用户名: 密码: 验证码:
碳纳米管改性碳纤维增强纸基摩擦材料的制备与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着汽车产业以及航空工业的迅速发展,摩擦材料领域的研究也发生了急速的增长。纸基摩擦材料作为一类重要的湿式摩擦材料,主要应用于汽车传动系统中的离合器上。如何提高纸基摩擦材料的摩擦系数、摩擦稳定性、耐热性以及耐磨性仍然是目前纸基摩擦材料面临的主要问题。为此,许多学者已经从提高材料中纤维与树脂之间的界面结合与寻找出摩擦性能优异的填料体系两方面入手,展开了研究。
     本文首先通过添加竹纤维和碳纳米管制备出了界面结合性较好的纸基摩擦材料。研究发现,碳纳米管的加入能够很好地改善材料中纤维和树脂的界面结合性能,从而提高了材料的摩擦性能。当碳纳米管含量为4wt.%时,试样的动摩擦系数达到最大值,为0.1031,此时,试样的摩擦稳定性和耐磨性能也较好。热分析结果显示,试样在加热到1000℃过程中,添加4wt.%碳纳米管的试样的质量损失比未添加碳纳米管的试样减少了10%。扫描电镜测试结果表明,在整个体系中,竹纤维能够很好的附着于碳纤维上,改善了碳纤维和树脂之间的界面结合性能,而碳纳米管优先吸附于竹纤维上,这又保护了竹纤维在摩擦过程中的受热分解,提高了试样的耐热性能。
     为了更进一步提高材料的摩擦性能,我们在上述体系中分别加入了碳化硅、碳化硼、氧化铝、氧化锆以及硼化锆等填料以及稀土化合物,并研究了填料含量和稀土种类等与试样摩擦性能之间的关系,对不同填料在体系中的作用形式以及试样的摩擦性能进行了初步探讨。结果表明,当试样中含有3wt.%Ce(NO3)3和15wt.%硼化锆时,材料的摩擦性能最佳,材料的动摩擦系数为0.13285,动/静摩擦系数比为0.9010,动摩擦系数在500次摩擦过程中的变异系数为0.75,磨损率为0.6×10-8cm3J-1。
     最后,研究了以硼化锆为填料、碳纳米管改性碳纤维增强纸基摩擦材料的压缩回弹性能、导热性能、耐热性能以及动态力学性能,并分析了这些性能与试样摩擦性能之间的关系。结果表明,随着硼化锆含量的增加,虽然试样的压缩率和导热系数略有下降,但是,动态力学测试和综合热分析结果表明,含有15wt.%硼化锆的试样具有较高的储能模量和耐热性能。通过材料的组成-储能模量-耐热性-摩擦性能关系的研究,发现体系中储能模量和耐热性能对材料的摩擦性能起关键作用,试样的储能模量越大,制动稳定性越好,耐热性能越好,摩擦稳定性越高,材料的磨损率越低。
In recent years, the study of friction material has been obtained rapidgrowth with the development of automotive and aviation industry. Paper-basedfriction materials are mainly used in automotive driveline clutches which workedin lubricating medium. At present, it is still a great challenge that how to improvethe friction coefficient, friction stability, heat resistance and the wear resistanceof paper-based friction material. Therefore, many scholars researched higherperformance of paper-based friction material via two routs; one is improvementof interface bonding between fibers and resin; another one is finding out the fitfiller system to improve the properties of the materials.
     Firstly, the paper-based friction material, which possess fine interfacialbonding between fibers and phenolic resin, was prepared by adding the bamboofiber and carbon nanotubes into the materials. It is found that carbon nanotubescan effectively improve the friction properties and the combinding capacitybetween fibers and resin of the material. When the carbon nanotubes contentsreached4wt.%, the dynamic friction coefficient of the material is0.1031, andthe sample has good friction stability and wear resistance. Thermal analysisresults showed that the mass loss of the sample with4wt.%carbon nanotubesreduced10%compared to that of sample without carbon nanotubes when thesamples were heated to1000℃.The SEM results showed that, bamboo fiber caneasily attach to the carbon fiber, and carbon nanotubes are easily adsorbed on thesurface of bamboo fiber, which could protect the thermal decomposition of thebamboo fiber during the friction progress and improve the heat resistance of thesample.
     To further improve the friction properties of the paper-based frictionmaterial, silicon carbide, boron carbide, alumina, zirconium oxide, zirconiumboride, and compound of rare earth were added into the above system,respectively. It is discussed the friction properties and the relationship betweenfiller contents and friction properties of the samples. Results present that whenthe sample contains3wt.%Ce(NO3)3and15wt.%Zirconium boride, the frictionmaterial has the best friction performance, the dynamic friction coefficient of thesample was0.13285, the ratio of the static to dynamic friction coefficient was0.9010, the variation of the dynamic friction coefficient of the sample during500times friction tests was0.75, at then the wear rate of the sample was0.6×10-8cm3J-1.
     Finally, the compressibility and recovery, thermal properties, heat resistanceand dynamic mechanical analysis of the specimens with different zirconiumboride contents were discussed. Results display that with the increase of thezirconium diboride, the compressibility and thermal conductivity of the sampledecreased slightly. However, the dynamic mechanical test and thermal analysisshowed that the specimen with15wt.%zirconium diboride has a high storagemodulus and good heat resistance. Through studying the relationship betweenthe components, the storage modulus, heat resistance and the friction propertiesof the materials, it can be found that the storage modulus and heat resistance ofthe specimen play an important role in the friction properties of the specimen.The specimen has good braking stability when it has great storage modulus, andit has high friction stability and low wear rate when the specimen has good heatresistance.
引文
[1]付业伟.高性能纸基摩擦材料的制备和摩擦磨损性能研究.西北工业大学博士学位论文.2005:5-8.
    [2]任长明.判断摩擦片优劣的方法.摩托车技术,2004,(7):20-21.
    [3]周作平,申小平.粉末冶金机械零件实用[M].化学工业出版社,2006:30-40.
    [4]黄瑞芬,刘淑英.烧结金属摩擦材料及其工艺研究的发展.兵器材料科学与工程,1999,22(1):65-68.
    [5] G. Avage.. Carbon/carbon composites [M]. London, Chapman&Hall,1993:323-363.
    [6] Yani Zhang, Dongyong Xu, Lieyi Gao. Preparation and microstructural evolution ofcarbon/carbon composites [J]. Materials Science and Engineering: A,2006,430(1):12-14.
    [7] E. Sheehan, K W Buesking, and B J Sullivan. Carbon-Carbon Composites [J]. AnnualReview of Materials Science,1994,24(8):19-44.
    [8] E. Fitzer. The Future of Carbon-Carbon Composites [J]. Carbon,1987,25(2):163-190.
    [9] J. S. Yoo. Mechanical strength experiments of carbon/carbon brake disk[C]. Proceedings ofACCM-2000. Kyongju(Korea): AICIT,2000:715-719.
    [10]佘林.三维针剌碳/碳化桂摩擦材料的制备及性能[D].西安:西北工业大学,2007.
    [11]刘文川,邓景峻.C/C材料市场调查分析报告[J].炭素科技,2001,11(2):13-16.
    [12] B. John. Jr. S Wachtman. Awasthi, etal. Carbon/Carbon Composite Materials for AircraftBrakes[C]. Proceedings of the12th Annual Conference on Composites and AdvancedCeramic Materials,Part1of2: Ceramic Engineering and Science Proceedings. New York:Springer,2007,82-89.
    [13] D. J. Buckley. Carbon-carbon-An overview [J]. Am Ceramic Bulletin,1988,67(2):364-368.
    [14]李蕴欣,张绍维.碳/碳复合材料[J].材料科学与工程,1996,14(2):6-14.
    [15] J. Toby. Hutton, Brian McEnaney, C John. Crelling. Structural studies of wear debris fromcarbon-carboncompositeaircrafl brakes [J], Carbon,1999,36(9):907-916.
    [16] J. L. Cullerier. The Carbon/Carbon Story: From Rocket Propulsion toHigh-Performance Brakes [J]. GEC Alsthom Technical Review,1992,(8):8-10.
    [17] Walter Krenkel. Carbon Fiber Reinforced CMC for High-Performance Structures[J].International Journal of Applied Ceramic Technology,2004,1(2):188-200.
    [18]杨尊社.航空机轮、刹车系统研究新进展[J].航空精密制造技术,2002,5(6):18-24.
    [19]李江鸿.航空刹车C/C复合材料摩擦磨损行为研究[D].长沙:中南大学,2002.
    [20]李克智,李新涛,李贺军,等.化学液相气化沉积法制备炭/炭复合材料的湿态摩擦磨损性能研究[J].摩擦学学报,2008,28(1):50-55.
    [21] D. W. Gibson, G. J. Taccini. Carbon/carbon friction materials for dry and wet brake andcluch applications [J]. SAE Technical Paper,1989,890950:813-817.
    [22]王秀飞,黄启忠,苏哲安,等.C/C-SiC复合材料的制备及其湿式摩擦磨损性能研究[J].摩擦学学报,2007,27(6):534-538.
    [23]张明瑜,黄启忠,朱建军,等.湿式C/C制动材料的摩擦特性及其数值模拟.中南大学学报(自然科学版)[J],2007,38(2):195-199.
    [24] F.A. Lloyd, M.A. Dipino. Advanced in wet friction materials75years of progress [J].SAE Technical Paper,1980,800977:3088-3096.
    [25] R. M. Tuck, R. E. Grambo, R. E. Dowell et al. Progress in the development andmanufacture of heavy duty paper friction material [J]. SAE Technical Paper,1989,831314:947-955.
    [26] F. A. Lloyd, J. N. Anderson, L. S. Bowles. Effect of operating conditions on performanceof wet friction materials-A guide to material selection [J]. SAE Technical Paper,1988,881280:529-543.
    [27]付业伟,李贺军,李克智.纸基摩擦材料绿色制备工艺与摩擦磨损性能研究[J].摩擦学学报,2004,24(2):172-176.
    [28] Y. Enomoto, T.Yamamoto. New materials in automotive tribology [J]. Tribology Letters,1998,(5):13-24.
    [29]任刚,邓海金,李明.汽车用纸基摩擦材料国内外研究进展[J].汽车技术,2004(11):1-4.
    [30] K. Komori, S.Yoshida, A. Takahashi et al. Carbon fiber composites material, process formanufacturing the same and wet friction member[P]. USP Application number:20070298211,2007.
    [31]曲在纲,陈子忠,刘有德,等.纸基摩擦材料及摩擦片制作方法[P].中国:CN1456589,2003.
    [32]周雪松,黄小华,郑炽离,等.芳纶复合纸基摩擦材料的初步研究[J].造纸科学与技术,2005,24(2):19-22.
    [33]胡健,张曾.混合纤维复合摩擦材料的研究[J].中国造纸,2004,23(2):24-25.
    [34]崔杰,沈时骏,刘长丰等.NBR改性硼酚醛树脂的性能研究[J].橡胶工业,2005,52(50):288-290.
    [35]尹延会,酚醛树脂高性能化改性研究进展[J].热固性树脂,2001,16(4):29-33.
    [36]赵晓玲,酚醛树脂改性研究的最新进展[J].现代塑料加工应用,2003,15(5):56-60.
    [37]曾则斌,曹献坤.刹车片用YSM树脂的研制[J].机械设计与制造,1999,(4):55.
    [38]张玉龙,齐贵亮.橡胶改性技术.北京:机械工业出版社,2006,9.
    [39]贺奉嘉,黄伯云.汽车制动摩擦材料的发展[J].粉末冶金技术,1993,11(3):213-217.
    [40] M. G. Jack, P. H. Stang, S. K. Rhee, Automotive frietion material evolution during thepast decade[J]. Wear,1984,100(1):101-105.
    [41] K. H. Zum Gahr. Wear by Hard Particles[J]. Tribology International.1998,31:587-596.
    [42] Kazuhiro Doi, Takahiro Mibe, Hiromichi Matsui et al. Brake Judder ReductionTechnology-brake Design Technique Including Friction Material Formulation[J]. JSAEReview,2000,21(4):497-502.
    [43] G. H. Yang, W. M. Garrison, Jr.. A Comparison of Microstructural Effects on Two-bodyand Three-body Abrasive Wear[J]. Wear,1989,129(3-4):93-103.
    [44] T. Mark. Swanson. Geometry and Kinematics of Adhesive Wear in Brittle Strike-slipFault Zones[J]. Journal of Structural Geology,2005,27:871-887.
    [45] R. J. Talib, A. Muchtar, C.H. Azhari. Microstructural Characteristics on the Surface andSubsurface of Semimetallic Automotive Friction Materials during Braking Process[J].Tournal of Materials Processing Technology,2003,140(1-3):694-699.
    [46] Jan Bros, S. F. Scieszka. The Investigation of Factors Influencing Dry Friction inBrakes[J]. Wear,1977,41(2):271-286.
    [47] V. Abouei, H. Saghafian, Sh. Kheirandish. Effect of Microstructure on the Oxidative WearBehavior of Plain Carbon Steel[J]. Wear,2007,262(9-10):1225-1231.
    [48] G. Straffelini, D. Trabucco, A. Molinari. Oxidative Wear of Heat-treated Steels[J]. Wear,2001,250(1-12):485-491.
    [49] Y. C. Liu, J. M. Schissler, T. G. Mathia. The Influence of Surface Oxidation on the WearResistance of Cast Iron[J]. Tribology International,1995,34:831-839.
    [50] A. Yevtushenko, E. Ivanyk. Determination of Temperatures for Sliding Contact withApplications for Braking Systems[J]. Wear,1997,206(1-2):53-59.
    [51] A. E. Anderson, R. A. Knapp. Hot Spotting in Automotive Friction Systems[J]. Wear,1990,135(2):319-337.
    [52] Yuji Handa, Takahisa Kato. Effects of Cu Power, BaSO and Cashew Dust on the Wearand Friction Characteristics of Auomotive Brake Pads[J]. Tribology Transactions,1996,39(2):346-353.
    [53] N. M. Kinkaid, O. M. O'Reilly, P. Papadopoulos. Automotive Disc Brake Squeal[J].Journal of Sound and Vibration,2003,267:105-166.
    [54]李东风,王浩静,贺福,等.T300和T700碳纤维的结构与性能[J].新型炭材料,2007,22(1):59-64.
    [55]贺福,王茂章.碳纤维及其复合材料[M].北京:科学出版社,1994:1-5.
    [56] B. Venkataraman, G. Sundararajah. The influence of sample geometry on the frictionbehavior of carbon-carbon composites[J]. Acta Materialia,2002,50(5):1153-1163.
    [57] Hua Fu, Bo Liao, et al. The application of PEEK in stainless steel fiber and carbon fiberreinforced composites[J].Composites part B: Engineering,2008,39(4):585-591.
    [58] S. L. Hong. Wear mechanism of multiphase Friction materials with different phenolicresin matrices[J]. Wear,2009,266(7):739-744.
    [59] J. Li, X. H. Cheng. Friction and wear properties of surface-treated carbon fiber-reinforcedthermoplastic polyimide composites under oil-lubricated condition [J]. Science Direct,2008,108(1):67-72.
    [60]赵东余,李滨耀.碳纤维表血的液相氧化处理改性[J].应用化学,1997(4):114-116.
    [61]付业伟,李贺军,李克智,熊信柏.一种新型短切碳纤维增强纸基摩擦材料研究[J].材料科学与工程,2004,22(6):802-805.
    [62]詹树改.竹纤维的结构性能及其纺织品的生产工艺分析[D],苏州大学,2008,11.
    [63]程隆棣,徐小丽,劳继红.竹纤维的结构形态及性能分析[J].纺织导报,2003,(5):102.
    [64]万玉芹.竹纤维吸湿性能研究[J].纺织导报,2004,(3):14-15.
    [65]张庐陵.竹纤维复合材料的组织设计、制备与性能研究[D].南京林业大学,2009,6.
    [66]冼杏娟,冼定国,叶颖薇.竹纤维增强树脂复合材料及其微观形貌[M].北京:科学出版社,1995,6.
    [67] A. Oberlin, M. Endo, T. Koyama. Filamentous growth of carbon through benzenedecomposition[J]. Journal of Crystal Growth,1976,32(3):335-349.
    [68] S. Iijima. Helical microtubules of graphitic carbon[J]. Nature1991,354(6348):56-58.
    [69] Q. Zhang, J.Q. Huang, W.Z. Qian, Y.Y. Zhang, F. Wei. The road for nanomaterialsindustry: A review on carbon nanotubes production, post-treatment, and bulk applicationsfor composite and energy storage[J]. Small,2013,9(8):1237-1265.
    [70] E.T. Thostenson, Z. F. Ren, T.W. Chou. Advances in the science and technology of carbonnanotubess and their composites: A review[J]. Composites Science and Technology,2001,61(13):1899-1912.
    [71] T. Henning, F. Salama. Carbon-carbon in the universe[J]. Science,1998,282(5397):2204-2210.
    [72] Z. Yao, H. W. C. Postma, L. Balents, et al. Carbon nanotubes intramolecular junctions[J].Nature,1999,402(6759):273-276.
    [73] N. Wang, Z. K. Tang, G. D. Li, et al. Materials science-single-walled4angstrom carbonnanotubes arrays[J]. Nature,2000,408(6808):50-51.
    [74] H. W. Zhu, X. S. Li, B. Jiang, et al. Formation of carbon nanotubess in water by theelectric-arc technique[J]. Chemical Physics Letters,2002,366(5-6):664-669.
    [75] P. Nikolaev, M. J. Bronikowski, R. K. Bradley, et al. Gas-phase catalytic growth ofsingle-walled carbon nanotubess from carbon monoxide[J]. Chemical Physics Letters,1999,313(1-2):91-97.
    [76] P. M. Ajayan. Nanotubess from carbon[J]. Chemical Reviews,1999,99(7):1787-1799.
    [77] W. Fei, Z. Qiang, W. Z. Qin, et al. The mass production of carbon nanotubess using anano-agglomerate fluidized bed reactor: A multiscale space-time analysis[J]. PowderTechnology,2008,183(1):10-20.
    [78] R. Zhang, Q. Wen, W. Qian, et al. Superstrong ultra long carbon nanotubess formechanical energy storage[J]. Advanced Materials,2011,23(30):3387-3391.
    [79] K. Hata, D. N. Futaba, K. Mizuno, et al. Water-assisted highly efficient synthesis ofimpurity-free single-walled carbon nanotubess[J]. Abstracts of Papers of the AmericanChemical Society,2005,229: U967-U967.
    [80] E. W. Wong, P. E. Sheehan, C. M. Lieber. Nanobeam mechanics: Elasticity, strength, andtoughness of nanorods and nanotubess[J]. Science,1997,277(5334):1971-1975.
    [81] H. J. Dai, E. W. Wong, C. M. Lieber. Probing electrical transport in nanomaterials:Conductivity of individual carbon nanotubess[J]. Science,1996,272(5261):523-526.
    [82] H. J. Dai. Carbon nanotubess: Synthesis, integration, and properties[J]. Accounts ofChemical Research,2002,35(12):1035-1044.
    [83] B. I. Yakobson, R. E. Smalley. Fullerene nanotubess: C-1000000and beyond[J].American Scientist,1997,85(4):324-337.
    [84] M. S. Dresselhaus, G.. Dresselhaus, P. C. Eklund. Science of fullerenes and carbonnanotubess[M]. San Diego: CA1996.
    [85] D. H. Robertson, D. W. Brenner, J. W. Mintmire. Energetics of nanoscale graphitictubules[J]. Physical Review B,1992,45(21):12592-12595.
    [86] J. P. Lu. Elastic properties of carbon nanotubess and nanoropes[J]. Physical ReviewLetters1997,79(7):1297-1300.
    [87] E. Hernandez, C. Goze, P. Bernier, et al. Elastic properties of c and bxcynz compositenanotubess[J]. Physical Review Letters1998,80(20):4502-4505.
    [88] O. Lourie, H. D. Wagner. Evaluation of young's modulus of carbon nanotubess bymicro-raman spectroscopy[J]. Journal of Materials Research,1998,13(9):2418-2422.
    [89] M. M. J. Treacy, T. W. Ebbesen, J. M. Gibson. Exceptionally high young's modulusobserved for individual carbon nanotubess[J]. Nature,1996,381(6584):678-680.
    [90] A. Krishnan, E. Dujardin, T. W. Ebbesen, et al. Young's modulus of single-wallednanotubess[J]. Physical Review B,1998,58(20):14013-14019.
    [91] A. Y. Cao, P. L. Dickrell, W. G. Sawyer, et al. Super-compressible foamlike carbonnanotubes films[J]. Science,2005,310(5752):1307-1310.
    [92] Y. Liu, W. Qian, Q. Zhang, et al. Hierarchical agglomerates of carbon nanotubess ashigh-pressure cushions[J]. Nano Letters,2008,8(5):1323-1327.
    [93] Q. Zhang, M. Zhao, Y. Liu, et al. Energy-absorbing hybrid composites based on alternatecarbon-nanotubes and inorganic layers[J]. Advanced Materials,2009,21(28):2876-2880.
    [94] H. J. Dai, J. H. Hafner, A. G. Rinzler, et al. Nanotubess as nanoprobes in scanning probemicroscopy[J]. Nature,1996,384(6605):147-150.
    [95] J. H. Hafner, C. L. Cheung, C. M. Lieber. Growth of nanotubess for probe microscopytips[J]. Nature,1999,398(6730):761-762.
    [96] Z. H. Zhang, J. C. Peng, H. Zhang. Low-temperature resistance of individualsingle-walled carbon nanotubess: A theoretical estimation[J]. Applied Physics Letters,2001,79(21):3515-3517.
    [97] J. E. Fischer, H. Dai, A. Thess, et al. Metallic resistivity in crystalline ropes of single-wallcarbon nanotubess[J]. Physical Review B,1997,55(8): R4921-R4924.
    [98] H. W. C. Postma, T. Teepen, Z. Yao, et al. Carbon nanotubes single-electron transistors atroom temperature[J]. Science,2001,293(5527):76-79.
    [99] A. Bachtold, P. Hadley, T. Nakanishi, et al. Logic circuits with carbon nanotubestransistors[J]. Science,2001,294(5545):1317-1320.
    [100] T. W. Tombler, C. W. Zhou, L. Alexseyev, et al. Reversible electromechanicalcharacteristics of carbon nanotubess under local-probe manipulation[J]. Nature,2000,405(6788):769-772.
    [101] P. Kim, C. M. Lieber. Nanotubes nanotweezers[J]. Science,1999,286(5447):2148-2150.
    [102] R. H. Baughman, C. X. Cui, A. A. Zakhidov, et al. Carbon nanotubes actuators[J].Science,1999,284(5418):1340-1344.
    [103] A. Bachtold, C. Strunk, J. P. Salvetat, et al. Aharonov-bohm oscillations in carbonnanotubess[J]. Nature,1999,397(6721):673-675.
    [104] J. K. W. Sandler, J. E. Kirk, I. A. Kinloch, et al. Ultra-low electrical percolationthreshold in carbon-nanotubes-epoxy composites[J]. Polymer,2003,44(19):5893-5899.
    [105] J. Zhu, A. Holmen, D. Chen. Carbon nanomaterials in catalysis: Proton affinity,chemical and electronic properties, and their catalytic consequences[J]. Chemcatchem,2013,5(2):378-401.
    [106] J. M. Planeix, N. Coustel, B. Coq, et al. Application of carbon nanotubess as supports inheterogeneous catalysis[J]. Journal of the American Chemical Society,1994,116(17):7935-7936.
    [107] C. Zhou, H. Wang, F. Peng, et al. MnO2/cnt supported pt and ptru nanocatalysts fordirect methanol fuel cells[J]. Langmuir,2009,25(13):7711-7717.
    [108] C. Zhou, Y. Chen, Z. Guo, et al. Promoted aerobic oxidation of benzyl alcohol on cntsupported platinum by iron oxide[J]. Chemical Communications,2011,47(26):7473-7475.
    [109] J. Zhang, X. Liu, R. Blume, et al. Surface-modified carbon nanotubess catalyzeoxidative dehydrogenation of n-butane[J]. Science,2008,322(5898):73-77.
    [110] H. Yu, F. Peng, J. Tan, et al. Selective catalysis of the aerobic oxidation of cyclohexanein the liquid phase by carbon nanotubess[J]. Angewandte Chemie-International Edition,2011,50(17):3978-3982.
    [111] X. Pan, Z. Fan, W. Chen, et al. Enhanced ethanol production inside carbon-nanotubesreactors containing catalytic particles[J]. Nature Materials,2007,6(7):507-511.
    [112] S. S. Fan, M. G. Chapline, N. R. Franklin, et al. Self-oriented regular arrays of carbonnanotubess and their field emission properties[J]. Science,1999,283(5401):512-514.
    [113] S. S. Fan, W. J. Liang, H. Y. Dang, et al. Carbon nanotubes arrays on silicon substratesand their possible application[J]. Physica E,2000,8(2):179-183.
    [114] K. Kordas, G. Toth, P. Moilanen, et al. Chip cooling with integrated carbon nanotubesmicrofin architectures[J]. Applied Physics Letters,2007,90(123105):1-3.
    [115] A. Popp, J. J. Schneider. A chip-sized nanoscale monolithic chemical reactor[J].Angewandte Chemie-International Edition,2008,47(46):8958-8960.
    [116] X. Ma, M. Tsige, S. Uddin, et al. Application of carbon nanotubess for removing organiccontaminants from water[J]. Materials Express,2011,1(3):183-200.
    [117] X. Gui, J. Wei, K. Wang, et al. Carbon nanotubes sponges[J]. Advanced Materials,2010,22(5):617-621.
    [118] Z. Spitalsky, D. Tasis, K. Papagelis, et al. Carbon nanotubes-polymer composites:Chemistry, processing, mechanical and electrical properties[J]. Progress in PolymerScience,2010,35(3):357-401.
    [119] P. C. Ma, N. A. Siddiqui, G. Marom, et al. Dispersion and functionalization of carbonnanotubess for polymer-based nanocomposites: A review[J]. Composites Part a-AppliedScience and Manufacturing,2010,41(10):1345-1367.
    [120] J. N. Coleman, U. Khan, W. J. Blau, et al. Small but strong: A review of the mechanicalproperties of carbon nanotubes-polymer composites[J]. Carbon,2006,44(9):1624-1652.
    [121] K. Prashantha, J. Soulestin, M. F. Lacrampe, et al. Present status and key challenges ofcarbon nanotubess reinforced polyolefins: A review on nanocomposites manufacturingand performance issues[J]. Polymers&Polymer Composites,2009,17(4):205-245.
    [122] P. M. Ajayan, O. Stephan, C. Colliex, et al. Aligned carbon nanotubes arrays formed bycutting a polymer resin-nanotubes composite[J]. Science,1994,265(5176):1212-1214.
    [123] W. Ma, L. Liu, Z. Zhang, et al. High-strength composite fibers: Realizing true potentialof carbon nanotubess in polymer matrix through continuous reticulate architecture andmolecular level couplings[J]. Nano Letters,2009,9(8):2855-2861.
    [124] Q. Cheng, B. Wang, C. Zhang, et al. Functionalized carbon-nanotubessheet/bismaleimide nanocomposites: Mechanical and electrical performance beyondcarbon-fiber composites[J]. Small,2010,6(6):763-767.
    [125] J. E. Sheehan, K. W. Buesking, B. J. Sullivan. Carbon-carbon composites[J]. AnnualReview of Materials Science,1994,24:19-44.
    [126] T. Windhorst, G. Blount. Carbon-carbon composites: A summary of recent developmentsand applications[J]. Materials&Design,1997,18(1):11-15.
    [127] D. S. Lim, J. W. An, H. J. Lee. Effect of carbon nanotubes addition on the tribologicalbehavior of carbon/carbon composites[J]. Wear,2002,252(5-6):512-517.
    [128] X. Li, K. Li, H. Li, et al. Microstructures and mechanical properties of carbon/carboncomposites reinforced with carbon nanofibers/nanotubess produced in situ[J]. Carbon,2007,45(8):1662-1668.
    [129] Q. M. Gong, Z. Li, Y. Wang, et al. The effect of high-temperature annealing on thestructure and electrical properties of well-aligned carbon nanotubess[J]. MaterialsResearch Bulletin,2007,42(3):474-481.
    [130] P. Xiao, X. F. Lu, Y. Liu, et al. Effect of in situ grown carbon nanotubess on the structureand mechanical properties of unidirectional carbon/carbon composites[J]. MaterialsScience and Engineering a-Structural Materials Properties Microstructure and Processing,2011,528(7-8):3056-3061.
    [131] Q. M. Gong, L. Zhi, X. D. Bai, et al. The effect of carbon nanotubess on themicrostructure and morphologies of pyrolytic carbon matrices of c-c composites obtainedby cvi[J]. Composites Science and Technology,2005,65(7-8):1112-1119.
    [132] H. Allouche, M. Monthioux, R. L. Jacobsen. Chemical vapor deposition of pyrolyticcarbon on carbon nanotubess part1. Synthesis and morphologies[J]. Carbon,2003,41(15):2897-2912.
    [133] H. Allouche, M. Monthioux. Chemical vapor deposition of pyrolytic carbon on carbonnanotubess. Part2. Texture and structure[J]. Carbon,2005,43(6):1265-1278.
    [134] M. Monthioux, H. Allouche, R. L. Jacobsen. Chemical vapour deposition of pyrolyticcarbon on carbon nanotubess-part3: Growth mechanisms[J]. Carbon,2006,44(15):3183-3194.
    [135] Q. M. Gong, Z. Li, X. D. Bai, et al. Thermal properties of aligned carbonnanotubes/carbon nanocomposites[J]. Materials Science and Engineering a-StructuralMaterials Properties Microstructure and Processing,2004,384(1-2):209-214.
    [136] X. Li, L. Ci, S. Kar, et al. Densified aligned carbon nanotubes films via vapor phaseinfiltration of carbon[J]. Carbon,2007,45(4):847-851.
    [137] M. Li, Y. Z. Gu, Y. N. Liu, Y. X. Li, Z. G. Zhang. Interfacial improvement of carbonfiber/epoxy composites using a simple process for depositing commercially functinalizedcarbon nanotubess on the fibers[J]. Carbon,2013,52(4):109-121.
    [138] H. J. Hwang, S. L. Jung, K. H. Cho, Y. J. Kim, H. Jang. Tribological performance ofbrake friction materials containing carbon nanotubess[J]. Wear,2010,268(3):519-525.
    [139] Zhang L C。Zarudi I。Xiao K Q.Novel behavior of friction and wear of epoxycomposites reinforced by carbon nanotubess[J]. Wear,2006,261(7):806.
    [140]王世凯,陈晓红,宋怀河,等.多壁碳纳米管/环氧树脂纳米复合材料的摩擦磨损性能研究[J].摩擦学学报,2004,24(5):387.
    [141]杨瑞丽,付业伟,李贺军.碳质双层纸基摩擦材料的摩擦磨损性能研究[J].摩擦学学报,2007,6(27):550-554.
    [142]武汉大学化学系编.稀土元素分析化学[OL].北京:科学出版社,1981:1.
    [143]刘静安,温育智.稀土在有色金属工业中的开发与应用[J].四川有色金属,2002(4):7-12.
    [144]黄拿灿.稀土元素在表面工程技术中的应用[J].金属热处理,2003,28(4):7-10.
    [145]马燕合.我国稀土应用开发现状及其展望[J].材料导报,2000,14(1):3-5.
    [146] Q. J. Xue, Y. F. Lian, L. G. Yu. The antiwear and extreme pressure properties of someoil-water double soluble rare earth complexes part1: their tribological behaviour inwater[J]. Wear,1996,196(1-2):188-192.
    [147]连亚峰,党鸿辛.稀土元素的摩擦学研究发展概况[J].摩擦学学报,1993,13(2):183-190.
    [148]王文,林美娟,章文贡.不同稀土掺杂聚苯乙烯力学性能研究[J].稀有金属,2004,28(5):825-828.
    [149]王文治,胡红旗,冯嘉春.PP晶型及稀土类PP晶型改性剂[J].塑料,2004,33(2):29-34.
    [150] J. A. Hawk, D. E. Alman, J. J. Petrovic. Abrasive wear of Si3N4-MoSi2composites[J].Wear,1997,203-204:247-256.
    [151]姜国栋.用稀土硅线石填充双马来酰亚胺摩擦磨损特性的研究[J].佳木斯大学学报,1999,17(3):285-287.
    [152] H. E. Sliney. Solid lubricant materials for high temperature review. NASA. TechnicalNotee[R]. D-531,1969.
    [153]刘维民,薛群基,周静芳,等.纳米颗粒的抗磨作用及作为磨损修复添加剂的应用研究[J].中国表面工程,2001,(3):21-29.
    [154]高永建,张治军,党鸿辛,等.油酸修饰TiO2纳米微粒水溶液润滑下GCr15钢摩擦磨损性能研究[J].摩擦学学报,2000,(2):22-25.
    [155]连亚峰.含稀土润滑材料的摩擦学特性研究.兰州:中国科学院兰州化学物理研究所,1993.
    [156]张泽抚.稀土化合物作为润滑油脂添加剂的摩擦学性能研究.兰州:中国科学院兰州化学物理研究所,1998.
    [157]何忠义,刘红,夏坚,等.稀土在润滑材料中的应用[J].华东交通大学学报,1999,16(4):10-14.
    [158] S. Q. Qiu, J. X. Dong. Tribological properties of CeF3nanoparticles as additives inlubricatingoils[J].Wear,1999,30(2):35-38.
    [159]陈波水,董浚修,陈国需,等.镧—硼复合润滑添加剂的协合润滑机理[J].中国稀土学报,1996,14(4):306-310.
    [160]陈波水,董浚修,叶毅,等.稀土衫化合物与有机硼酸酯复合摩擦磨损特性研究[J].润滑与密封,1996,(6):14-17.
    [161]陈波水,董浚修,叶毅,等.硫代磷酸扎与硼酸酯复合摩擦学性能研究[J].机械工程材料,1996,20(6):14-16.
    [162]张平余,巩清叶.磷酸镧和二烷基二硫代磷酸锌及其复合添加剂对通用锂基脂摩擦学性能的影响[J].中国稀土学报,2002,20(5):409-413.
    [163]高濂,刘阳桥.碳纳米管的分散及表面改性[J].硅酸盐通报,2005,24(5):114.
    [164] Y. H. Liu, L. Yu, S. H. Zhang, et al. Dispersion of multiwalled carbon nanotubess byionic liquid-type gemini imidazolium surfactants in aqueous solution[J]. Colloids Surf.A:Physi-cochem Eng. Aspects,2010,359(1-3):66.
    [165] L. P. Zhao, L. Gao. Stability of multi-walled carbon nanotubess dispersion withcopolymer in ethanol[J]. Colloids. Surf. A,2003,224(3):127.
    [166] M. F. Islam, E. Rojas, D. M. Bergey, et al. High weight fraction surfactant solubilizationof single-wall carbon nanotubess in water[J]. Nano. Lett.,2003,3(2):269.
    [167] I. Masanori, A. Kousuke, T. Tomo, et al. Highly strong andchductive carbonnanotubes/cellulose composite paper[J]. Compos. Sci. Techn.,2010,70(6):1564.
    [168]刘宗建,张仁元,毛凌波,等.碳纳米管的分散性及其光学性质的研究[J].材料研究与应用,2009,3(4):243.
    [169] S. C. Tsang, Y. K. Chen, M. L. H. Green, et al. A simple chemical method of openingand filling carbon nanotubess[J]. Nature,1994,72(11):159.
    [170] S. C. Zhang, W. G. Fahrenholtz, G. E. Hilmas, et al. Pressure-less sintering of carbonnanotubes-Al2O3composites[J]. J. Eur. Ceram. Soc.,2010,30(12):1373.
    [171] J. Xiong, Z. Zheng, W. Song, et al. Microstructure and pro-perties of polyurethanenanocomposites reinforced with me-thylene-bis-ortho-chloroanilline-grafted multi-walledcarbon nanotubess[J]. Composites: Part A,2008,39(5):904.
    [172] B. X. Yang, J. H. Shi, K. P. Pramoda, et al. Enhancement of the mechanical properties ofpolypropylene using polypropy-lene-grafted multiwalled carbon nanoyubes[J]. Compos.Sci. Techn.,2008,68(12):2490.
    [173]许龙山,陈小华,陈传胜,等.碳纳米管-超细铜粉符合粉体的制备[J].无机材料学报,2006,21(2):309.
    [174]陈传盛,陈小华,李学谦,等.碳纳米管增强镍磷基复合镀层研究[J].物理学报,2004,53(2):531.
    [175]马格拉夫J L,顾Z,霍格R H,等.通过氟化作用切割碳纳米管的方法:中国,CN1628075[P].2003-04-08.
    [176] N. Pierard, A. Fonseca, Z. Konya, et al. Production of short carbon nanotubess withopen tips by ball milling[J]. Chem. Phys. Lett.,2001,335(1-2):1.
    [177] S. M. Uddin, T. Mahmud, C. Wolf, et al. Effect of size and shape of metal particals toimprove hardness and electrical properties of carbon nanotubes reinforced copper andcopper alloy composites[J]. Compos. Sci. Techn.,2010,70(16):2253.
    [178] Z. M. Celine, L. B. Nadine. Effect of ball milling in a tumbling ball mill on theproperties of multi-wall carbon nanotubess [J]. Chem. Eng. Proc.,2008,47(8):1350.
    [179]刘宗建,张仁元,毛凌波,等.碳纳米管的分散性及其光学性质的研究[J].材料研究与应用,2009,3(4):243.
    [180]周胜名,张孝彬,糜裕宏,等.一种分散碳纳米管的方法:中国, CN101049926[P].2007-05-15.
    [181] H. G. Chae, Y. H. Choi, M. L. Minus, et al. Carbon nanotubes reinforced small diameterpolyacrylonitrile based carbon fiber [J]. Compos. Sci. Techn.,2009,69(10):406.
    [182] V. Raquel, S. A. Cristina, C. G. Javier, et al. Physical properties of silicone foams filledwith carbon nanotubess and functionalized grapheme sheets[J]. Eur. Polym. J.,2008,44(6):2790.
    [183] C. Pisan, C. Sumaeth, Y. Ummarawadee, et al. Residue catalyst support removal andpurification of carbon nanotubess by NaOH leaching and froth flotation[J]. Separationand Purification Technology,2008,60(3):206.
    [184] S. Costa, C. Tripisciano, E. Borowiak, et al. Comparative study on purity evaluation ofsinglewall carbon nanotubess [J]. Energy Convers Manag,2008,49(5):2490.
    [185] L. Kubicar. Pulse method of measuring basic thermophysical parameters ComprehensiveAnalytical Chemistry. Vol. xⅡ, Thermal Analysis. Part E.(Ed Svehia G. Amsterdam,Oxford, New York. Tokyo: Elsevier).1990,350.
    [186] L. Kubicar. V. Bohac. Review of Several dynamic methods of measuring thermophysicalparameters Pioc. of24th Int conf on Thermal Conductivity/12th Int Thermal ExpansionSymposium October26-291997,(Eds Gaal PS and A postolescu D E, Lancaster:Technomic Publishing Company),1998,135-149.
    [187]中国科技大学高分子物理教研室.高聚物的结构与性能[M].科学出版社,1983:196-197.
    [188] J. D. Nam, C. James. Seferis. Viscoelastic characterization of phenolic resin-carbon fiber composite degradation process[J]. Journal of Polmer Science: Part B: PolymerPhysics,1999,(37):907-918.
    [189]邓海金,李雪芹,李明.孔隙率对纸基摩擦材料的压缩回弹和摩擦磨损性能影响的研究[J].摩擦学学报,2007,27(6):544-549.
    [190] A. Krishnan, E. Dujardin, T.W. Ebbesen, P.N. Yianilos, M. M. J. Treacy. Young’smodulus of single-walled nanotubess[J]. Phys. Rev. B,1998,58(20):14013-14019.
    [191] E. W. Wong, P. E. Sheehan, C. M. Lieber. Nanobeam mechanics: elasticity, strength, andtoughness of nanorods and nanotubess[J]. Science,1997,277(5334):1971-1975.
    [192] J. P Salvetat-Delmotte, A. Rubio. Mechanical properties of carbon nanotubess: a fiberdigest for beginners[J]. Carbon,2002,40(10):1729-1734.
    [193] P. Poncharal, Z. L. Wang, D. Ugarte, W. A. De. Electrostatic deflections andelectromechanical resonances of carbon nanotubess[J]. Science,1999,283(5407):1513–1516.
    [194] D. Qian, G. J. Wagner, W. K. Liu, M. F. Yu, R. S. Ruoff. Mechanics of carbonnanotubess[J]. Appl. Mech. Rev.,2002,55(6):495-533.
    [195] W. A. Curtin, B. W. Sheldon. CNT-reinforced ceramics and metals[J]. Mater. Today.,2004,7(11):44-49.
    [196] Y. A. Kim, T. Hayashi, M. Endo, Y. Gotoh, N. Wada, J. Seiyama. Fabrication of alignedcarbon nanotubes-filled rubber composite[J]. Scr. Mater.,2006,54(1):31-35.
    [197] I. Ahmad, M. Unwin, H. Cao, Y. Q. Zhu. Multi-walled carbon nanotubess reinforcedAl2O3nanocomposites: mechanical properties and interfacial investigations[J]. Compos.Sci. Technol.,2010,70(8):199-206.
    [198] R. George, K. T. Kashyap. Strengthening in carbon nanotubes/aluminium (CNT/Al)composites. Scr. Mater.,2005,53(10):1159-1163.
    [199] C. F. Deng, D. Z. Wang. Processing and properties of carbon nanotubess reinforcedaluminum composites[J]. Mater. Sci. Eng. A,2007,444(1-2):138-145.
    [200] H. J. Choi, G. B. Kwon, G. Y. Lee, D. H. Bae. Reinforcement with carbon nanotubess inaluminum matrix composites[J]. Scr. Mater.,2008,59(3):360-363.
    [201] M. Li, Y. Z. Gu, Y. N. Liu, Y. X. Li, Z. G. Zhang. Interfacial improvement of carbonfiber/epoxy composites using a simple process for depositing commercially functinalizedcarbon nanotubess on the fibers[J]. Carbon,2013,52(4):109-121.
    [202]张宁,茹红强,才庆魁.SiC粉体制备及陶瓷材料液相烧结.沈阳:东北大学出版社,2008:1-10.
    [203] T. Hidehiko, I. Nobuo. Polytypes, Grain Growth, and Fracture Touphness of Borideparticulate SiC Composites[J]. Journal American Ceramic Society,1995,78(5):1223-1229.
    [204]张亚妮,徐永东,楼建军,张立同,等.碳/碳化硅复合材料摩擦磨损性能分析[J].航空材料学报,2005,25(2):49-54.
    [205]肖鹏,刘逸众,李专,等.SiC含量对C/C-SiC摩擦材料摩擦磨损性能的影响[J].粉末冶金材料科学与工程,2012,17(1):121-126.
    [206]陈兆晨,冯振宇,杨倩一,等.碳化硅颗粒填充的碳纳米管/环氧树脂复合材料的吸波性能[J].功能材料与器件学报,2011,17(3):258-261.
    [207]李健.稀土溶液处理碳纤维填充热塑性聚酰亚胺复合材料摩擦学性能研究
    [D].2008.
    [208] F. Thevenot. A review on boron carbide[J]. Key engineering Materials,1991,56/57:59-88.
    [209] R. Ridway. R. Boron carbide: a new crystalline abrasive and wear-resisting product[J].Trans. Am. E1ectrochem. Soc.,1934,66:117.
    [210] A Lipp. Boron carbide:production properties application[J], Techn. Run.,1966,7:47.
    [211] Beauvy M.stoichiometric limits of carbon-rich boron carbide phase[J]. J, Less. comm.Met.,1983,90:169.
    [212] K. A.Schwetz, A. Lipp. Boron carbide, boron nitride and metal borides[J]. Encycl.1ndust. Chem,1985,4:295.
    [213]王零森编著.特种陶瓷[M].长沙:中南工业大学出版社.1994年.
    [214] H. K.Clark, J. L. Hoard. The crystal structure of boron carbide[J]. J. Am. chem. Soc.,1943,65:2115.
    [215] M. Bouchacoun, F. Thevenot. The properties and structure of the boron carbide phase[J].J. Less. Comm. Met.,1981,82:227.
    [216] D. N. Kevill, T. J. Rissmann, D. Brewe, C. Wood. Preparation of boron-carboncompounds, including crystalline B2C material by CVD[J]. J. Less. comm. Met.,1986,l17.421.
    [217] R. D. A11en The so1id solution series, boron-boron carbide[J]. J. Am. chem, Soc.,1953.Vol.75:3582.
    [218] G.. A. Gogotsi, Y. L.Groushevsky, O. B. DasheVskaya, Y. G. Gogotsi, V. A. LaVrenkocomplex investigation of hot pressed boron carbide[J]. J. Less. Comm. Met., l986,17:225-230.
    [219]肖汉宁,千田哲也.碳化硅陶瓷的高温摩擦磨损及机理分析[J],硅酸盐学报,1997,25(2):157-162.
    [220] H. M. Knoch, Fundus Sintered silicon carbide with defined porosity for slidingaplications[c]. In: ceramic Technology Intenational, Ohio: The American ceramic Society,1995.
    [221] Y. G. Gogotsi., A. M. Koval' chenko, I. A. Kossko. Tribochemical interactions of boroncarbides against steel[J]. wear,1992,154:133-140.
    [222]杨为佑,谢志鹏,苗赫濯.异向生长晶粒增韧氧化铝陶瓷的研究进展[J],无机材料学报,2003,5(18):961-972.
    [223]高翔.高性能氧化铝基复相陶瓷的研究[M],2004.
    [224] L. Osayande, O. L. Okoli. Fracture toughness enhancement for alumia system: areview[J]. Int. J. App. Ceram. Technol.,2008,5(3):313.
    [225] Y. W. Zhang, J. Guo. Microstructural development and mechanical propertities ofself-reinforced alumina with CAS addition[J]. J. Eur. Ceram. Soc.,2001,21:581.
    [226] H. Ohnabe, S. Masaki, T. Sasa. Potential application of ceramics matrix composites toaero-engine components[J]. Composites: Part A,1999,30:489.
    [227]魏建军.陶瓷摩擦学研究的发展现状[J].摩擦学学报,1993(3):269.
    [228] L. Esposito, A. Tucci. Microstructeral dependence of friction and weal behaviours inlow purity alumina ceramics[J]. Wear,1997(205):88-96.
    [229] McCoy, Scott L. Ceramic clutches and brakes live longer[J], Machine Design.1993,65(14):55-56.
    [230] K. Poser, K. H. Zum Gahr, et al. Development of A12O3based ceramics for dry frictionsystems[J]. Wear,2005(259):529-538.
    [231] V. Ucar, A. Ozel, A. Mimarogkh et a1. Influence of SiO2and MnO2and wearperformance of Al2O3ceramic [J]. Materials and Design, additives on the dry friction2001(22):171-175.
    [232] A. Mimaroglu, L. Taymaz, A. Ozel, et a1.Influence of the addition of Cr2O3and SiO2on the tribological performance of alumina ceramics[J]. Surface and Coatings Technology,2003(169-170):405-407.
    [233]宋剑敏.A12O3陶瓷摩擦材料的结构与性能研究[D].武汉,2006.
    [234]陈志刚,陈晓虎,刘军.A12O3基陶瓷摩阻材料的摩擦磨损特性[J].摩擦学学报,1997(3):267.
    [235]邵渭泉,稀土掺杂氧化铝恒速无压烧结行为及作用机理研究[D].青岛:青岛大学,2009.
    [236]李凌,吕培军,王勇.氧化锆牙科陶瓷低温老化性能的研究[J].北京大学学报(医学版),2011,1(43):93-97.
    [237]黄志辉,陈清,何萃微.我国首台高速动力车制动盘及制动闸瓦材料选择[J].机械工程材料,1997,21(3):34-36.
    [238] T. I. Politova and J.T.S. Irvine. Investigation of scandia-yttria-zirconia system as anelectrolyte material for intermediate temperature fuel cells-influence of yttria contentss insystem (Y2O3)x(Sc2O3)(11x)(ZrO2)89[J]. Solid State Ionics,2004,168:153-165.
    [239] Osamu Yamamoto, Yoshinori Arati and Yasuhisa Nakamura Electrical conductivity ofstabilized zirconia with ytterbia and Scandia[J]. Solid State Ionics,1995,79:137-142.
    [240] S. P. S. Badwal. Grain boundary resistivity in zirconia-based materials: effect ofsintering temperatures and impurities[J]. Solid State Ionics,1995,76:67.
    [241] M. Go dickemeier, B. Michel, O. Frei et al. Effect of intergranular glass films on theelectrical conductivity of3Y-TZP[J]. J. Mater. Res.,1994,9:1228.
    [242] M. Aoki, Y. M. Chiang, Y. P. Liu et al. Solute Segregation and Grain-BoundaryImpedance in High-Purity Stabilized Zirconia[J]. J. Am. Ceram. Soc.,1996,79:1169.
    [243]虞觉奇,易文质,陈邦迪,陈宏鉴编译.二元合金状态图集[M].上海:上海科学技术出版社,1987.50-54.
    [244]顾立德编著.特种耐火材料[M].北京:冶金工业出版社,1982.8l.
    [245]辜萍.助烧剂对二硼化钛陶瓷烧结行为、结构与性能的影响[D].武汉:武汉工业大学,1999.
    [246] J. W. Zimmermann, G. E. Hilmas, W. G. Fahrenholtz, et al. Thermophysical Properties ofZrB2and ZrB2-SiC Ceramics[J]. J. Am. Ceram. Soc.,2008,91(5):1405-411.
    [247] W. G. Fahrenholtz. Thermodynamic Analysis of ZrB2-SiC Oxidation: Formation of aSiC-Depleted Region[J]. J. Am. Ceram. Soc.,2007,90(1):143-148.
    [248] A. E. Mchale. Data Collected from Phase Diagrams for Ceramists[J]. J. Am. Ceram.Soc.,1994,73:360-365.
    [249] I. G. Talmy, J. A. Zaykoski, C. A. Martin. Flexural Creep Deformation of ZrB2/SiCCeramics in Oxidizing Atmosphere[J]. J. Am. Ceram. Soc.,2008,91(5):1441-1447.
    [250] S. Norasetthekul, T. Eubankf, W. L. Bradley, et al. Use of zirconium diboride-copper asan electrode in plasma applications[J]. Journal of Material Science,1999,34:261.
    [251] H. GAO, G. C. Barber. Friction characteristics of a paper-based friction material[J].International Journal of Automotive Technology,2002,3:171-176.
    [252] J. Fei, H. J. Li, Y. W. Fu, L. H. Qi, Y. L. Zhang. Effect of phenolic resin contentss onperformance of carbon fiber reinforced paper-based friction material[J]. wear,2010,269:534-540.
    [253] X. Zhang, K. Z. Li, H. J. Li, et al. Tribological and mechanical properties of glass fiberreinforced paper-based composite friction material[J]. Tribology International,2014,69:156-167.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700