用户名: 密码: 验证码:
硫素营养对大豆产质量影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验于2003-2004年在中科院海伦农业生态试验站进行。采用三个类型品种东农46(高油)、黑农35(高蛋白)和北9395(丰产型),四个硫肥水平(0kg/hm~2,30kg/hm~2,60kg/hm~2,90kg/hm~2),分别以盆栽和小区试验研究了硫素营养对大豆光合作用、氮素代谢、硫素积累与分配以及对产量和品质的影响,试验结果表明:
     在本试验土壤基础肥力上适当增施硫肥可以提高叶面积,当硫素超过一定水平(60kg/hm~2)后会抑制苗期至盛花期间叶片的扩展速度,但这种抑制作用会随生育进程的推进逐渐降低。施用硫肥能提高叶片叶绿素含量,尤其开花至鼓粒期叶片叶绿素含量随施硫量增加而增加。不同品种干物质积累量对硫肥的敏感性不同,黑农35在S_0-S_(60)范围内增加施硫量可促进干物质积累,S_(90)处理干物质积累量反而降低。北9395和东农46干物质积累量均是S_(60)处理即在某些生育时期表现降低的效应。地上部和根系干物质积累量呈显著或极显著正相关,增加施硫量可协调高油品种(黑农35)根系及地上植株的平衡生长,对于丰产型(北9395)品种,施硫主要促进根系的发育。
     硫肥对不同品种各部位碳素、可溶性糖、蔗糖和淀粉含量均产生影响。硫肥对碳素含量的影响主要是提高苗期至盛花期叶片碳素含量,而对其它器官碳素含量影响极小。硫肥对可溶性糖产生重要影响的时期与可溶性糖含量的峰值期基本一致,但因品种而异:黑农35主要体现在苗期至始花期以及鼓粒至生理成熟期;东农46为苗期至盛花期;北9395为始花至盛花期以及鼓粒至生理成熟期。苗期茎杆和叶片中可溶性糖含量表现为随施硫量增加而降低,而其它生育时期则表现在一定范围内随施硫量增加而增加,过高施硫含量降低,适宜硫肥水平因品种而异。硫肥对茎杆和叶片蔗糖含量在特定时期作用效果不同:开花期以后,茎杆中蔗糖含量随施硫量增加而降低,而叶片中蔗糖含量在一定硫素水平内随施硫量增加而增加,但施硫量过高含量降低。硫肥能提高结荚期和鼓粒期茎杆和叶片淀粉含量,但过高施硫叶片中淀粉含量降低。
     硫肥对大豆氮素代谢有重要影响,能显著提高大豆开花期叶片硝酸还原酶活性,并使其活性长时间保持较高水平。施硫能促进植株对氮素的吸收和积累,提高茎、叶氮素运转量、运转率和氮素收获指数。硫素水平能改变氮素在作物体内的分配方向,这可由茎杆中氮素积累量在高硫水平下较高,叶片则在较低供硫水平下氮素积累量较高证实。适当施硫能促进根瘤固氮作用,主要是提高苗期至盛花期茎秆和叶片中酰脲的含量。
     根际高浓度硫素供应水平能够促进根系对硫素的吸收。硫素的分配中心随生育进程不断发生变化,结荚期以前,硫主要集中在根、叶中,随生育期推进,分配中心逐渐向子粒转移,但根系始终保持相对较高的积累量。植株吸收硫素的高峰期在盛花期和鼓粒期。根、茎、叶和荚皮中硫素含量在生育期内的变化趋势均呈下降趋势,子粒硫素含量则持续增加,各营养器官硫素含量受外源硫素浓度影响很大,总体表现为施硫处理硫素含量高于不施硫处理。黑农35成熟子粒硫素含量表现为施硫处理高于不施硫处理,而东农46和北9395子粒硫素含量则表现相反。
     大豆植株各器官N/S在各生育时期受硫肥影响很大,总体为施硫降低N/S,但叶片中N/S在一定硫肥水平内相对稳定,过量施硫显著降低,叶片中N/S可以作为大豆硫素营养诊断指
This research was conducted at Hailun Agro-ecological experiment station of the Science Research Institute of China from 2003 to 2004. Three cultivars, Dongnong46 (high-oil), Heinong35 (high-protein) and Bei9395 (high-yield), were tested in this research by means of pots and fields experiments with four sulfur application levels (0kg/hm2, 30 kg/hm2, 60 kg/hm2, 90 kg/hm2) to study the effects of sulfur on photosynthesis, N-metabolism, accumulation and distribution of S, quality and yield of soybean. The results showed that:On the base of the soil fertility of this research, properly sulfur application could increase green leaf area, but when surpassed certain level (60 kg/hm2) , the expansion rate of leaf from seedling stage to florescence was restrained apparently, and this effect was dying out with the development of the plants. The content of chlorophyll in foliage, especially from florescence to pod-filling stage, increased greatly with the increase of sulfur application. The reaction of dry matter accumulation to sulfur is different according to cultivars. Dry matter weight of Heinong35 was enhanced with the increase of sulfur between 0-60kg/hm 2, and decreased under 90kg/hm2. While, for Dongnong46 and Bei9395, 60kg/hm2 application seemed to be an over dressing. Dry matter weight in the shoots and roots showed a significantly or most significantly positive correlationship. For high-oil variety, increasing sulfur application could stimulate the growth of shoots and roots jointly, while, for high-yielding variety, sulfur promoted the growth of roots chiefly.Carbon, soluble sugar, sucrose and starch contents in each organ were all influenced by sulfur application. Carbon concentration in the leaves changed obviously, but C% in other organs changed little. The most important influence of sulfur on concentration of soluble sugar showed at the same time as peak point, and different varieties reacted differently. In Heinong35, it showed in the periods from seedling stage to initial-flowering stage and from pod-filling stage to physiological mature stage. In Dongnong46, it showed in the periods from seedling stage to bloom-flowering stage. In Bei9395, it showed in the periods from initial-flowering stage to bloom-flowering stage. At seedling stage, soluble sugar concentrations in the stems and leaves decreased with the increase of sulfur, while at other stages, it increased within some certain levels, and the reactions of different varieties were not the same. Effects of sulfur on the sucrose concentrations in stems and leaves exhibited differently at some special stage, i.e., after flowering stage, the sucrose concentration in stems was lowered with the increase of sulfur, but that in leaves was increased to some extent. Starch concentration in the leaves and stems could be enhanced at pod-setting and pod-filling stages, but more higher sulfur application tends to reduce the starch concentration in leaves.Sulfur had an important effect on N-metabolism. It increased the NR activity significantly and made it keep high level for long time, thus promoted plant to absorb and accumulate more nitrogen, raised the quantity and efficiency of translocation as well as the harvest index of nitrogen. It also
    changed the distribution of nitrogen, which could be demonstrated by the fact that the nitrogen contents in stems were higher at the higher sulfur level, while, the nitrogen contents in leaves were higher at the lower sulfur level. Sulfur application promoted nitrogen-fixation ability of nodules, which could be illustrated by the increase of ureide concentrations in the stems and leaves from seedling stage to flowering stage.Sulfur absorbing ability of roots could be enhanced by high concentration of sulfur in rhizosphere. The distribution center was changing with the development of plants. Before pod-setting stage, sulfur was mainly allocated in the roots and leaves, then transferred to the seeds gradually, but the accumulation of sulfur in roots remained higher from the very beginning. The strongest absorption of sulfur was occurred at bloom-flowering stage and pod-filling stage. Sulfur concentration in the roots, stems, leaves and pods showed a declining tendency during the growth period, while that in the seeds increased. In each vegetative organ, sulfur content was affected significantly by different external sulfur concentrations. In generally, it increased in the treatments with sulfur application. Sulfur Concentration in the seeds of Heiong35 with sulfur application was lower than that of which with no application, while in Dongnong46 and Bei9395, it did the reverse.N/S in each organ was much influenced by sulfur. In a gross way, N/S was decreased with sulfur application except that in the leaves, it remained relatively stable within certain sulfur levels. When the sulfur level was too high, it decreased significantly, thus it was advisable to use N/S in the leaves as an indicator to sulfur nutritional diagnosis for soybean. The main reason for the decline of N/S when treated with sulfur application was due to the promotion of sulfur absorption ability stimulated by the high concentration of sulfur in rhizosphere.For high-protein and high-yield cultivars, sulfur increased not only the content of protein, but also the content of amino acid, especially S-containing amino acid. For high-oil cultivar, sulfur was favor for increasing protein content. On the contrary, the contents of most of the amino acids as well as total amino acid descended except His and Arg. There existed an interactive effect between nitrogen and sulfur on the content of amino acids. Sulfur promoted plant to absorb more nitrogen, but high nitrogen application level would restrict the exercise of sulfur's coordinative effects on the amino acids.Sulfur had different effects on oil content according to varieties. In Bei9395, sulfur application decreased oil content in both pot and field experiments. In Dongnong46 and Heinong35, oil contents of S30 treatment were higher in the pot experiment, and that of S60 treatment in the field experiment showed the best. The relative abundance of fatty acid was mainly determined by heredity, the sequence among varieties could-not be changed by sulfur application, but proper sulfur application could modify the balance of fatty acid in some extent. Sulfur application had a little effect on the contents of saturated fatty acids (palmitic acid and stearic acid), but exercised a great influence on the contents of unsaturated fatty acids (oleic acid, linoleic acid, linolenic acid). This effects showed most obvious in high oil cultivars, then in high-protein cultivars, the least in high-yield cultivars. Nitrogen and sulfur nutrient had interactive effect on the content of fatty acids.
    Only oleic acid increased at the higher nitrogen level, others decreased, namely, high nitrogen level was disadvantage for sulfur to balance the contents of fatty acid in the seeds.Effects of sulfur on yields were also different according to cultivars. In pot experiments, the S30 treatment of Heinong35 showed a little increase in yields, while S60 and S90 treatments' yields decreased, and with the increase of sulfur application, the spans of reduction were enlarged. Yield of Bei9395 was increased with the increase of sulfur application level. Sulfur Yield of Dongnong46 increased in some extent, S60 treatment showed the best. In fields experiment, only the yields of Dongnong46S30 treatment increased, the yields of other treatments all decreased.
引文
1.陈纺等.1997.湖北省硫肥施用效果初探.土壤肥料.3:12-14
    2.陈国安.1983.土壤与植物的缺硫诊断.土壤学进展.11:11-16
    3.陈克文.1982.作物的硫素营养与土壤肥力[J].土壤通报.5:43-46
    4.陈建南.1985.半野生大豆7S贮藏蛋白的提取及某些特性的研究.大豆科学.4(1):35-42
    5.陈秋舲,李延,陈木旺.1997.S素营养对水稻若干生理代谢的影响.福建农业大学学报.26:328-332
    6.陈秋舲,李延,姚源琼.1998.硫对水稻产量的影响及缺硫诊断研究.福建农业学报.13:53-57
    7.迟凤琴.2002.不同硫肥品种和用量对玉米产量和黑土有效硫的影响.土壤肥料.4:38-40
    8.迟凤琴,魏丹,申惠波等.1999.黑龙江省主要类型稻田土壤硫现状及硫肥效果的研究.土壤肥料.6:7-11
    9.迟凤琴,魏丹.2003.黑龙江省主要耕地土壤硫素现状研究.土壤通报.34(3):209-211
    10.崔岩山,王庆仁.2003.施用硫肥对几种作物与牧草产量和硫素含量的影响.应用生态学报.14(8):1261-1264
    11.程明芳,梁红.1995.施用硫肥对油菜生物产量及吸硫量的影响.土壤肥料.5:37-38
    12.崔澄,张英聚.1964.水稻无机矿质营养的研究.Ⅱ硫对水稻生长、发育、呼吸作用及酶活性的影响.作物学报.3:25-32
    13.崔彦宏.1993.高产夏玉米硫的吸收与再分配研究.玉米科学.1:48-52
    14.邓纯章.1994.我国南方部分地区农业中硫的状况及硫肥的效果.土壤肥料.3
    15.段爱儒.1999.油菜施用硫肥的效果.安徽农学通报.5(1):56
    16.范业成,叶厚专.1994.江西硫肥肥效及其影响因素的研究.土壤通报.25(3):135-137
    17.冯宗云,高之仁,荣延昭.1995.玉米幼苗根系吸收硫酸盐(Na_2~(35)SO_4)效率与产量杂种优势的关系.四川农业大学学报.13:154-157
    18.冯宗云,高之仁,荣延昭.1997.玉米幼苗根系吸收硫酸盐(Na_2~(35)SO_4)亲和性配合力的研究.核农学报.11:54-58
    19.付明鑫,毛端明,刘骅等.1999.不同含硫水平棉田土壤上硫肥的施用效果.新疆农业大学学报.22(4):311-315
    20.郭亚芬,陈魁卿,刘元英.1995.黑龙江省主要土壤硫的形态及其有效性的研究.东北农业大学学报.26:27-33
    21.何念祖,孟赐福等.1987.植物营养原理.上海科学技术出版社.
    22.贺竞祯,候忠.1998.施肥对不同玉米品种品质的影响.陕西农业科学.1:8-10
    23.胡正义,张继榛,李苦清.1997.长江冲积土壤硫素肥力研究.安徽农业科学.25:26-27
    24.胡正义,张继榛,武佩龙.1996.黄潮土硫库及供硫能力研究.土壤通报.27:270-272
    25.胡正义,张继榛,竺伟民.1996.安徽省主要农用土壤中硫形态组分的初步研究.土壤.28:119-122
    26.胡志昂.1986.栽培大豆和野生大豆种子蛋白的变异.大豆科学.5(3):205-209
    27.黄启为,杨志辉,胡树林等.2001.硫肥对油菜产量及品质的影响.湖南农业大学学报(自然科学版).27(4)
    28.黄界颍,马友华,张多姝等.2002.硫肥在作物上施用的效果与方法.安徽农学通报.8(3):50-51
    29.焦有,孙克,郭中义.1999.土壤对硫的吸附特性与田间施硫推荐.华北农学报.14(3):82-85
    30.雷全奎,郭建秋,张洁等.1999.小麦、玉米硫肥施用效果.土壤通报.30(6):277-278
    31.李立人,王维光,韩旗.1986.苜蓿二磷酸核酮糖(RUBP)羧化酶体内活化作用的调节.学会经验交流资料.
    32.李录久,戚士胜,孙礼胜等.2003.土壤硫肥力与作物硫营养研究进展.安徽农业科学.31(2):188-190
    33.李录久.2003.土壤硫肥力与作物硫营养研究进展.安徽农业科学.31(2):188-131
    34.李玉影,刘双全.2004.硫对春小麦产量和品质的影响.土壤肥料.1:14-15
    35.李玉影.1998.大豆需硫特性及硫对大豆生理效应的影响.黑龙江农业科学.5:12-15
    36.李玉颖.1993.作物对硫素营养的反应.世界农业.1:45-46
    37.李玉颖.1999.水稻需硫特性及硫对水稻产量品质的影响.土壤肥料.1:24
    38.李玉颖.1992.硫在作物营养平衡中的作用.黑龙江农业科学.6:37-39
    39.李玉颖.1997.黑龙江黑土大豆施硫效果的研究.土壤肥料.3:23-25
    40.李祖章,刘光荣,袁福生等.2001.江西省农业生产中硫肥的需求与有效施用.江西农业科技.2:20-21
    41.廖星.1991.作物硫营养的诊断和施肥.土壤通报.22:274-276
    42.林葆,李书田,周卫.2000.土壤有效硫评价方法和临界指标的研究.植物营养与肥料学报.6(4):436-445
    43.林忠平,尹光初.1983.大豆贮存蛋白研究.大豆科学.2(2):232-238
    44.林忠平,雷勃钧,崔庆玲等.1989.利用免疫荧光法研究大豆种子发育过程中11S和7S蛋白的积累.中国科学(B辑).3:285-288
    45.刘宝存,孙明德,吴静等.2001.不同供硫水平对小麦苗期生长和养分吸收的影响.北京农业科学.6:9-11
    46.刘宝存,孙明德,吴静等.2002.氮硫交互作用对小麦苗期生长和养分吸收的影响.华北农学报.17(3):90-93
    47.刘崇群.1981.土壤硫素和硫肥施用问题.土壤学报.27:399-404
    48.刘崇群,曹淑卿,陈国安等.1991.中国南方农业中的硫.土壤学报.27:399-404
    49.刘崇群,陈国安,曹淑卿等.1993.中国农业中硫的概述[A] 中国硫资源和硫肥需求的现状和展望学术讨论会文集.(C).北京:农业出版社.154-1623
    50.刘崇群,陈国安,曹淑卿等.1981.我国南方土壤硫素状况和硫肥施用.土壤学报.18:185-193
    51.刘存辉,董树亭,胡昌浩.2004.硫素水平对夏玉米产量及生理特性影响的研究.玉米科学.12(专刊):95-97
    52.刘存辉,董树亭.2001.硫素营养对高产夏玉米施用效应研究.山东农业大学学报(自然科学版).32(1):11-16
    53.刘存辉.1996.硫素营养水平、时期对玉米生理特性影响的研究.山东农业大学硕士论文
    54.刘存辉.1998.硫在作物增产中的作用研究进展.山东农业大学学报.29(1):121-123
    55.刘存辉等.2002.高产夏玉米施用硫肥对矿质元素吸收影响的研究.玉米科学.1(3):82-86
    56.刘光荣,袁福生,李祖章等.2001.氮硫配施对水稻的效应研究.江西农业学报.13(2):1-7
    57.刘开昌,李爱芹.2004.施硫对高油、高淀粉玉米品质的影响及生理生化特性.玉米科学.12(专刊):111-113
    58.刘开昌.1997.玉米不同品质类型生理特性及磷、硫营养水平影响的研究.山东农业大学硕士论文
    59.刘培利,林琪,姜国勇.1995.高产玉米施硫增产效应与机制研究.玉米科学.3:64-67
    60.刘勤,赖辉比.2000.不同供硫水平下烟草硫营养及对N、P、K等元素吸收的影响.植物营养与肥料学报.6(1):63-68
    61.刘勤,曹志洪.1998.烟草硫素营养与烟叶品质研究进展.土壤.29:320-323
    62.刘小兵,金剑.2001.不同大豆基因型氮素积累运转简报.大豆科学.20(4):298-301
    63.罗奇祥.1993.江西省土壤硫素状况和硫肥肥效.土壤肥料.6:4-7
    64.罗奇祥,刘光荣,王少先.1997.不同硫肥品种在稻—稻—油耕作制中的连施效应.江西农业科技.1:29-32
    65.马春英,李雁鸣,韩金玲.2004.不同种类硫肥对冬小麦光合性能和子粒产量性状的影响.华北农学报.19(1):67-70
    66.宁毅,程伯荣.1988.重庆地区黄壤中硫形态的分组和硫酸盐的吸附特性.环境科学学报.8:179-185
    67.祈葆滋.1989.硫营养对小麦、玉米碳氮代谢中几项生理参数的影响.作物学报.15:31-35
    68.曲东,尉庆丰.1995.黄土性土壤中硫的形态分布.干旱地区农业研究.13:73-77
    69.任丽轩,帖建伟,胡颖.1998.土壤供硫状况及小麦硫肥效应研究.河南农业大学学报.32:103-106
    70.申惠波.2002.黑龙江省大豆施硫效果的研究.黑龙江农业科学.4:16-18
    71.史占忠.1989.大豆植株全氮磷钾含量变化分析.大豆科学.4:369-374
    72.孙建中,戴昭华,盛学斌.1997.华北地区土壤中硫的赋存特征.环境科学学报.17:187-192
    73.孙义祥,陶辅元,严士贵等.2002.硫对油菜生长发育和产量的影响.安徽农业科学.30(3):335-336
    74.谭宏伟,谢如林,周柳强.1997.桂中地区水田旱地种植制中硫肥效应研究.广西农业科学.1:27-30
    75.王才斌,迟玉成,郑亚萍.1996.花生硫营养研究综述.中国油料.18:76-78
    76.王东,于振文,王旭东.2003.硫肥对冬小麦硫素吸收分配和产量的影响.作物学报.29(5):791-793
    77.王空军.1995.玉米硫、氯营养及其生理特性研究.山东农业大学硕士论文
    78.王庆仁.1997.双低油菜硫营养临界期与最大效率期的研究.植物营养与肥料学报
    79.王庆仁,林葆.2001.黑龙江主要类型土壤耕层有效硫状况及硫肥有效性研究.植物营养与肥料学报.7(4):477-480
    80.王庆仁.1997.双低油菜(Canola)硫营养临界期与最大效率期的研究.植物营养与肥料学报.3:137-146
    81.王庆仁,Ranclall,P.1997.油菜叶片扩张的功能性需硫量及其作为缺硫诊断的探讨.植物营养与肥料学报.3:334-340
    82.王庆仁,林葆.1999.硫胁迫对油菜超微结构及超细胞水平硫分布的影响.植物营养与肥料学报.5:46-49
    83.王庆仁,Hocking,P.H.1998.油菜35S分配与再分配的研究.土壤通报.29:29-32
    84.魏林根,刘益仁,章和珍等.2002.花生硫素营养特性的研究.江西农业学报.14(2):19-23
    85.吴明才.1998.大豆硫营养.大豆科学.17(4):299-304
    86.吴荣贵.1995.土壤养分状况系统研究法在土壤肥力研究及测土施肥中的应用.植物营养与肥料学报.2:8-16
    87.吴巍,Schoenau,J.J.,钱佩源.1997.氮硫对小麦产量及养分吸收的影响.吉林农业科学.1:68-71
    88.吴锡军,曹淑卿,刘崇群.1991.植物从大气中直接吸收SO_2的研究.核农学通报.12:78-79
    89.吴英,孙彬,迟凤琴.2001.黑龙江省主要类型土壤耕层有效硫状况及硫肥有效性研究.植物营养与肥料学报.7(4):477-480
    90.肖厚军,尹迪信,朱青.1996.贵州省水稻玉米硫肥效应研究.贵州农业科学.1:9-14
    91.肖厚军,尹迪信,朱青.1997.贵州省油菜硫肥肥效及有效施用条件研究.耕作与栽培.6:39-42
    92.谢佳贵,吴巍,王秀芳等.2001.硫肥对玉米的增产效果及其适宜用量的研究.吉林农业科学.26(5):34-36
    93.谢瑞芝,董树亭,胡昌浩等.2003.氮硫互作对玉米籽粒营养品质的影响.中国农业科学.36(3):263-268
    94.谢瑞芝,董树亭,胡昌浩等.2004.硫肥对玉米氮、磷、钾吸收利用影响的基因型差异.玉米科学.12(专刊):114-117
    95.谢瑞芝.2002.植物硫素营养研究进展.中国农学通报.18(2):65-69
    96.徐豹,张明,路琴华等.1993.野生大豆中的高含硫氨基酸种质大豆科学.12(3):265-266
    97.许月.1998.大豆种子贮藏蛋白的研究概况.大豆科学.3:62-267
    98.杨杰,章明清,彭嘉桂等.1999.花生硫肥效应与施用量研究.福建农业科技.3:3-4
    99.杨力,刘光栋,宋国菡.1998.山东省土壤有效硫含量及分布.山东农业科学.2:3-6
    100.姚建武,刘国坚,周修冲.1999.不同硫肥品种的水稻肥效试验研究.土壤与环境.8(3):224-226
    101.尹迪信,阎献芳,肖厚军.1995.贵州省耕地土壤硫素状况及影响因素调查.贵州农业科学.1:5-9
    102.曾宪坤.2003.磷肥与复肥.中国硫肥发展前景展望.18(4):5-7
    103.张培艳,孟赐福,吴增祺等.2001.施用氮肥和硫肥对水稻产量的交互作用.浙江农业科学.4:191-193
    104.张培艳,孟赐福,吴增祺等.2001.水稻土施用不同氮、硫水平对油菜产量的影响.中国油料作物学报.23(4):62-65
    105.张泽彦,孙克刚,吕爱英等.1999.作物施硫效应与土壤硫素平衡探讨.河南农业科学.5:25-27
    106.张耀文,李殿荣.2002.油菜硫营养及其与品质的关系.土壤肥料.5:3-7
    107.赵首萍,胡尚连,李文雄等.2003.硫对春小麦不同品质类型籽粒蛋白质及贮藏蛋白含量的效应.作物学报.29(6)847-852
    108.周可金,汪华春,童存泉等.2002.油料作物硫素营养诊断与硫肥施用.安徽农学通报.8(3):38-39
    109.周跃良,林蕴华,张德兵等.1999.花生施硫效应研究.作物研究.2:27-29
    110.朱兆明,马友华,高寿峰等.2004.中国农业硫信息系统探讨.中国农学通报.20(2):218-222
    111.邹长明,高菊生,王伯仁等.2004.长期施用含氯和含硫肥料对土壤性质的影响.南京农业大学学报.27(1):117-119
    112.罗伯特·莫瑞斯,樊明宪译.2002.世界硫供应、需求形势及展望.磷肥与复肥.17(6)
    113. Adams, C. A. and Rinner, R. W. 1969. Influence of age and sulfur metabolism or ATP-sulfurylase activity, in the soybean and surve, of selected species. Plant Physiol. 44 1241-1246
    114. Adiputra, I.G.K.and Anderson, J. W. 1992. Distribution and redistribution of sulphur taken up from nutrient solution during vegetative growth in barley. Piysiol Plant 85:453-460
    115. Adiputra, I.G.K.and Anderson, J.W. 1995. Effect of sulphur nutrition on redistribution of sulphur in vegetative barley.Physiol.Plant 95: 147-154.
    116. Allaways, W. H. and Thgmpson, J. F. 1966. Sulfur in the nutrition of Plants and animals.Soil Science 101:240-242
    117. Aulakh M. S. 1988. Sulphur fertilization of oilseeds for yield andq uality [A]. TSI-FAI Symp Sulphur in Indian Agric. [C].New Delhi,SII/3:1-14
    118. Beaton, J.D. 1966. Sulphur requirements of cereals trees fruits, vegetables and other crops. Soil Sci..101:267-282
    119. Beaton, J. D. and Wang, Y. Z. 1985.Sulphur-a vital component of maximum economic yield systems. Sulphur in agriculture. 9:2-7
    120. Beck, S. D.and Reese, J. C. 1976.Insect-Plant interactions: nutrion and metabolism. Recent.Adv. Phytochem. 10:41-92
    121. Bell, C. I. Cram, W. J. and Clarkson D. T. 1994. Compartmental analysis of SO_4~(2-)exchange kinetics in root and leaves of atropical legume macroptilium atropurpureum cv Siratro.J.E.B. 45:879-886
    122. Bell, C. I, Clarkson, D. T. and Cram, W. J, 1995. Partitioning and redistribution of sulfur during S-stress in macroptilium atropurpureum cv Siratro. J. E. B. 46: 73-81
    123. Blake-Kalff, M. A., Harriso, K. R.and Hawkesford, M. J. 1998. Distribution of sulfur within oilseed rape leaves in response to sulphur deficiency during vegetative growth, Plant Physiol. 118:1337-1344
    124. Bolton J., Nowakowski, T. Z. and Lazarus, W. 1976. Sulfur nitrogen interaction effects on the yield and composition on Protein-N, and soluble carbon hydrates in perennial ryegrass. J. Food Agr 27: 553-560
    125. Boon-Long,P.,Egli,D.B.,Leggett,J.E. 1982. Leaf N nitrogen and photosynthesis during reproductive growth in soybeans. Crop-Sci..23 (4): 617-620
    126. Cald well, A. C. E. C. Seim, and C. W. Rehm. 1969. Sulfur effects on the elemental composition of alfalfa and corn. Agron.J. 61: 632-634
    127. Catsimpoolas N., et al. 1971. Gelation phenomena of soybean globulins, iII. protein-lipid interactions Cereal. J .Sci.Food.Agric.48 (2): 159-167
    128. Chongqun Iiu. 1995. Soil sulphur status and sulphate fertilizer requirements in Southern china Current and future plant mutrient sulphur requirement availability and commercial issues for china Beijing. China, p.1-13
    129. Clarkson, D. T., Smith. F.W. and Vanden Bery, P. J. 1983. Regulation of sulfatc transport in a tropical legume. Macroptilium atropurpureum cv. Siratro. J. E. B. 34: 1463-1483
    130. Clement. A. and S. P. Gessed. 1985. N、 S、 P status and protein synthesis in the foliage of Norway spruce and Austrian black pine. Plant and soil, 85: 345-359
    131. Cooper, D. and Clarkson, D. E. 1989. Cycling of amino-nitrogen and other nutrients between shoots and roots on cereals-a possible mechanism integrating shoot and root in the regulation of nutrient uptake. J. E. B. 40: 753-762
    132. Cowling, D. W., Jones, L. H. P. and Lockyer, D. R. 1973. Increased yield through correction of sulphur deficiency in ryegrass exposed to sulphur dioxide. Nature 243: 479-480
    133. Daigger. L. A. and R. L. Fox.. 1971. Nitrogen and sulfur nutrition of sweet corn in relation to fertilization and water composition. Agron. J. 63: 729-730
    134. Datko, A. H. 1978. Sulfur-containing compounds in lemna perpusolla grown at a range of sulfate concentrion. Plant Physiol. 62: 629-635
    135. Debore. D. L.and S. H. Duke. 1982. Effects of sulphur nutrition on nitrogen and carbon metabolism in Lucerne. Physiol Plant. 54: 343-350
    136. Fismes J, Vong P. C, Bucken A. 1999. Use of labeled sulphur-35 for tracting sulphur transfers in developing peds of field-grown oilseed Rape common. Soil Sci. Plant Anal. 30: 221-234
    137. Fitzgerald, M. A., Ugalde. T. D.and Anderson J. W. 1999. Sulphur nutrition changes sources of S in vegetative tissues of wheat during generative growth. J. E. B. 50: 499-508
    138. Fontes-E. P. B., Moreira-M. A., Davies-C. S., Nielsen-N. C. 1984. Urea-elicited changes in relative electrophoretic mobility of certain clycinin and beta-conglycinin subunits Plant physiol. 76: 840-842
    139. Freney, J. R., Spencer, K. and Jones, M. B. 1978. The diagnosis of S deficiency in wheat Aust J.Aghc.Res. 29:727-738
    140. Friedrich, J. W. and Schrader, L. E. 1978. Sulfur deprivation and nitrogen metabolism in maize Seedlings, Plant Physio. 61: 900-903
    141.Gayler K. R., Sykes G. E., Plant-Physiol. Rockville, Md. 1984. American Society of Plant Physiologists. Mar 74 (3): 576-583.
    142. Gilbert, S. M., Clarkson, D. T. and Cambridge, M. 1997. SO_4~2- deprivation has an early effect on the content of Ribulose-1? 5-BisphosPhate Carboxylas /Oxygenase and Photosynthesis in young leaves of wheat Plant Physiol. 115: 1231-1239
    143. Hall, J. D. and Tadeusz, B. 1972. The ultrastructure of chloroplasts in mineral-deficient maize leaves, Plant Physiol. 50: 404-409
    144. Hanway, J. J., and C. R. Weber. 1971. Accumulation of N, P, and K by soybean (Glycine max (L.) Merrill) plants. Agron J. 63: 406-408
    145. Hawkesford, M. J., Daridian, J. C. and Grigion, C. 1993. Sulphate potion cotransport in plasma membrance resides isolated from roots of Brassica napus L: increased transport in membrances isolated from sulphur-straved plants. Planta. 190: 297-304
    146. Herschbach, C. and Rennenberg, H. 1995. Long-istance of s-sulphur in 3-year-old beech trees (Fagus Syluatica). Physial Plant. 95:379-386
    147. Hill J. E., Breidenbach R.W. 1974. Proteins of soybean seeds. II. Accumulation of the major protein components during seed development and maturation. Plant Physiol. 53: 747-751
    148. Holowach-L. P., Thompson-J.F., Madison-J. T. 1984. Effects of exogenous methionine on storage protein composition of soybean cotyledons cultured in vitro [Glycine max]. Plant-Physiol. 74 (3): 576-583.
    149. Joshi N. L, Mali P. C, Saxena A. 1998. Effects of nitrogen and sulfur application on yield and fattg acid composition of Mustard (Brassica junces L.) Oil. J. Agr. & Crop Sci. 180: 59-63
    150. Jozen.H. H. and J. R. Bettany 1984. Sulfur nutrtition of rapeseed I. Effect of time of sulphur application. Soil Sci. Soc.Am.J., 48: 107-112
    151.Kitamura K. T., Takagi., Shibasaki. K. 1976. Subunit structure of soybean US globulin. Agricultural and Biological Chemistry. 40 (9): 18-37
    152. Lappartient, A. G and Touraine B. 1996. Demand-driven control of root ATP-sulfurlase activity and SO_4~2- uptake in intact Canola Plant Physiol. 111: 147-157
    153.Larkins B. A. 1983. Genetic engineering of seeds to rage proteins. Genetic engineering of plants.: 93-119
    154. Mahler.R.J. and R.L.Maples 1987. Effect of sulfur additions on soil and the nutrition of wheat. Comun . Soil Sci. Plant Anal. 18 (6):653-673
    155.Massonneau. A, Cathala, N. and Grignon, C. 1997. Effect of sulphate deficiency on the plasma membrance polypeptide composition of Brassica napus. J. E. B. 48: 93-100
    156. Mcgrath, S. P. and Zhao, F. J. 1996. Sulphur uptake, yield responses and the interactions
     between nitrogen and sulphur in winter oilseed rape (Brassica napus) J. Aghc. Sci 126: 53-62
    157. Mcmahon P. J and Anderson J. W. 1998. Preferential allocation of sulphur into rglutamylcysteinys poptides in wheat plants grown at low sulphur nutrition in the presonce of Cadminm.Physiol. Plant 104: 440-448
    158. Meinke D. W., Chen J., Beachy R. N. 1981. Expression of storage-protein genes during soybean seed development. Planta. Berlin, Springer. 153 (2): 130-139.
    159. Meuwly, P. and Pauser, W. E. 1992. Aletration of thiol Pools in roots and shoots of maize seedlings exposed to cadmium. Plant Physiol. 99: 8-15
    160. Modaish, A. S., Al-Mustafa A.and Metwally, A. I. 1989. Effect of elemental sulfur on chemical changes and nutrient availability in calcareous Soil. Plant and Soil. 116: 95-101
    161. Nguyen. M. L. and K. M. Goh. 1992. Nutrient cycling and losses based on a mass-balance model in grazed pastures receiving long-tern superphosphate application in New Zealand Sulphur. J. Agric. Sci. 119: 107-122
    162. Oleary, M. S. and Rehm, G. W. 1991. Evaluation of some soil and plant analysis procedures as predicfors of the need for sulfur for corn production commun. In soil Sci. Plant Anal. 22: 87-99
    163. PasrichN. S. andAulakhM. S. 1991. Indian. Sulphur in Agric. 11: 17-23
    164. Patel M. S. and patel J.J. 1985. Indian J Agric. Res. 19:124-130
    165. Peak N. C, J. Imsande, R .C. 1997. Shoemaker and R. Shibles, Nutritional control of the soybean seed storage protein. Crop Science. 37(2): 498-503
    166. Randall P. J, Wrigley C. W. 1986. Effects of sulfur supply on the yield, composition and quality of grain from cereals, oilseeds, and legumes. Advances in cereal science. 8: 171-206
    167. Rendig, V. V. 1956. Sulfur and nitrogen composition of fertilizer and unfertilized alfalfa grown on a sulfur-deficient soil. Soil Sci. Soc. Am.proc. 20: 237-240
    168. Saccomani, M, Cacco, G and Ferran, G.1984. Effect of nitrogen and /or sulfur deprivation on the uptade and assimilation steps of nitrate and sulfate in maize seedlings. Journal of Plant nutrition 7: 1043-1057
    169. Salado-Navarro, L. R. Hinson, K. Sinclair, T. R.1985. Nitrogen partitioning and dry matter allocation in soybeans with different seed protein concentration. Crop Sci. 25 (3): 451-455.
    170. Schneider, A., Schatten, T. and Rermenberg. H. 1994. Exchange between phloem and xylem during long distance transport of glutathione in sprace trees (Picea abies [Karst. I. L]). J. E. B. 45: 457462
    171. Schnug E, Haneklaus S. 1993. Murphy S. Impact of sulphur supply on the baking quality of wheat [J]. Aspects Appl. Biol. 36: 337-345.
    172. Schnug, E. 1991. Sulphur nutritional status of European crops and consequences for agric. Sulphur in Agric. 15:7-12
    173. Schnug E., Haneklaus S. 1992. Baking quality and sulphur content of wheat I. Relations between sulphur and protein content and loaf volume [J], Sulphur in Agriculture. 16: 31-35.
    174. Sexton P. J., Naeve S. L., Paek N. C. and Shibles R. 1998. Soybean sulfur and nitrogen balance under varying levels of available sulfur Crop Science. 38 (4): 975-982
    175. Sexton P. J., Naeve S. L., Paek N. C, Shibles R. 1998. Sulfur availability, cotyledon nitrogen:sulfur ratio, and relative abundance of seed storage proteins of soybean crop Science.b. 38 (4): 983-986
    176. Smith, F. W. and Dolby, G. R. 1977. Derivation of diagnostic indices for assessing the sulphur status of panicum maximum Var. Trichoglum, Commun.soil.Sci. Plant.Annl 8: 221-240
    177. Smith, I. K. and Lee, L. A. 1988. Translocation of sulfate in soybean (Glysine max L.Merr.) Plant Physiol. 86: 798-802
    178. Smith, I. K. 1975. Sulfate transport in culture tobacco cells. Plant physiol. 55: 303-307
    179. Spaeth S. C, Sinclair T. R. 1983. Variation in nitrogen accumulation and distribution among soybean cultivars [Glycine max, genotypes]. Field-Crops-Res. 1: 1-12.
    180. Spielmann A., Schumann P., Stutz E. 1982. Gel electrophoretic characterisation of protein fractions from soybean during seed development [Glycine max]. Plant-Sci-Lett. Limerick: Elsevier.24 (2): 137-145.
    181. Stewart B. A, Porter L K. 1969. Nitrogen-sulphur relationship in wheat, corn and beans. Agron.J. 61:267-271
    182. Sunarpi and Anderson J. W. 1996. Distribution and redistribution of sulphur supplied as sulphate to root during vegetative growth of soybean. Plant Physiol. 110: 1151-1157
    183. Sunarpi and Anderson, J. W. 1996. Effect of sulfur nutrition on the redistribution of sulfur in vegatative soybean plants. Plant Physiol. 112: 623-631
    184. Sunarpi and Anderson, J. W. 1997. Effect of nitrogen nutrition on remobilization of protein sulfur in the leaves of vegetative soybean and associated change in soluble sulfur metabolites. Plant physiol. 115: 1671-1680
    185. Sunarpi and Anderson, J. W. 1997. Effect of nitrogen nutrition on the export of sulphur from leaves in soybean. Plant and soil. 188: 177-187
    186. Sunarpi and Anderson, J. W. 1997. Inhibition of sulphur redistribution into new leaves of vegetative by excision of maturing leaf. Plant physiol. 99: 538-545
    187. Sunarpi and Anderson, J. W. 1997. Allocation of S in generative growth of soybean. Plant Physiol. 114:687-693
    188. Tadeusz B.and Hall, J. D. 1972. Some biochemical characteristics of chloroplasts from mineral deficient maize. Plant Physiol. 50: 410-411
    189. Terry Norman. 1976. Effects of sulfur on the photosynthesis of intact leaves and isolated chloroplasts of sugar beets Plant Physiol. 57: 477-479
    190. Walker, D. R. and Bentley, C. F. 1961. Sulphur fractions of legumes as in dicators of sul phur deficiency. Can J. Soil Sci. 41: 164-168
    191. Yamaguchi, J. C. 1999. Sulfur deficiency of Rice plants in the lower Volta area, Ghana Soil Scil. Plant Nutr. 45: 367-383
    192. Zeiher, C. Egli, D. B; Leggett, J. E. 1980. The effect of growth type and maturity group on the redistribution of nitrogen from vegetative plant parts in the seed of soybeans. Agronomy Abstracts.72nd annual meeting. 96-98.
    193. Zeiher, C. Egli, D. B.Leggett, J. E. Reicosky, D. A. 1982. Cultivar differences in N nitrogen redistribution in soybeans. Agron-J. 74 (2): 375-379.
    194. Zhao, F. J., Bilsborrow, P. E and Evans, E. J. 1993. Sulphur turn over in the developing pods of single and double low varieties of oilseed Rape {Brassica napus L) .J. sci. Food Agric. 62: 111-119
    195. Zhao, F. J., Evans. E. J and Bilsborrow, P. E. 1993. Influence of sulphur and nitrogen on seed yields and quality of low Glucosinolate oilseed Rape {Brassica napus L.) .J. Sci. Food Agric.63: 29-37
    Zhao, F. J., Evans. E. J and Bilsborrow, P. E. 1993. Sulphur uptake and distribution in double and single low varieties of oilseed Rape {Brassica napus L.). Plant and Siol. 150: 69-76

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700