, 1995、3: 33(2);
    [27] Jury N. Tkachenko, Charles D. Limerick, and Whitney. Powerful Liquid Rocket Engine (LRE) Created by NPO Energomash for Up to Date Space Rockets. AIAA 93-1957;
    [28] Akinaga Kumakawa, Fumiei One and Nobuyuki Yatsuyanagi. Combustion and Heat Transfer of LO2/HC/Hydrogen Tripropellant. AIAA 95-2501;
    [29] K. Ramamurthi and G. Madhavan Nair. Coaxial Swirl Injection Element for A Tripropellant Engine. AIAA 98-3514;
    [30] 黄奕勇,张育林.变混合比及三组元发动机用于单级入轨.推进技术 1998.10:19(5);
    [31] 王振国,周进等.三组元双工况火箭发动机喷注器研究(三):燃烧过程及系统理论研究报告.国防科学技术报告,2001、5;
    [32] 王振国,谭建国等.三组元双模式喷注器与燃烧室技术研究(三):系统方案研究报告.国防科学技术报告,2003、1;
    [33] 周进,沈赤兵等.三组元双工况火箭发动机喷注器研究总结报告.国防科学技术报告,1998、7;
    [34] 周进,沈赤兵等.三组元双工况火箭发动机喷注器研究报告(二):缩尺试验件设计报告.国防科学技术报告,2000、5;
    [35] 王振国,周进,李清廉.三组元双工况火箭发动机喷注器研究报告(一):喷嘴设计及冷态试验研究报告.国防科学技术报告,2001、5;
    [36] 王振国,周进,李清廉.三组元双模式喷注器与燃烧室关键技术研究(二):内混同轴式三组元喷嘴冷试研究报告.国防科学技术报告,2003、1;
    [37] 沈赤兵、童荣瑜等.三组元喷嘴流量特性的试验研究.中国空间科学技术 1999:19(3);
    [38] 沈赤兵、周进、王振国等.三组元喷嘴雾化特性的试验研究.推进技术,1999、10:20(5);
    [39] 李清廉,田章福等.新型三组元喷嘴雾化特性研究.工程热物理学报,2002、09:23(5);
    [40] 李清廉,田章福、王振国.模型三组元喷嘴喷注通道流量特性研究.推进技术,2002、
    
    08:23(4);
    [41] 李清廉,田章福,王振国.模型三组元喷嘴雾化SMD变化规律研究.国防科技大学学报,2001、12:23(6);
    [42] Li Qinglian, Tian Zhangfu, Wang Zhenguo etc. Experiment study of two phase mixing volume operating status in GH_2/LO_2/kerosene tripropellant injector. AIAA 2001-3714;
    [43] Li Qinglian, Yao Shiqiang etc.. Experimental study of Atomization Characteristic of Internal-mixing Tripropellant Injector. AIAA 2003-5065;
    [44] Li Qinglian, Shen Chibing etc.. Analysis for Flow Parameters of Gas and Liquid in the Internal-mixing Tripropellant Injector. AIAA 2003-5066
    [45] 李清廉,王振国,周进.内混式喷嘴混合腔压力变化规律研究.南京:中国工程热物理学会燃烧学’2002学术会议,2002、09;
    [46] Li Qinglian, Wang Zhengguo etc.. The Progress In The Study of Tripropellant injector. BeiJing: Sino-French Workshop on Space Propulsion. 2001、9;
    [47] 李清廉,王振国.三组元喷嘴内混式外喷嘴综合流量特性研究.长沙:国防科学技术大学’2002研究生活动周论文集,2002、11;
    [48] 田章福、李清廉等.三组元喷嘴结构参数对混合腔中两相流的影响.推进技术,2002、08:23(4);
    [49] Lixin Zhou, Fanpei Lei, etc.. Numerical study of Swirl nozzle internal flow field. Beijing: Sino-French Workshop on Space Propulsion, 2001、9;
    [50] 周进,沈赤兵等.三组元双工况火箭发动机喷注器研究报告(一):试验研究报告.国防科学技术报告,2000、5;
    [51] 沈赤兵,黄玉辉.三组元双工况火箭发动机喷注器研究报告(二):热试研究报告.国防科学技术报告,2001、5;
    [52] 王振中,周进等.三组元双模式喷注器与燃烧室技术研究(一):热试研究报告.国防科学技术报告,2003、1;
    [53] 黄玉辉等.三组元发动机燃烧稳定性试验.推进技术,2003、1:24(1);
    [54] 王占林.三组元高压推力室试验技术研究.导弹与航天运载技术,1999(4);
    [55] 黄玉辉.液体火箭发动机燃烧稳定性、数值模拟和实验研究:[博土学位论文].国防科学技术大学研究生院,2001、4;
    [56] 黄玉辉,王振国等.基于化学动力学的液体火箭发动机燃烧稳定性数值仿真.中国科举;
    [57] 黄玉辉,周进等.三组元火箭发动机燃烧稳定性数值分析.南京:第一届液体推进会议;
    [58] 李清廉,王振国等,三组元双工况火箭发动机喷注器研究报告(三):数值仿真研究报告.国防科学技术报告,2000、5;
    [59] 王振国,周进等.三组元双模式喷注器与燃烧室技术研究(四):数值仿真研究报告.国防科学技术报告,2003、1;
    [60] Li Qinglian, Huang Yuhui, etc.. The Numerical Simulation of the Hot Flow Field
    
    Tripropellant LRE. AIAA 2001-3715;
    [61] 李清廉、王振国.三组元发动机两相湍流燃烧流场数值模拟,中国航空学会动力专业分会2000年学术会议,2000、09;
    [62] 王振国,张长瑞等.三组元双模式喷注器与燃烧室技术研究(五):多孔发汗陶瓷基复合材料推力室研制方案报告.国防科学技术报告,2003、1;
    [63] 朱森元.大型运载火箭发展动向分析.载人航天发展展望(屠善澄,黄志澄主编).北京:国防工业出版社,1997;
    [64] Charles A. Skira. Reducing the Cost of Advanced Technology Engines. AIAA 97-3156;
    [65] T. Murphy and R. McMillion. Propulsion for Future Launch Vehicles. AIAA 93-4127;
    [66] 才满瑞.可重复使用运载器的近期发展.导弹与航天运载技术,1999(2);
    [67] Robert Salkeld. Single-Stage Shuttles for Ground Launch and Air Launch. Astronautics & Aeronautics, 1974(3);
    [68] Delma C. Freeman JR. and Theodore A. Talay. Reusable Launch Vehicle Technology Program. Acta Astronautic, 1997: 41 (11);
    [69] Chris Barret. The Lifting Body Legacy ... X-33, Aerospace Engineer, EP63. 1999.6, AIAA 99-0382;
    [70] Robert E. Lindberg and Feconda. X-34: A Test Bed For RLV Technology. Aerospace America, 1998(8);
    [71] John C. Mankins. Lower Costs for Highly Reusable Space Vehicles. Aerospace America, 1998(3);
    [72] J.R. Wilson. X-33 and RLV Take Parallel Paths. Aerospace America, 1999(2);
    [73] 陈小前.发生器总体优化设计理论与应用研究:[博士学位论文].国防科学技术大学研究生院,2001、10;
    [74] Daniel A. Heald and Don A. Hart. Advanced Reusable Engine for SSTO. AIAA 91-2181;
    [75] Douglas O. Stanley, Walter C. Engelund and Roger Lepsch. Propulsion System Requirements for Reusable Singie-Stage-to-Orbit Rocket Vehicles. AIAA 92-3504;
    [76] V. V. Balepin, M. Malta, and S. N. B. Murthy. Third Way of Development of Single-Stage-to-Orbit Propulsion. Journal of Propulsion and Power, 2000: 16(1);
    [77] Detlef Manski, Christoph Goertz, James R. Hulka, B.David Goracke and Daniel Levack. Overview of Cycles for Earth-to-Orbit Propulsion. Third International Symposium on Space Propulsion Primary and Upper Stage Propulsion System From Launch to Space;
    [78] Srimal Wangu. Reusable Launch Vehicle System Health Management. AIAA 98-5239;
    [79] Kayser-Threde GmbH, Dr. Roland Graue, Matthias Erdmann, Dr. Margarita Krisson and Arnd Reutlinger. Advanced Health Monitoring Systems for Reusable Future Launchers;
    [80] Gerald Hagemann, Hans lmmich, Daimler-Benz AG, Thong Van Nguyen, GenCorp
    
    Aerojet,. Advanced Rocket Nozzles. Journal of Propulsion and Power, 1998: 14(5);
    [81] James A. Martin. Hydrocarbon Rocket Engines for Earth-to-Orbit Vehicles. J. Spacecraft, 1983: 20(3);
    [82] 张宝炯、庄逢辰、黄崇锡.第二届国际液体火箭推进会议概况.出国考察技术报告,1996(1);
    [83] Max Calabro. Future Launchers and Propulsive Systems. IAF-96-S-1-05;
    [84] J. R. Olds and P. X. Bellini. Argus, a Highly Reusable SSTO Rocket-Based Combined Cycle Launch Vehicle with Maglifter Launch Assist. AIAA 98-1557;
    [85] J. Olds, L. Ledsinger, and D. R. Komar. Stargazer: A SSTO Bantam-X Vehicle Concept Utilizing Rocket-Based Combined Cycle Propulsion. AIAA 99-4888;
    [86] Alan W. Wilhite. Advanced Rocket Propulsion Technology Assessment for Future Space Transportation. J. Spacecraft: 1979: 19(4). AIAA 79-1219R;
    [87] Kirk L. Christensen and Stan Kent. Advanced Rocket Engines for Earth to Orbit Transportation. AIAA 80-0821;
    [88] G. Venkatasubramanyam and James A. Martin. Continuing Propulsion Evaluations for SSTO. AIAA 94-3158;
    [89] Boris I. Katorgin, Felix J. Chelkis, Charles D. Limerick, and Whitney. A Different Approach to Launch Vehicle Propulsion. AIAA 93-2415;
    [90] Dr. V. Rachuk, Dr. V. Orlov, A. Plis, and T. J. Fanciullo. The RD-0120 Has Great Potential For Low Cost Reusable Engine and For Tripropellant SSTO Validations. E-51124;
    [91] C.D. Limerick. Dual Mixture Ratio H2/O2 Engine for SSTO Application;
    [92] 14-18, Jame. A. Martin. History of Propulsion for Single-Stage-to-Orbit and Multiple-Stage Vehicles. Journal of Propulsion and Power, 1995: 11 (1);
    [93] N. Gontcharov, V. Orlov, V. Rachuk, M. Rudis, A. Shostalc, M. C. Mcllwain, R. G. Starke, and J. R. Hulka. Tripropellant Liquid Rocket Engine Technology Using A Fuel-Rich Closed Power Cycle.;
    [94] Douglas O. Stanley, Resit Unal, and C. Russ Joyner. Application of Taguchi Methods to Propulsion System Optimization for SSTO Vehicles. Journal of Spacecraft and Rockets, 1992: 29(4);
    [95] 顾明初.国外液体火箭推进技术的一些进展.出国考察技术报告,1996(1);
    [96] 朱森元编著.氢氧火箭发动机及其低温技术.国防工业出版社,1995;
    [97] H. A. Arbit, and R. A. Dicherson. Combustion Characteristics of the Fluorine/Lithium/Hydrogen Tripropellant Combination. AIAA 68-0618;
    [98] Bryan Palaszewski. Launch Vehicle Performance Using Metallized Propellants. Journal of Propulsion and Power, 1994: 10(6);
    [99] J. A. Martin. Effects of Tripropellant Engines on Earth-to-Orbit Vehicles. AIAA 83-1187;
    [100] 狄连顾,方丁酉等编.火箭发动机原理.长沙:国防科大出版社,1992;
    
    
    [101] [苏]阿列玛索夫.火箭发动机原理.北京:宇航出版社,1993;
    [102] N. S. Goncharov, V. A. Orlov, and R. Starke. Reusable Launch Vehicle Propulsion Based on the RD-0120 Engine. AIAA 95-3003;
    [103] 钟家强、胡平信.三组元系统方案研究.推进技术,1997、6:18(3);
    [104] Masafumi Miyazawa and Ryuichi Katayama. Propellant Density and Performance Capabilities for SSTO Rockets. IAF-98-V.4.09;
    [105] G. Colasurdo, D. Pastrone and L. Casalino.Optimal Performance of Dual-Fuel Single-Stage Rocket. AIAA 97-2905;
    [106] Guido Colasurdo, Dario Pastrone, and Lorenzo Casalino. Optimal Performance of a Dual-Fuel Single-Stage Rocket. Journal of Spacecraft and Rockets, 1998: 35(5);
    [107] Roger A. Lepsch Jr. Douglas O. Stanley, and Resit Unal. Dual-Fuel Propulsion in Single-Stage Advanced Manned Launch System Vehicle. Journal of Spacecraft and Rockets, 1995: 32(3);
    [108] Rudi Beichel. The Dual-Expander Rocket Engine—Key to Economical Space Transportation. Astronautics & Aeronautics, 1977(11);
    [109] Charles D. Limerick, and Whitney. Rocket Propulsion For Single Stage To Orbit. AIAA 94-3161;
    [110] 刘国球主编.液体火箭发动机原理.北京:宇航出版社,1993;
    [111] J.Davis and R. Campbell. Advantages of a Full-Flow Staged Combustion Cycle Engine System. AIAA 97-3318;
    [112] B. David Goracke and Daniel J.H. Levack. Tripropellant Engine Drive Cycle Considerations for the SSTO Application. AIAA 95-2950;
    [113] A. I. Masters, W. A. Visek, R. G. Carroll. Survey of LOX/Hydrocarbon combustion and cooling. N89-12647;
    [114] Richard C. Farmer, Gary C, and Cheng and Peter G. Anderson. Development of Tripropellant CFD Design Code. NAS8-49583;
    [115] G. C. Cheng, P. G. Anderson, and R. C. Farmer. Development of CFD Model for Simulating Gas/Liquid Injectors in Rocket Engine Design. AIAA 97-3228;
    [116] O. L. Gulder, D. R. Snelling and R. A. Sawchuk. Influence of Hydrogen Addition to Fuel on Temperature Field and Soot Formation in Diffusion Flames. 26th Symposium (International) On Combustion/The Combustion Institute, 1996;
    [117] B. E. Gelfand, A. M. Bartenev, and S. V. Khomik. Self-Ignition of Hybrid (H2 + Atomized Liquid Hydrocarbon Fuel + Gaseous Oxidizer) Mixtures at Engine Relevant. 26th Symposium (International) on Combustion/The Combustion Institute,1996;
    [118] 傅维标,卫景彬编著.燃烧物理学基础.北京:机械工业出版社,1984;
    [119] 周猛.气液同轴式喷注器雾化特性和激光散射测粒技术的研究:[博士学位论文].国防科学技术大学研究生院,1991、9;
    [120] 吴道洪.气泡雾化喷嘴流量特性及雾化特性研究:[博士学位论文].北京航空航天大
    
    学;
    [121] R. W. Tate.Droplet Size Distribution Data for Internal-Mixing Pneumatic Atomizers. ICLASS-85;
    [122] 刘联胜.气泡雾化喷嘴的雾化特性及其喷雾两相流场的实验与理论研究:[博士学位论文].天津大学,2001、01;
    [123] 朱宁昌主编.液体火箭发动机设计(上).北京,宇航出版社,1994;
    [124] A. Kushari, Y. Neumeier, and B. T. Zinn. A Theoretical Investigation of the Performance of the Performance of a Internally Mixed Liquid Atomizer. AIAA 2000-1021;
    [125] 高鸽,陈锐.一种新型气动雾化喷嘴.中国航空学会,燃烧与传热传质学术讨论会,1994、10;
    [126] N. K. Rizk, and A. H. Lefebvr. Influence of Airblast Atomizer Design Features on Mean Drop Size. AIAA 82-1073;
    [127] S. G. Shaw, and A. K. Jasuja. Effoot of Injector Geometry Variables Upon the Spray Performance of a Plain-Jet Airblast Atomizer. 85-IGT-134;
    [128] 朱永刚,王兴甫.超声波喷嘴试验研究.推进技术,1997、6:18(3);
    [129] 钟高琦,母立伟等.声波喷嘴不结焦的机理分析.工程热物理学报,1993、2:14(3);
    [130] S. N. Sridhara, and B. N. P. Raghunandan. Studies on the Performance of Airblast Atomizer Under Varying Geometric and Flow Conditions. AIAA 99-2460;
    [131] 顾善建,范全林.气泡喷嘴下游雾化与流场特性的研究.燃烧科学与技术,1996:2(4);
    [132] M. A. Neisler, S. Pal, M. D. Moser, and R. J. Santoro. Shear Coaxial Injector Atomization in a LOX/GH2 Propellant Rocket. AIAA 94-2775;
    [133] W. Mayer, A. Schik, C. Schweitzer, and M. Schaffler. Injection and Mixing Processes in High Pressure LOX/GH2 Rocket Combustors. AIAA 96-2620;
    [134] Mullinger P. C. and Chiglier N. A., etc. Proc. ICLASS-85. Vol 1:pp11C/1/1-13, 1985;
    [135] Y. Liao, S. M. Jeng, M. A. Jog, and M. A. Benjamin. An Advanced Sub-model for Airblast Atomizer. AIAA 99-2207;
    [136] 吴晋湘,不同反压下大流量气液同轴式喷嘴雾化特性及喷雾两相流场的试验和理论研究:[博士学位论文].国防科学技术大学研究生院,1993、11;
    [137] A. Kushari, Y. Neumeier, O. Israeli, A. Peled and B. T. Zinn. An Internally Mixed Injector for Active Control of Atomization Process in Liquid Fueled Engines. AIAA 99-0329;
    [138] A. Ghafourian, S. Mahalingam, H. Dindi, and J. w. Daily. A Review of Atomization in Liquid Rocket Engine. AIAA 91-0283;
    [139] 金如山.航空燃气轮机燃烧室.宇航出版社;
    [140] 甘晓华.赵其寿.空气雾化的模型及其计算.航空动力学报,1990、4:5(2);
    [141] 张路宁.气蔽正交内混式高压喷嘴的研究.[硕士学位论文].东北大学;
    [142] 赵虹、谢名湖等.Y型喷嘴的流量计算方法.工程热物理学报.1992、03;
    
    
    [143] [苏]叶姆采夫.工程流体力学.关醒凡,于华译.高等教育出版社,1996、6;
    [144] 武汉水利电力学院,华东水利学院.水力学.人民教育出版社,1979、12;
    [145] 赵其寿.空气雾化喷嘴的结构尺寸对雾化性能的影响及其设计原则.中国航空科技文献,HJB890706;
    [146] 王之任.离心式喷嘴工况理论分析.推进技术,1996、10:17(5);
    [147] 徐华胜,赵清杰.离心喷嘴性能计算及设计方法.中国航空学会燃烧与传热传质学术讨论会,1994、10;
    [148] 顾善建,黄勇等.离心式及其改进的喷嘴雾化特性试验研究.中国航空学会第八界燃烧及传热传质学术讨论会,1992、8;
    [149] 杨兴根.关于离心式喷嘴设计中的几个问题的探讨.1983、11;
    [150] 赵其寿.液体燃料的雾化.北航内部资料,1980、1;
    [151] 刘卫东,吴晋湘,庄逢辰.同轴式喷注器喷雾模型及喷雾两相流数值计算.中国航空学会第八界燃烧及传热传质学术讨论会,1992、10,GF86758;
    [152] H. Y. Wang, V. G. McDonell, etc.. the influence of spray angle on the continuous-and discrete-phase flow field downstream o an engine combustor swirl cup. AIAA92-3231;
    [153] 孟祥泰,马继华.气泡雾化喷嘴的试验研究.北京航空航天大学科学研究报告,1993、7;
    [154] 侯晓春.Y型燃油喷嘴雾化粒度研究.中国航空学会第八界燃烧及传热传质学术讨论会,1992、10;
    [155] T. Inamura, and N. Nagai. The Relative Performance of Externally and Internally Mixed Twin-Fluid Atomizers. ICLASS-85
    [156] Ahao Qi-shou, Yu Yun-fang. Investigation of Jet-Filming Airblast Atomizer. 85-GT-185;
    [157] 赵其寿,甘晓华.三元空气雾化喷嘴内液膜厚度实验研究.北京航空学院科学研究报告,北京:1984、9,GF59961;
    [158] 赵其寿,甘晓华.空气雾化喷嘴内液膜厚度研究.工程热物理学报,1985、11.:6(4);
    [159] J. S. Chin, N. K. Rizk, and M. K. Razdan. Effect of Inner and Outer Airflow Characteristics on High Liquid Pressure Prefilming Airblast Atomization. Journal of Propulsion and Power, 2000:16(2)
    [160] 刘联胜,傅茂林.气泡雾化喷嘴流量特性的实验研究.燃烧科学与技术,1999:5(3);
    [161] 2-7, Waldo A Acosta. Experimental Study of the Spray Characteristics of a Research Airblast Atomizer. 85-GT-229;
    [162] 曹明骅.燃烧室压力对空气雾化喷嘴雾化性能的影响.航空动力学报,1994、4.:9(2);
    [163] 甘晓华,赵其寿.三元空气雾化喷嘴内液膜厚度理论分析.北京航空学院科学研究报告,1984、9,GF59962;
    [164] H. S. Couto, J. A. Carvalho Jr.l, D. Bastos-Netto, M. Q. McQuay, and P. T. Lacava. Theoretical Prediction of Mean Droplet Size of Y-Jet Atomizers. Journal of Propulsion and Power: 15(3);
    
    
    [165] 赵虹,谢名湖,吕德寿,冯国华,凌柏林.高粘度液体燃料Y型喷嘴的雾化机理及其雾化性能的研究.工程热物理学报,1992、11:13(4);
    [166] J. S. Chin, N. K. Rizk, and M. K. Razdan. Study on Hybrid Airblast Atomization. Journal of Propulsion and Power, 1999: 15(2);
    [167] [美]V.杨,W.E.安德松主编.液体火箭发动机燃烧不稳定性.张宝炯,洪金等译.科学出版社,2001、2;
    [168] 石少平,陆政林,庄逢辰.层扳式喷注器在液体火箭发动机中的应用分析.重庆:中国航空学会第三界动力年会.1993、10;
    [169] A. J. Przekwas, S. G. Chuech, and K. W. Gross. Computational Modeling Development for Liquid Propellant Atomization. NAS8-37520;
    [170] 童荣瑜.高反压大流量气液同轴式喷嘴流量特性及雾化特性研究:[硕士学位论文].国防科学技术大学研究生院,1999、4;
    [171] 孙纪国,田昌义等.气液同轴直流式喷嘴喷雾及燃烧试验研究.航空动力学报,2000、7:15(3);
    [172] M. J. Foust, M. Deshpande, S. pal, T. Ni, C. L. Merkle, and R. J. Santoro. Experimental and Analytical Characterization of a Shear Coaxial Combusting GO_2/GH_2 Flowfield. AIAA 96-0646;
    [173] Gong Yu, Xinyu Chang. Liquid Fuel Supersonic Combustion. Beijing: Sino-French Workshop on Space Propulsion. 2001、9;
    [174] F. Forghan. Discharge Coefficient of Diffusion Holes. AIAA 95-3622
    [175] 张洪才.气动喷嘴空气通道的流通特性,中国航空学会燃烧专业学术交流会,1984、5;
    [176] 徐华舫编著.空气动力学基础.北京航空学院出版社,1987、6;
    [177] 刘大有.二相流体动力学.高等教育出版社,1993、9;
    [178] 张远君,王慧玉等编译,两相流体动力学.北京航空学院出版社,1987、6;
    [179] 方丁酉编著.两相流动力学.长沙:国防科技大学出版社,1988;
    [180] 田章福.三组元喷嘴流量特性和雾化特性研究:[硕士学位论文].国防科学技术大学研究生院,2001、3;
    [181] 高鸽,内混式空气雾化喷嘴研究及加力燃烧室浓度场计算:[硕士学位论文].北京航天航空大学,1994、3;
    [182] 吉晓莉,陈家炎等.内混式空气雾化喷嘴的研究雾化.武汉工业大学学报,1998、9:20(3),p47-p49;
    [183] G. C. Cheng, R. C. Farmer, and Y. S. Chen. Numerical Study of Turbulent Flows With Compressibility Effects and Chemical Reactions. AIAA 94-2026;
    [184] Jerry L. Pieper, and Jeff Muss. Development of a Combustor Analytical Design Methodology for Liquid Rocket Engines. N91-17127;
    [185] A. J. Przekwas, J. Edwards, and K. Gross. SSME Thrust Chamber Modeling with Navier Stokes Equations. AIAA 86-1517.
    [186] D. W. Lankford, M. A. Simmons, and B. D. Heikkinen. A Detailed Numerical
    
    Simulation of a Liquid-Propellant Rocket Engine Ground Test Experiment. AIAA 92-3604;
    [187] A. J. Przekwas, A. K. Singhal, L. T. Tam, and K. Davidian. Computational Simulation of Liquid Rocket Injector Anomalies. AIAA 86-1424;
    [188] 王振国.液体火箭发动机燃烧室内部工作过程数值模拟:[博士学位论文].国防科学技术大学研究生院,1993、06;
    [189] 刘卫东.液体火箭发动机不稳定燃烧数值仿真研究:[博士学位论文].国防科学技术大学研究生院;
    [190] 聂万胜.自燃推进剂不稳定燃烧数值仿真研究:[博士学位论文].国防科学技术大学研究生院;
    [191] 周力行.湍流气粒两相流动和燃烧的理论与数值模拟.陈文芳,林文漪译.科学学出版社,1994、12;
    [192] 范维澄,万跃鹏.流动及燃烧的模型与计算.安徽:中国科学技术出版社,1992;
    [193] [美]S.V帕坦卡,张政译.传热与流体流动的数值计算.北京:科学出版社,1992;
    [194] Fluent计算模型.随机资料;
    [195] 王亚力,卢天寿.离心式喷嘴的内部流场.编译资料。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700