用户名: 密码: 验证码:
羟基磷灰石晶粒/粒子的水热控制合成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
羟基磷灰石,由于其独特的生物活性和生物相容性,使其成为一种重要的生物材料。为了拓广羟基磷灰石的研究价值和应用范围,制备具有多种形貌和不同空间结构的羟基磷灰石微纳米颗粒,成为生物材料领域研究的热点。论文通过对水热合成羟基磷灰石过程中的水热物化条件的控制、反应添加剂的添加以及聚合物模板的介入的研究,获得了不同形貌粒径的羟基磷灰石晶粒/粒子,以及空心结构的羟基磷灰石微球,同时探讨了水热合成过程中能有效控制晶体/粒子形貌及结构的机理及模型。主要内容及结果归纳如下:
     首先,通过对反应温度、压力、初始pH值以及不同pH调节剂、钙离子的浓度和释放方式等水热物化条件的研究,得出了获得结晶程度高及晶形完整的反应参数,以及各种参数条件对晶体形貌的影响程度。通过构晶离子相对浓度的调节,可制备出具有纤维状和六方棱柱状的大颗粒羟基磷灰石晶体,同时可控制晶粒大小尺寸。结合负离子配位体晶体生长模型,获得了水热环境中各种物化条件对羟基磷灰石的生长基元的形成及结合的影响规律。
     研究了十二烷基溴化铵(CTAB)、十二烷基硫酸钠(SDS)以及聚乙烯醇(PVA)三种不同类型的表面活性剂在水热反应过程中对HA晶体生长及形貌的影响。研究结果表明:阳离子表面活性剂-CTAB的加入可以控制获得短棒状的羟基磷灰石纳米颗粒,而阴离子表面活性剂-SDS的加入可得到片状形貌的羟基磷灰石粒子,非离子表面活性剂-PVA的加入使得羟基磷灰石粒子的长径比减小。其原理在于:带有不同电性的阴、阳离子表面活性剂基团,能够影响负离子配位体生长基元Ca-P6O24的形成,在一定程度上阻止了羟基磷灰石生长基元进入羟基磷灰石晶体,使得各个晶面的相对生长速率受影响,从而形成不同结晶形貌的羟基磷灰粒子。
     采用碱性的精氨酸、酸性的谷氨酸和复合氨基酸作为反应添加剂,在水热反应过程中制备出不同形貌的羟基磷灰石粒子。研究发现:带有正电荷胍基基团的碱性精氨酸加入到水热溶液中,易于吸附到羟基磷灰石晶体的(100)面的P位置,而且这种吸附引起的抑制作用会因浓度的增加而增强,从而得到长径比小的短棒状的羟基磷灰石颗粒;加入带有负离子羧基团的酸性谷氨酸,易于吸附晶体的(100)面或(010)面,得到片状羟基磷灰石晶体;而复合氨基酸加入到水热溶液中,它对晶面的影响将随pH的变化而发生改变,最后将得到粒径较大的球柱状的羟基磷灰石晶体。其机理在于:不同的氨基酸根离子对羟基磷灰石的晶体的吸附位置不一样,从而对各个晶面的产生不同的影响,得到不同形貌的羟基磷灰石晶体。
     研究了聚电解质六偏磷酸钠(STPP)和三聚磷酸钠(SHMP)在水热反应过程中对羟基磷灰石形貌的影响。研究发现:聚电解质在水溶液中形成的聚阴离子更易于吸附在羟基磷灰石晶体(100)面,阻碍羟基磷灰石在(100)面的活性位置的生长,使得羟基磷灰石晶体(100)面受到抑制成为较大的显露面。研究表明,直线性的分子链状聚阴离子比环状的聚阴离子的吸附力更强,从而对羟基磷灰石晶体形貌的影响更明显。另外,研究了三聚磷酸钠的浓度对羟基磷灰石晶体形貌的影响,发现聚电解质浓度越高越容易获得扁平状的羟基磷灰石晶体。
     尝试采用壳聚糖与聚丙烯酸(CS-PAA)聚合物微球为模板,使羟基磷灰石颗粒在聚合物空心微球表面形核生长,经煅烧,去除聚合物模板,从而得到空心结构的羟基磷灰石微球。研究表明:聚电解质之间的静电引力斥力是复合空心球形成的关键,通过改变壳聚糖和丙烯酸的初始浓度,以及壳聚糖与丙烯酸的原始比例(AA/CS)可以调节聚合物空心球的尺寸;利用明胶作为聚合物与无机物的羟基磷灰石之间的粘结剂,使得羟基磷灰石粒子能够在聚合物微球表面成核、生长。研究表明,明胶具有联结羟基磷灰石微粒与聚合物微球的作用。通过煅烧,除掉聚合物模板CS-PAA,最后得到空心结构羟基磷灰石微球。此种空心结构羟基磷灰石微球合成的方法和原理,提供了一条无机物空心微球合成的有效途径。
Hydroxyapatite (HA) has been a very important biomaterial due to its excellent bioactivity and biocompatibility. In order to develop its research merits and application scope, the preparation of hydroxyapatite nanoparticle/microparticle with various morphology and different spacial structure become one hotspot of biomaterials research. This paper focuses on synthesis of crystal/particles with various morphology or hollow structure microspheres by controlling reaction conditions, introducing different kinds of reaction additives and adopting polymer templates.This paper also investigated the mechanism and model, which is adopted to control the morphology and structure of hydroxyapatite crystal/particles effectively in the hydrothermal conditions. The main content and results are summed up as following:
     Firstly, the hydrothermal parameters of high crystallization degree and complete crystal shape are achieved by studying on the impact of hydrothermal conditions, such as reaction temperature, pressure, initial pH value, different pH regulator, calcium ion concentration and calcium ion releasing channel and so on, also including the affected degree of these hydrothermal parameters. Fibre-like and big size hexagonal prism-like hydroxyapatite crystal, and controllable crystal size particles are available by adjusting the relative ion concentration of hydroxyapatite components. The function mechanism that hydrothermal conditions impact hydroxyapatite growth unit formation and combination, is elaborated by introducing growth unit model of anion coordination polyhedron.
     CTAB (Cetyl trimethyl ammonium bromide), SDS (sodium dodecyl sulfate) and PVA (polyvinyl alcohol), three kinds of surfactants are introduced to hydrothermal process to adjust the hydroxyapatite crystal growth habits and crystal morphology. The results indicate that short rod-like hydroxyapatite nanoparticles are achieved by adding positive surfactant-CTAB, while plate-like hydroxyapatite nanoparticle are obtained by introducing negative surfacetant-SDS, and low aspect ratio hydroxylapatite nanoparticles are prepared by introducing nonionic surfacetant-PVA. The mechanism bases on:the formation of Ca-P6O24growth unit of anionic coordination polyhedra is influenced by different surfactant groups with electric charge blocks, which disturbs hydroxyapatite growth unit to join hydroxyapatite crystal and retards the combination velocity of growth unit, and those effects lead to different morphology crystals.
     The basic amino acid of arginine, acidic amino acid of glutamic acid, and compound amino acid are used as additives to prepare HA nanoparticle with various morphology. The research shows that the Arginine with positive guanidine group is apt to adhere to the P site of (100) face of HA crystal, and the adsorption interaction become stonger with higher concentration, which leads to short rod-like HA nanoparticle with lower aspect ratio. The Glutamic acid with negative carboxy groups prefer to bind on the (100) or (010) face of HA crystal, which leads to plate-like hydroxyapatite crystals. The compound amino acid affects different crystal facet in different pH value, which result in spherical HA particle as the growth speed is almost uniform.The main reaction mechanism lies in:different amino acid groups may absord on different sites of hydroxyapatite crystal, and have different effect on crystal facets, which changed the HA crystal structure and produced various crystal morphology.
     The effect of STPP (sodium tripolyphosphate) and SHMP (Sodium hexametaphosphate) on hydroxyapatite crystal morphology are studied in hydrothermal preparation. The investigation shows that polyanions, the ions of polyelectrolyte in solution, are easy to adhere to (100) facet of hydroxyapatite crystal, which blocks active sites growth of (100) plane and make (100) facet to be obvious facet. The research also demonstrates that the polyanions with linear type molecular chain have stronger absorption force, and show more obvious effect on crystal morphology than the polyanions with circular type moleculear chain. In addition, the concentration of STPP impacts the morphology of hydroxyapatite crystal. It is preferable to get plate-like hydroxyapatite crystal with higher concentration of polyelectrolyte.
     The hydroxyapatite microspheres with hollow structure are prepared by adopting template of CS-PAA polymer complex, hydroxyapatite particles nucleating and growing on the hollow CS-PAA polymer microspheres, and the polymer template is removed by calcination. The experiment shows that electrostatic attractive force and repulsive force have played crucial role in the formation of the CS-PAA sphere, and the size of CS-PAA spheres could be tuned by adjust the ratio and concentration of CS-AA in the reaction system. Gelatin, acted as binder to connect the spheres of CS-PAA with hydroxyapatite particles, help hydroxyapatite crystals to nucleate and grow on the polymer microsphere. Finally, the hollow structure hydroxyapatite microspheres are achieved by calcining the CS-PAA polymer template. This preparation method and mechanism of hollow structure hydroxyapatite microspheres, provides an effective approach to produce hollow inorganic microsphere.
引文
[1]Editorial, Trends in biomaterials research:An analysis of the scientific programme of the World Biomaterials Congress 2008, Biomaterials,2008,29:3047-3052
    [2]崔福斋,冯庆玲,生物材料学,北京:清华大学出版社,2004:1-20.
    [3]李世普,生物医用材料导论,武汉:武汉工业大学出版社,2000:1-40.
    [4]莫利蓉,纳米羟基磷灰石合成的比较研究及其体外溶解性能研究,硕士学位论文,成都:四川大学,2006.
    [5]J. F. Osborn, H. Neweseley. The material science of calciumphosphate ceramics. Biomaterials 1980; 1:108-111.
    [6]N Spanos, V Deimede, PG Koutsoukos, Functionalization of synthetic polymers for potential use as biomaterials:selective growth of hydroxyapatite on sulphonated polysulphone, Biomaterials,2002,23(3):947-953.
    [7]B Palazzo, M Iafisco, M Laforgia,et al.Biomimetic Hydroxyapatite-Drug Nanocrystals as Potential Bone Substitutes with Antitumor Drug Delivery Properties, Adv. Funct. Mater.2007,17,2180-2188.
    [8]K Tan, P Cheang, I A W Ho, P Y P Lam K M Hui, Nanosized bioceramic particles could function as efficient gene delivery vehicles with target specificity for the spleen,Gene Therapy,2007,14,828-835.
    [9]Y Boonsongrit, H Abe, K Sato, M Naito, M Yoshimura, H Ichikawa,Y Fukumori, Controlled release of bovine serum albumin from hydroxyapatite microspheres for protein delivery system, Materials Science and Engineering:B,2008,148:162-165.
    [10]M.I Kay, R.A Young, A S Posner.,Crystalstructure of hydroyapatite, nature,1964,204:1050-1052.
    [11]T Kawasaki, M Niikura, Y Kobayashi, Fundamental study of hydroxyapatite high-performance liquid chromatography, J.Chromatogr.,1990,515,125-148.
    [12]R Z LeGeros. Properties of osteoconductive biomaterials:calciumphosphates. Clin Orthop Relat Res 2002,395:81-98.
    [13]K D Groot. Clinical applications of calcium phosphate biomaterials:a review. Ceram Int 1993,19:363-366.
    [14]R Z LeGeros. Biodegradation and bioresorption of calcium phosphate ceramics. Clin Mater 1993,4:65-88.
    [15]W. Suchanek, M Yoshimura. Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. J Mater Res 1998; 13:94-117.
    [16]S V Dorozhkin, M Epple, Biological and medical significance of calcium Phosphates. Angew. Chem. Int.Ed.2002,41(17):3130-3146.
    [17]H W Kim, JC Knowles, HE Kim. Hydroxyapatite and gelatin composite foams processed via novel freeze-drying and crosslinking for use as temporary hard tissue scaffolds. J Biomed Mater Res 2005,72A:136-45.
    [18]M Kikuchi, HN Matsumoto, T Yamada, et al. Glutaraldehyde crosslinked hydroxyapatite/collagen self-organized nanocomposites.Biomaterials 2004;25:63-69.
    [19]G Wei, PX Ma. Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials2004,25:4749-4757.
    [20]F Causa, P A Netti, L Ambrosio, et al. Poly-e-caprolactone/hydroxyapatite composites for bone regeneration:in vitro characterization and human osteoblast response. J Biomed Mater Res 2006,76A:151-62
    [21]W Suchanek, M Yoshimura,Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. J Mater Res 1998,13:94-117.
    [22]H.Wang,N.Eliaz,Z.Xiang,et al. Early bone apposition in vivo on plasma-sprayed and electrochemically deposited hydroxyapatite coatings on titanium alloy, Biomaterials,2006,27:4192-4203.
    [23JY.W Fan, K Duan, RZ Wang. A composite coatingby electrolysis-induced collagen self-assembly and calcium phosphate mineralization [J]. Biomaterials, 2005,26:1623-1632.
    [24]A Rabiei, B Thomas, C. Jin, et al. A study on functionally graded HA coatings processed using ion beam assisted deposition with in situ heat treatment, Surf.Coat.Tech.2006,200:6111-6116.
    [25]A Mello,Z Hong,A M Rossi,et al. Osteoblast proliferation on hydroxyapatite thin coatings produced by right angle magnetron sputtering,Biomed.Mater.2007, 2:67-77.
    [26]T Matsumoto, M Okazaki, M Inoue,et al.Hydroxyapatite particles as a controlled release carrier of protein. Biomateials,2004,25(17):3807-3812.
    [27]H W Kim, J C Knowles, H E Kim. Hydroxyapatite/poly(e-caprolactone) composite coatings on hydroxya-patite porous bone scaffold for drug delivery. Biomaterials,2004,25:1279-1287.
    [28]刘羽,彭明生.磷灰石在废水治理中的应用[J].安全与环境学报,2001,1(1):9-12.
    [29]孟紫强,耿红,刘海龙.6种吸附材料饮水除氟效果的比较研究[J].中国地方病学志,2002,21(5):373-376.
    [30]彭继荣,李珍,羟基磷灰石的应用研究进展,中国非金属矿工业导刊,2005,46(2):12-19.
    [31]王艳,王学荣,刘博林.羟基磷灰石多孔陶瓷的研究[J].长春理工大学学报,2002,25(4):67-69.
    [32]戴怡.羟基磷灰石陶瓷在室温下的湿敏性能[J].大连轻工业学院报,1998,17(3):26-29.
    [33]H Nishikawa, K Omamiuda.Photocatalytic activity of hydroxyapatite for methylmercaptane. J.Mol.Catal. A:Chem.,2002,179(1):193-200.
    [34]H Nishikawa. A high active type of hydroxyapatite for photocatalytic decomposi-tion of dimethyl sulfide under UV irradiation. J.Mol. Catal. A:Chem.,2004, 207(2):147-151.
    [35]李吉东,李玉宝,王学江,杨维虎,周钢,载铜锌纳米羟基磷灰石的抗菌性能及机理研究,2006,21(1):162-168.
    [36]I. Mobasherpour, M. Soulati Heshajin, A. Kazemzadeh,et al. Synthesis of nanocrystalline hydroxyapatite by using precipitation method,J Alloy Compound,2007,430:330-333.
    [37]P H Shingu,B Huang,S R Nishitani,et al. Nanometer order crystalline structures of Al-Fe alloys produced by mechanical alloying, Suppl Trans Japan Inst.Metals., 1988,29:3-6.
    [38]K. C. B. Yeong, J. Wang, and S. C. Ng, Mechanochemical Synthesis of Nanocrystalline Hydroxy-apatite from CaO and CaHPO4, Biomaterials,2001, 22:2705-2712.
    [39]P.G. McCormick, F.H. Froes, The fundamentals of mechanochemical processing, J Miner, Met Meter Soc.1998,50:61-65.
    [40]C C Silva, A G Pinheiro, M A R Miranda,et al.Structure properties of hydroxyapatite obtained by mechanosynthesis[J]. Solid State Sciences, 2003,5:553-558.
    [41]L Y Cao, C B Zhang, J F Huang, Synthesis of hydroxyapatite nanoparticles in ultrasonic precipitation, Ceramics International,2005,31:1041-1044.
    [42]韩颖超,纳米尺度羟基磷灰石制备技术及其纳米特性的研究,博士学位论文,武汉:武汉理工大学,2007.
    [43]A. Afshar, M. Ghorbani, N. Ehsani,et al. Some important factors in the wet precipitation process of hydroxyapatite, Mater Design,2003,24:197-202
    [44]M.R. Saeri, A. Afshar, M. Ghorbani,et al., The wet precipitation process of hydroxyapatite, Mater Lett,2003,57:4064-4069.
    [45]L B Kong, J Ma, F Boey, Nanosized hydroxyapatite powders derived from coprecipitation process, J Mater Sci,2002,37:1131-1134.
    [46]C. Durucan, P. W. Brown,a-Tricalcium phosphate hydrolysis to hydroxyapatite at and near physiological temperature, J Mater Sci:Mater in Med, 2000,11:365-371
    [47]M T Fulmer P W Brown,Hydrolysis of dicalcium phosphate dihydrate to hydroxyapatite, J Mater Sci:Mater in Med,1998,9:197-202.
    [48]W J Shih, YF Chen, MC Wang, MH Hon,Crystal growth and morphology of the nano-sized hydroxyapatite powders synthesized from CaHPO4-2H2O and CaCO3 by hydrolysis method,J Cryst. Growth,2004,270:211-218.
    [49]卢旭东,姜承志,邵忠财,水解沉淀法制备纳米Ti02及其光催化性能研究,化学与生物工程,2006,23(11):31-32.
    [50]王友法,生物医用磷灰石纳米粒子的控制合成、表征及其溶胶稳定性研究,武汉理工大学博士学位论文,2005.16-29.
    [51]Z W Yang, Y.S Jiang, Y J Wang, et al. Preparation and thermal stability analysis of hydroxyapatite derived from the precipitation process and microwave irradiation method, Materials Letters,2004,58:3586-3590.
    [52]H Q Zhang, Y F Wang, Y H Yan, S P Li, Precipitation of biocompatible hydroxyapatite whiskers from moderately acid solution, Ceramics International, 2003,29:413-418
    [53]刘晶冰,水热与微波辅助法合成形貌可控的纳米功能陶瓷粉体,博士学位论文,北京:北京工业大学,2005.
    [54]仲维卓,华素坤,晶体生长形态学[M],北京:科学出版社,1999:270-340.
    [55]Y Li, Y D Li, Z X Deng, Surfactant-assisted hydrothermal synthesis of hydroxyapatite nanorods, International J Inorg Mater,2001,3:633-637.
    [56]Y J Wang, S H Zhang, K Wei, et al. Hydrothermal synthesis of hydroxyapatite nanopowders using cationic surfactant as a template, Materials Letters,2006,60: 1484-1487
    [57]S.J. Yan, Z.H. Zhou, F. Z. Sh.P. Yang, L.Z. Yang, X.B. Yu, Effect of anionic PAMAM with amido groups starburst dendrimers on the crystallization of Ca10(PO4)6(OH)2 by hydrothermal method, Mater. Chem. Phys.2006,99:164.
    [58]F. Zhang, Z.H. Zhou, Sh.P.Yang, L.H. Mao, H.M. Chen, X.B. Yu, Hydrothermal synthesis of hydroxyapatite nanorods in the presence of anionic starburst dendrimer, Mater. Lett.2005,59:1422.
    [59]W Suchanek, H Suda, M Yashima,et al. Biocompatible whiskers with controlled morphology and stoichiometry,J Mater Res.1995,10:521-529.
    [60]R L Xing,K F Yu, Ultrastructure characterization of hydroxyapatite nanoparticles synthesized by EDTA-assisted hydrothermal method,J Mater Sci.2009,44:4205-4209.
    [61]E A Abdel-Aal, A A El-Midany, H. El-Shall, Mechanochemical-hydrothermal preparation of nano-crystallite hydroxyapatite using statistical design, Mater Chem Phys,2008,112:202-207.
    [62]C W Chen, R E Riman, S Kevor. Mechanochemical-hydrothermal synthesis of hydroxyapatite from nonionic surfactant emulsion precursors, J Cryst Growth 2004,270:615-623.
    [63]P Zhang, L Gao, Cadmium sulfide nanocrystals via two-step hydrothermal process in Micro-emulsions:synthesis and characterization,J. Colloid Interface Sci.,2003,266:457-460.
    [64]K L Lin, J Chang, R M Cheng, M L Ruan, Hydrothermal microemulsion synthesis of stoichiometric single crystal hydroxyapatite nanorods with mono-dispersion and narrow-size distribution, Mater Lett,2007,61:1683-1687.
    [65]X. Xu, Y. Bao, C. Song,W. Yang, J. Lin, L. Lin, Microwave-assisted hydrothermal synthesis of hydroxy-sodalite zeolite membrane, Micropor. Mesopor. Mater.2004,75:173-181.
    [66]H. Yang, C. Huang, X. Li, R. Shi, K. Zhang, Luminescent and photocatalytic properties of cadmium sulfide nanoparticles synthesized via microwave irradiation,Mater. Chem. Phys.,2005,90:155-158.
    [67]J K Han, H Y Song, F Saito, B T Lee, Synthesis of high purity nano-sized hydroxyapatite powder by microwave-hydrothermal method, Mater Chem Phys,2006,99:235-239.
    [68]D M Liu, T. Troczynski, W J. Tseng, Water-based sol-gel synthesis of hydroxyapatite:process development, Biomaterials,2001,22,1721-1730.
    [69]D M Liu, Q Z Yang, T Troczynski, Sol-gel hydroxyapatite coatings on stainless steel substrates,Biomaterials 2002,23:691-698
    [70]C E Wen, W. Xu, W.Y. Hu, P.D. Hodgson, Hydroxyapatite/titania sol-gel coatings on titanium-zirconium alloy for biomedical applications, Acta Biomaterialia,2007,3:403-410
    [71]J. Livage, P. Barboux, M. T. Vanderborre, C.Schmutz, F. Taulelle, Sol-gel synthesis of phosphates,J. Non-Cryst. Solids,1992,147/148 18-23.
    [72]A. Jillavenkatesa, R A. Condrate Sr Sol-gel processing of hydroxyapatite, J Mater Sci,1998,334111-4119.
    [73]吕奎龙,孟祥才,李星逸等.纳米羟基磷灰石制备的研究进展[J],佳木斯大学学报(自然科学版),2002,20(4):384-388.
    [74]任卫,反相微乳液法制备纳米羟基磷灰石的研究,博士论文,武汉:武汉理工大学2003.
    [75]G. K. Lim, J. Wang, S. C. Ng,L. M. Ganc, Nanosized hydroxyapatite powders from micro-emulsions and emulsions stabilized by a biodegradable surfactant, J. Mater. Chem.,1999,9,1635-1639.
    [76]S. Bose, S.K. Saha,Synthesis and characterization of hydroxyapatite nanopowders by emulsion technique, Chem. Mater.2003,15 (23):4464-4469.
    [77]Y X Sun, G S Guo, D L Tao, Z H Wang, Reverse microemulsion-directed synthesis of hydroxyl-apatite nanoparticles under hydrothermal conditions, J Phys Chem Solids,2007,68:373-377.
    [78]G C. Koumoulidis,A P Katsoulidis,A K. Ladavos,et al. Preparation of hydroxyapatite via microemulsion route, J Colloid Interface Sci,2003,259 254-260.
    [79]G S Guo, Y X Sun, Z H Wang, H Y Guo, Preparation of hydroxya patite nanoparticles by reverse microemulsion, Ceramics International, 2005,31:869-872.
    [80]X.Li,Y.Xiong,Z.Li,et al. Large-scale Fabrication of TiO2 Hierarchical Hollow spheres, Inorg. Chem.,2006,45 (9):3493-3495.
    [81]J.C. Tao, X. Chen, Y. Sun, Y. Shen, N Dai, Controllable preparation of ZnO hollow microspheres by self-assembled block copolymer, Colloids and Surfaces A:Physicochemical and Engineering Aspects,2008,330:67-71.
    [82]B.X Li,Y Xie, M Jing, G.X. Rong; Y.C. Tang; G.Z. Zhang, In2O3 hollow microspheres:Synthesis from designed In(OH)3 precursors and applications in gas sensors and photocatalysis,Langmuir,2006,22:9380-9385.
    [83]H. Strohm, P. Lobmann, Porous TiO2 Hollow spheres by liquid phase deposition on polystyrene latex-stabilised pickering emulsions.J. Mater. Chem.2004,14: 2667-2673.
    [84]J Liu, F T Fan, Z C Feng,L Zhang,S Y Bai,Q H Yang,C Li, From Hollow Nanosphere to Hollow Microsphere:Mild Buffer Provides Easy Access to Tunable Silica Structure J. Phys. Chem. C,2008,112,16445-16451.
    [85]H Aoki. H. AOKI, T. KUTSUNO, An in vivo study on the reaction of hydroxyapatite-sol injected into blood,J mater sci:mater med.2000,11:67-72.
    [86]W Suchanek, M Yoshimura. Processing and properties of hydroxyapatite based biomaterials for use as hard tissue replacement implants. J Mater Res 1998;13(1):94-117.
    [87]L G Griffith, G Naughton. Tissue engineering-current challenges and expanding opportunities. Science,2002; 295(5557):1009-1010.
    [88]T Matsumoto, M Okazaki, M, S Inoue. et al. Hydroxyapatite particles as a controlled release carrier of protein Biomaterials,2004,25(17):3807-3812.
    [89]S H Zhu, B Y Huang, K C Zhou, et al. Hydroxyapatite nanoparticles as a novel gene carrier,J Nanopart Res,2004,6(2):307-311.
    [90]R E. Riman, W L. Suchanek, K Byrapp, et al. Solution synthesis of hydroxyapatite designer particulates, Solid State Ionics,2002,151:393-402
    [91]R. Murugan, S. Ramakrishna, Crystallographic Study of Hydroxyapatite Bioceramics Derived from Various Sources, Crysl Growth Design,2005,5 (1): 111-112
    [92]V S Komlev, S M Barinov, E V Koplik, A method to fabricate porous spherical hydroxyapatite granules intended for time-controlled drug release Biomaterials,2002,233449-3454.
    [93]M Darbandi, R Thomann,T Nann, Hollow Silica Nanospheres:In situ, Semi-In situ, and Two-Step Synthesis, Chem. Mater.2007,19,1700-1703.
    [94]J.F Chen,H.M.Ding, J.X Wang, L Shao,. Preparation and characterization of porous hollow silica nanoparticles for drug delivery application,Biomaterials 2004,25,723-727.
    [95]D G. Shchukin, G B. Sukhorukov, H M_hwald, Smart Inorganic/Organic Nanocomposite Hollow Microcap-sules, Angew. Chem. Int. Ed.2003,42, 4471-4475.
    [96]A P R Johnston, C Cortez, A S Angelatos,F Caruso, Layer-by-layer engineered capsules and their applications,Curr. Opin. Colloid Interface Sci.2006,11, 203-209.
    [97]G.C. Li, Z.K. Zhang, Synthesis of submicrometer-sized hollow titania spheres with controllable shells, Mater. Lett.2004,58:2768-2771.
    [98]Z.Z. Li, L.X. Wen, L. Shao, J.F. Chen, Fabrication of porous hollow silica nanoparticles and their applications in drug release control,J. Control. Release, 2004,98:245-254.
    [99]A J Wang, Y P Lu, R X Sun, Recent progress on the fabrication of hollow microspheres, Mater Sci Engineer A,2007,460-461:1-6.
    [100]万勇,二氧化硅空心球及核壳结构的制备与形成机理研究,中国科学技术大学,2007:1-12.
    [101]Z.Z.Yang,Z.W.Niu,Y.F.Lu,et al.Templated synthesis of Inorganic Hollow spheres with a Tunable Cavity Size onto Core-Shell Gel Particles. Angew. Chem. Int. Ed.2003,42:1943-1945.
    [102]C.X.Song,G.H.Gu,Y.S.Lin.Preparation and Characterization of CdS Hollow spheres.Materials Research Bulletin,2003,38:917-924.
    [103]F.Caruso,X.Y.Shi,R.A.Caruso,Hollow Titania spheres from layered precursor deposition on Sacrificial Colloidal core particles.Adv.Mater.2001,13:740-744.
    [104]X.Sun,Y.D.Li.Ga2O3 and GaN Semiconductor Hollow Spheres. Angew. Chem. Int.Ed.,2004,43:3827-3831.
    [105]F.Caruso.Nanoengineering of Particle Surfaces.Adv.Mater.,2001,13:11-22.
    [106]G Decher. Fuzzy, nanoassemblies:toward layered polymeric multicomposites. Science,1997,277:1232-1237.
    [107]F Caruso, Hollow Capsule Processing through Colloidal Templating and Self-Assembly, Chem. Eur. J.2000,6:413-419.
    [108]D.G.Shchukin,G.B.Sukhorukov, Nanoparticle Synthesis in Engineered Organic Nanoscale Reactors, Adv. Mater.2004,16,671-682.
    [109]严春美,罗贻静,赵晓鹏,无机材料纳米空心球的制备方法研究进展,功能材料,2006,37(3):345-350.
    [110]刘鹏,田军,刘维民,薛群基,空心聚合物纳米球研究进展,化学进展,2004,16:15-20.
    [111]G L Li, X L Yang, F Bai,A facile route to poly(divinylbenzene) hollow microspheres with pyridyl group on the interior surface, Polymer 2007,48:3074-3081
    [112]Y Hu, X Q Jiang, Y Ding, Q Chen and C Z Yang,Core-template-free strategy of preparing hollow nanospheres Adv. Mater.2004,16 933-937.
    [113]H.P.Hentze,E.W.Kaler, Polymerization of and within self-organized media, curr. opin. colloid. Interf.Sci.2003,8,164-178
    [114]M Okubo, H Minami, Y Yamamoto. Colloids Surf. A, Penetration/release behaviors of various solvents into/from micron-sized monodispersed hollow polymer particles 1999,153:405-411.
    [115]F Carosu, D Trau, H Mohwald, et al. Enzyme encapsulation in layer-by-layer engineered polymer multilayer capsules Langmuir,2000,16:1485-1488.
    [116]S M Marinakos, M F Anderson, J A Ryan, et al. Encapsulation, Permeability, and Cellular Uptake Character-istics of Hollow Nanometer-Sized Conductive Polymer Capsules, J Phys. Chem. B,2001,105:8872-8876.
    [117]A. Graff, M. Winterhalter, W. Meier, Nanoreactors from polymer-stabilized liposomes Langmuir,2001,17919-923.
    [118]J.A. Thomas, L. Seton, R.J. Davey, C.E. Dewolf,Using a liquid emulsion membrane system for the encapsu-lation of organic and inorganic substrates within inorganic microcapsules,Chem.Commun.2002:1072-1073.
    [119]A.G. Dong, Y.J. Wang, D.J. Wang, W.L. Yang, Y.H. Zhang,N. Ren, Z.Gao, Y.Tang, Fabrication of hollow zeolite microcapsules with tailored shapes and functionalized interiors, Microporous and Mesoporous Materials,2003, 64:69-81.
    [120]N. Gaponik, I. L. Radtchenko, G. B. Sukhorukov,H Weller, A. L. Rogach, Toward Encoding Combinatorial Libraries:Charge-Driven Microencapsulation of Semiconductor Nanocrystals Luminescing in the visible and near IR, Adv. Mater.2002,14,879-882.
    [121]E. L. Bizdoaca, M. Spasova, M. Farle,M. Hilgendorff, F. Caruso, Magnetically directed self-assembly of submicron spheres with a Fe3O4 nanoparticle shellJ. Magn. Magn. Mater.2002,240,44-46.
    [122]G. Ibarz, L. Dahne, E. Donath, H. MLhwald, Smart micro-and nanocontainers for storage, transport, and release Adv. Mater.2001,13:1324-132.
    [123]B.Liu,H.C.Zeng.Symmetric and Asymmetric Ostwald-Ripening in the Fabrication of Homogeneous Core-Shell Semiconductors.Small,2005,1:566- 571.
    [124]H.G.Yang,H.C.Zeng.Preparation of Hollow Anatase TiO2 Nanospheres via Ostwald Ripening.J.Phys.Chem.B,2004,108:3492-3495.
    [125]Y.Yin,R.M.Rioux,C.K.Erodnmez,S Hughes, G A. Somorjai, A. P Alivisatos, Formation of Hollow Nanocrystals through the Nanoscale Kirdendall Effect.Science,2004,304:711-714.
    [126]B.Liu,H.C.Zeng.Fabrication of ZnO Dandelions via a Modified Kirdendall Process, J.Am. Chem. Soc.,2004,126:16744-16746.
    [127]A D Smigelskas, E O Kirkendall. Zinc diffusion in alpha brass,Trans Am Inst Min Metall Eng.1947; 171:130.
    [128]曹献英李世普任卫,等,纳米羟基磷灰石的表征及其对肝癌抑制作用的研究,硅酸盐通报,2003,22(4):21-24.
    [129]D. Walsh, J. L.Kingston, B. R.Heywood.S.Mann. Influence of monosaccharides and related molecules on the morphology of hydroxyapatite, J.Cryst. Growth,1993,133:1-13.
    [130]R. Kumar, K. H. Prakash, P. Cheang,K. A. Khor, Temperature Driven Morphological Changes of Chemically Precipitated Hydroxyapatite Nanoparticles, Langmuir,2004,20:5196-5200.
    [131]B.Viswanath, N. Ravishankar, Controlled synthesis of plate-shaped hydroxyapatite and implications for the morphology of the apatite phase in bone, Biomaterials,2008,29:4855-4863.
    [132]B Viswanath, K Paromita, B Mukherjee, N Ravishankar. Predicting the growthof two-dimensional nanostructures. Nanotechnology 2008; 19:195603-606.
    [133]P.O Weeraphat, M Siwaporn, I M Tang, Formation of hydroxyapatite crystallites using organic template of polyvinyl alcohol (PVA) and sodium dodecyl sulfate (SDS) Materials Chemistry and Physics,2008,112:453-460.
    [134]B Palazzo, D Walsh, M Iafisco, et al. Amino acid synergetic effect on structure, morphology and surface properties of biomimetic apatite nanocrystals, Acta Biomaterialia,2009,5:1241-1252
    [135]H Arce, M L. Montero, A Saenz, V M. Castano,Effect of pH and temperature on the formation of hydroxyapatite at low temperatures by decomposition of a Ca-EDTA complex, Polyhedron,2004,231897-1901.
    [136]J B Liu, X Y Ye, H Wang,et al. The influence of pH and temperature on the morphology of hydroxyapatite synthesized by hydrothermal method, Ceramics International,2003,29,629-633.
    [137]M. Ashok, N. Meenakshi Sundaram, S. Narayana Kalkura, Crystallization of hydroxyapatite at physiological temperature, Mater Lett,2003,57:2066-2070.
    [138]I S Neira,Y V Kolen'ko, O I Lebedev,et al. An Effective Morphology Control of Hydroxyapatite Crystals via Hydrothermal Synthesis,cryst growth & design, 2009,9:466-474.
    [139]D G. Shchukin,G B. Sukhorukov, H Mohwald, Biomimetic Fabrication of Nanoengineered Hydroxyapatite/Polyelectrolyte Composite Shell, Chem. Mater. 2003,15,3947-3950.
    [140]T S Pradesh, M C Sunny, H K Varma,P Ramesh,Preparation of microstructred hydroxyl-apatite microspheres using oil in water emulsions, Bull.Mater. Sci.2005,28(5):383-390
    [141]R X Sun,Y P Lu,Mu Sen Li,S T Li,R F Zhu, Characterization of hydroxyapatite particles plasma-sprayed into water,Surf Tech.,2005,190:281-286.
    [142]R X Sun,Y P Lu,M S Li,Formation of hollow spheres of hydroxyapatite in plasma spraying,surf Engineer.2003,19:392-394.
    [143]常铁军,祁欣,材料近代分析测试方法,哈尔滨:哈尔滨工业大学出版,2000:3-25.
    [144]王培铭,许乾慰,材料研究方法[M],北京:科学出版社,2005:169-180.
    [145]陆小荣,激光粒度分布仪在陶瓷生产中的应用,江苏陶瓷,2007,40:28-30.
    [146]刘艳新,赵传山,激光衍射粒度仪测量原理及使用性能,上海造纸,2003,34:18-19.
    [147]郑水林.超微粉体加工技术与应用[M].北京:化学工业出版社,2005:36241.
    [148]李昭成,杨桂花,流动电位法zeta电位仪的测量原理及使用性能,纸和造纸,2002,4:29-30.
    [149]刘开琪,徐强,张会军,金属陶瓷的制备与应用[M],北京:冶金工业出版社,2008:140-150.
    [150]王志锋,宋邦才,张军,化学分析法精确测定羟基磷灰石中的Ca和P含量,硅酸盐通报,2007,26,186-189.
    [151]田从学.羟基磷灰石的实验合成研究[J],陶瓷学报,2003,24(1):20-24.
    [152]仲维卓,华素坤,晶体生长形态学[M],北京:科学出版社,1999:128-132.
    [153]P Andonov, P S Chieux, Y Waseda. A Local Order Study of Molten LiNbO3 by Neutron Diffraction. J. Phys. Condens. Matter,1993,5:4865
    [154]刘晶冰,水热与微波辅助法合成形貌可控的纳米功能陶瓷粉体,博士学位论文,北京:北京工业大学,2005.
    [155]李汶军,施尔畏,仲维卓,殷之文,负离子配位多面体生长基元的理论模型与晶粒形貌,人工晶体学报,1999,28(2):117-125.
    [156]仲维卓,刘光照,施而畏等.在热液条件下晶体的生长基元与晶体形成机理.中国科学(B辑).1994,24(4):394-398.
    [157]施而畏,仲维卓,华素坤等.关于负离子配位多面体生长基元模型.中国科学(E辑).1998,28(1):37-40.
    [158]魏明真,金属及其氧化物超细粉体的水热/溶剂热合成与表征,硕士学位论文.山东:山东大学,2007.
    [159]X H Zhang, H S Luo, W Z. Zhong,Growth units model of anion coordinationpolyhedra and its application to crystal growth, Sci in China Ser. E Engineer Mater Sci 2004,47 (2):191-202.
    [160]P Andonov, P S Chieux, Y Waseda. A Local Order Study of Molten LiNbO3 by Neutron Diffraction. J. Phys. Condens. Matter,1993,5:4865-4870.
    [161]H.P.Klug,L.E.Alexander,X-Ray Diffraction Procedures for Polycrystalline and Amorphous materials,(2d Ed),Plenum Press,New York,1974.
    [162]仲维卓,罗豪甦,黄宣威,齐振一,华素坤,磷酸盐晶体中络阴离子结晶方位与晶体形态,无机材料学报,1999,14(2):223-227.
    [163]郑燕表,施尔畏,李汶军等,晶体生长理论研究现状与发展,无机材料学报,1999,14(3):321-332.
    [164]张勇,羟基磷灰石晶须的水热法制备及其针状生长机理研究,硕士学位论文,武汉:武汉理工大学,2002.
    [165]I.S. Neira, Y V. K ko,O I. Lebedev,G V Tendeloo, H S. Gupta,F Guitia'n,M Yoshimura, An Effective Morphology Control of Hydroxyapatite Crystals via Hydrothermal Synthesis,cryst growth des.2009,9:466-474
    [166]X Zhang, K S Vecchio, Hydrothermal synthesis of hydroxyapatite rods, J Cryst Growth,2007,308:133-140.
    [167]L Yan, Y.D.Li, Z.X Deng, et al. Surfactant-assisted hydrothermal synthesis of hydroxyapatite nanorods [J]. Int J. Inorg Mater,2001,3,633-637.
    [168]Y J Wang, S H Zhang, K Wei, et al. Hydrothermal synthesis of hydroxyapatite nanopowders using cationic surfactant as a template, Mater Lett,2006, 60:1484-1487.
    [169]S.J. Yan, Z.H. Zhou, F. Z. Sh.P. Yang, L.Z. Yang, X.B. Yu, Effect of anionic PAMAM with amido groups starburst dendrimers on the crystallization of Ca10(PO4)6(OH)2 by hydrothermal method, Mater. Chem. Phys.2006,99:164.
    [170]宋云京,李木森,温树林,姜庆辉,宿庆财,温度和pH值对羟基磷灰石粉体合成的影响,硅酸盐通报,2003,2:7-10.
    [171]M.S.Tung, W. E. Brown,An intermediate state in hydrolysis of amorphous calcium phosphate, Calci-fied Tissue International,1983,35(1):783-790.
    [172]S.H. Teng, E J Lee, C S Park, et al. Bioactive nanocomposite coatings of collagen/hydroxyapatite on titanium substrates, Journal of Materials Science: Materials in Medicine,2008,19 (6):2453-2461.
    [173]S Jinawath, D Pongkao, W Suchanek, M Yoshimura, Hydrothermal synthesis of monetite and hydroxylapatite from monocalcium phosphate monohydrate, Inter J Inorg Mater,2001,3:997-1001.
    [174]Y.J Zhang, J.J Lu, The transformation of single-crystal calcium phosphate ribbon-like fibres to hydroxyapatite spheres assembled from nanorods, Nanotechnology,2008,19:155608-618.
    [175]M Jevtic, M. Mitric,S. S kapin,B. Jancar, N. Ignjatovic, D. Uskokovic, Crystal Structure of Hydroxyapatite Nanorods Synthesized by Sonochemical Homogen-eous Precipitation, Cryst Growth Design,2008,8:2217-2222.
    [176]I S. Neira,F Guitia'n,T Taniguchi, Hydrothermal synthesis of hydroxyapatite whiskers with sharp faceted hexagonal morphology, J Mater Sci,2008, 43:2171-2178
    [177]Y. Mizutani, M. Hattori, M. Okuyama, T. Kasuga, M. Nogami, Carbonate-containing hydroxy-apatite derived from calcium tripolyphosphate gel with urea, J Mater Sci:Mater. Med,2005,16:709-712.
    [178]H.B Zhao, D J. Draelants, G. V. Baron, Preparation and characterisation of nickel-modified ceramic filters, Catalysis Today,2000,56:229-237.
    [179]徐金光,田志坚,王军威,徐云鹏,徐竹生,林励吾,尿素加入量对水热合成法制备Mn取代六铝酸盐催化剂的影响,高等学校化学学报,2004,25:90-94.
    [180]冯新,王维,陆小华,王延儒,时钧,尿素水解过程的计算模拟,南京化工大学学报,1999,21:1-4.
    [181]彭家惠,瞿金东,吴莉,张建新,柠檬酸对二水石膏晶体生长习性与晶体形貌的影响,东南大学学报(自然科学版),2004,34:356-360
    [182]N.H. de Leeuw, Resisting the onset of hydroxy-apatite dissolution through the incorporation of fluoride, J. Phys. Chem. B,2004,108(6):1809-1811.
    [183]S H Rhee, J. Tanaka, Effect of citric acid on the nucleation of hydroxyapatite in a simulated body fluid, Biomaterials,1999,20:2155-2160.
    [184]M. R. T. Filgueiras, D. Mkhonto, N. H. de Leeuw, Computer simulations of the adsorption of citric acid at hydroxyapatite surfaces,J. Cryst.Growth,2006,294, 60-68.
    [185]N. H. de Leeuw, J. A. L. Rabone, Molecular dynamics simulations of the interaction of citric acid with the hydroxyapatite (0001) and (0110) surfaces in an aqueous environment, Cryst Eng Comm,2007,9,1178-1186.
    [186]H.F. Chen, K. Sun, Z.Y. Tang, R.V. Law, J.F. Mabsfueld, A. Czajka-Jakubowska, B.H. Clarkon, Synthesis of Fluorapatite Nanorods and Nanowires by Direct Precipitation from Solution, Crystal Growth&Design.2006,6: 1504-1508.
    [187JR.H. Zhu, R.B. Yu, J.X. Yao, D. Wang, J.J. Ke, Morphology control of hydroxyapatite through hydro thermal process, journal of alloys and compounds,2008,457:555-559.
    [188]李汶军,施尔畏等.水热法制备氧化锌纤维和纳米粉体.中国科学(E),1998(3):212-219.
    [189]鲍泽耀,晶体生长的动力学模拟,硕士学位论文,大连:大连理工大学,2008。
    [190]朱协彬,软化学法制备纳米ITO材料及其介孔组装体系研究,博士学位论文,长沙:中南大学:2007.
    [191]钟志勇,固态材料形成过程中的晶体生长机理,人工晶体学报,2004,33(5):848-856.
    [192]张克从,张乐潓,晶体生长科学与技术(上).北京:科学出版社,1997.
    [193]K.A. Fletcher, S. Pandey, Surfactant Aggregation within Room-Temperature Ionic Liquid 1-Ethyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide, Langmuir,2004,20:33-36.
    [194]郭文豪,羟基磷灰石纳米生物材料的制备与表征,硕士论文,合肥:安徽大学,2007.
    [195]Y C Chen, S L Kuo, J L Lee, et al. The Influence of Surfactant CTAB on the Microstructure and Material Properties of Nickel Microelectroforming Key Engineering Materials,2008,364-366:346-350
    [196]T. Y. Soror, M. A. El-Ziady, Effect of Cetyl Trimethyl Ammonium Bromide on the Corrosion of Carbon Steel in Acids, Mater. Chem. Phys.,2003,77:697-703.
    [197]邹耀洪,鱼维洁,温度、氯化钠及乙醇对离子型表面活性剂临界胶束浓度的影响,常熟高专学报,2003,17(4)45-49.
    [198]A Modaressi, H Sifaoui, B Grzesiak, R Solimando,U Domanska, M Rogalski, CTAB aggregation in aqueous solutions of ammonium based ionic liquids; conducti-metric studies, Colloids and Surfaces A:Physicochem. Eng. Aspects,2007,296,104-108.
    [199]J Yao, T Wiliana, Z.Yun, et al.Hydroxyapatite nanostructure material derived using cationic surfactant as a template, J. Mater. Chem.,2003,13,3053-3057.
    [200]K T Ranjit, K J Klabunde., Amphiphilic templating of magnesium hydroxide [J]. Langmuir,2005,21:12386-12394.
    [201]A.Wierzbicki, H.S.Cheung, Molecular modeling of inhibition of hydroxyapatite by phosphor-citrate J.Mol.Struct-Theochem.,2000,529:73-82.
    [202]H.B. Zhang, K C. Zhou Kechao, Z Y Li,et al.Plate-like hydroxyapatite nanoparticles synthesized by the hydrothermal method, Journal of Physics and Chemistry of Solids,2009,70(1):243-238.
    [203]叶建东,肖锋,王秀鹏,王迎军,十二烷基硫酸钠在化学沉淀法合成羟基磷灰石粉体中的防团聚作用,功能材料,2005,10(36):1594-1596.
    [204]W. Pon-On, S. Meejoo, I.M.Tang, Formation of hydroxyapatite crystallites using organic template of polyvinylalcohol (PVA) and sodium dodecyl sulfate (SDS), Mater Chem Phys,2008,112453-460.
    [205]李传浩,沈玉华,谢安建,裘灵光,SDS水溶液中纳米羟基磷灰石的制备与表征,宿州学院学报,2007,22(2):108-110.
    [206]Y J Zhang, LH Zhou, D Li,et al. Oriented nano-structured hydroxyapatite from the template,Chemical Physics Letters,2003,376(3-4):493-497.
    [207]M S Tung W. E. Brown, An intermediate state in hydrolysis of amorphous calcium phosphate, Calcified Tissue International,1983,35(1):783-790.
    [208]S H Teng, E J Lee, C S Park, et al. Bioactive nanocomposite coatings of collagen/hydroxyapatite on titanium substrates, Journal of Materials Science: Materials in Medicine,2008,19 (6):2453-2461.
    [209]R L Xin, Y Leng, N Wang, In situ TEM examinations of octacalcium phosphate to hydroxyapatite transformation, Journal of Crystal Growth,2006,289 (1):339-344.
    [210]A. Bigi, S. Panzavolta,N. Roveri, Hydroxyapatite-gelatin films:a structural and mechanical characterization, Biomaterials,1998,19(1):739-744.
    [211]M. Iijim, H. Kamemizu, N. Wakamatsu, T. Goto,Y. Doi, Y. Moriwaki, Effects of Ca addition on the formation of octacalcium phosphate and apatite in solution at pH 7.4 and at 37℃, J. Cryst. Growth,1998,193:182-188.
    [212]A. Bigi, M. Gandolfi, N. Roveri, G. Valdre, In vitro calcified tendon collagen: an atomic force and scanning electron microscopy investigation, Biomaterials, 1997,18(9):657-665.
    [213]H. Furedi-Milhofer, J. Moradian-Oldak, S. Weiner,et al Interactions of Matrix Proteins from Mineralized Tissues with Octacalcium Phosphate,Connective Tissue Research,1994,30(4),251-264.
    [214]G. Balasundram, M. Sato, T.J. Webster, Using hydroxyapatite nanoparticles and decreased crystallinity to promote osteoblast adhesion similar to functionalizing with RGD,Biomaterials.2006,27:2798-2805.
    [215]A Sinha, A Guha, Biomimetic patterning of polymer hydrogels with hydroxyapatite nano-particles,Mater Sci Engineer.C:2009,29:1330-1333.
    [216]M Tanahashi, T Matsuda, Surface functional group dependence on apatite formation on self-assembled monolayers in a simulated body fluid, J Biomed Mater Res,1997,34:305-315.
    [217]J M Didymus, P Oliver, S Mann, et al. Influence of low-molecular-weight and macro-molecular organic additive on the morphology of calcium carbonate [J]. J Chem Soc Faraday Trans,1993,89:2891-900.
    [218]S. Koutsopoulos,E. Dalas, The Crystallization of Hydroxyapatite in the Presence of Lysine, J Colloid Inter Sci,2000,231:207-212.
    [219]R. Gonzalez-McQuire,J.Y. Chane-Ching,E. Vignaud, A. Lebugle, S Mann, Synthesis and characterization of amino acid-functionalized hydroxyapatite nanorods, J. Mater. Chem.,2004,14,2277-2281.
    [220]W. J. Shaw; A. A.Campbell, M. L.Paine, M. L Snead, The COOH Terminus of the Amelogenin, LRAP, Is Oriented Next to the Hydroxyapatite Surface J. Biol. Chem.2004,279,40263-40266.
    [221]P. U. P. A Gilbert, M. Abrecht, B. H.Frazer, The Organic-Mineral Interface in Biominerals, Rev. Miner. Geochem.2005,59,157-185.
    [222]张惠敏,氨基酸对草酸钙晶体生长的影响,硕士位论文,广州:暨南大学,2006.
    [223]N V Nikolenko, E E.Esajenko Surface properties of synthetic calcium hydroxyapatite Ads. Sci. Tech.,2005,23(7):543-553
    [224]H.H Pan, J.H. Tao, X.R. Xu, R.K. Tang, Adsorption Processes of Gly and Glu Amino Acids on Hydroxyapatite Surfaces at the Atomic Level, Langmuir 2007, 23,8972-8981.
    [225]周卓华,羟基磷灰石PAMAM纳米复合材料的水热合成及其形貌控制,硕士学位论文,上海:上海师范大学,2007.
    [226]M.J.Lochlead, S.R. letellier, Assessing the Role of Interfacial Electrostatics in Oriented Mineral Nucleation at Charged Organic Monolayers J. Phys. Chem. 1997,101(50):10821-10827.
    [227]闫思佳,不同表面活性基团的PAMAM对磷酸钙盐结晶行为研究,硕士论文,上海:上海师范大学,2007.
    [228]H.B. Lu, C.L. Ma, H. Cui, L.F. Zhou, R.Z. Wang, F.Z. Cui. Controlled crystallization of calcium phosphate under stearic acid monolayers, J. Cryst Growth.1995,155:120-125.
    [229]S Habelitz, L Pascual,Duran A.Nitrogen-cotaining apatite.J. Eur.Ceram.Soc, 1999,19(15):2685-2694.
    [230]I Rehman, W Bonfield, Characterization of hydroxyapatite and carbonate apatite by photoacoustic FTIR spectroscopy.J. Mater.Sci.:Mater. Med.,1997,8(1)1-4.
    [231]G, M. S. E Shafei, A. M Nabawaya, Adsorption of Some Essential Amino Acids on Hydroxyapatite, Journal of Colloid and Interface Science,2001,238(1): 160-166.
    [232]S. Koutsopoulos,E. Dalas.Hydroxyapatite Crystallization in the Presence of Amino Acids with Uncharged Polar Side Groups:Glycine,Cysteine, Cystine, and Glutamine, Langmuir 2001,17,1074-1079.
    [233]K Kandori,S Tsuyama,H Tanaka,T Ishikawa, Protein adsorption characteristics of calcium hydroxyapatites modified with pyrophosphoric acids, Colloids and Surfaces B:Biointerfaces,2007,58:98-104.
    [234]E Boanini, P Torricelli, M Gazzano,et al. Nanocomposites of hydroxyapatite with aspartic acid and glutamic acid and their interaction with osteoblast-like cells, Biomaterials,200627(25):4428-4433.
    [235]J V. Garcia-Ramos, P. Carmona, A.J. Hidalgo, The adsorption of acidic amino acids and homopolypeptides on hydroxyapatite, J. Colloid Interface Sci. 1981,83(2):479-484.
    [236]S. Koutsopoulos, E. Dalas,The effect of acidic amino acids on hydroxyapatite Crystallization, J. Cryst Growth,2000,217:410-415.
    [237]M Kresak,EC Moreno, RT Zahradnik et al. Adsorption of amino acids onto hydroxyapatite J. Colloid Interface Sci.,1979,69:460-466.
    [238]董秀丽,蛋白质与羟基磷灰石表面的相互作用机理研究,博士学位论文,杭州:浙江大学,2008.
    [239]周剑平,上官勇刚,吴强,郑强,聚电解质材料—(Ⅰ)工程应用研究进展,高分子材料科学与工程,2008,24:10-13.
    [240]A V Dobrynin, M Rubinstein, Theory of polyelectrolytes in solutions and at surfaces, Prog. Polym. Sci.30 (2005) 1049-1118.
    [241]Y.J. Shin, C.C. Su, Y.H. Shen, Dispersion of aqueous nano-sized alumina suspensions using cationic polyelectrolyte, Materials Research Bulletin,2006, 41:1964-1971.
    [242]V F.George, Stimulant sensitive flocculation and consolidation for improved solid/liquid separation,J Colloid Inter Sci,2005,292:598-603.
    [243]N Carine, K Sabine, K Joachim. Poly(ethyleneimine) as reducing and stabilizing agent for the formation of gold nanoparticles in w/o microemulsions, Colloids and Surfaces A:Physicochem. Eng. Aspects,2006,290:150-156.
    [244]Y.P. Lin, P. C. Singer, Inhibition of calcite crystal growth by polyphosphates, Water Res.39 (2005) 4835-4843.
    [245]J.Y. Carrillo, A V. Dobrynin, Molecular Dynamics Simulations of Poly-electrolyte Adsorption, Langmuir,2007,23,2472-2482.
    [246]M. Oner, O. Dogan, Inhibitory effect of polyelectrolytes on crystallization kinetics of hydroxyapatite, Progress in Crystal Growth and Characterization of Materials,2005,50:39-51.
    [247]赵颜忠,朱晒红,谭娟,周艳艳,李志友,周科朝,纳米羟基磷灰石的精氨酸表面修饰及其基因的结合性能,中国有色金属学报,2010,20(6):1203-1208.
    [248]J. Murphy, D. Beighton, D. Clark, D. Bartlett, The potential for sodium hexametaphosphate (SHMP) found in common children drinks to limit acid production in the oral biofilm, journal of dentistry,2007,35:214-217.
    [249]李红伟,尤文辉,张俊杰,罗飞,闫少辉,磷酸盐对肉制品持水力影响的研究,食品科技,2003,12:39-41.
    [250]A Fernanda, C Elena, M Tiziano, R Marcello, The role of sodium hexametaphosphate in the dissolution process of kaolinite and kaolin, J. European Ceramic Society,2004,24:2113-2124.
    [251]R.P. Shellis, M. Addy, G.D. Rees, In vitro studies on the effect of sodium tripolyphosphate on the interactions of stain and salivary protein with hydroxyapatite, J Dent,2005 33:313-324.
    [252]A.Papo, L.Piani, R.Ricceri, Sodium tripolyphosphate and polyphosphate as dispersing agents for kaolin suspensions:rheological characterization, Colloid Surface A,2002,201:219-230.
    [253]E.C.Moreno, K.Varughese, Crystal growth of calcium apatites from dilute solutions, J. Cryst. Growth.1981,53:20-30.
    [254]M. Iijim, H. Kamemizu, N. Wakamatsu, T. Goto,Y. Doi, Y. Moriwaki, Effects of Ca addition on the formation of octacalcium phosphate and apatite in solution at pH 7.4 and at 37℃, J. Cryst. Growth,1998,193:182-188.
    [255]F Andreola, E Castellini, T Manfredini, M Romagnoli, The role of sodium hexameta-phosphate in the dissolution process of kaolinite and kaolin, J Eur Ceram Soc,2004,24:2113-2124.
    [256]X.Y. Liu, Interfacial structure analysis for the prediction of morphology of crystals and implications for the design of tailor-made additives, J. Cryst. Growth,1997,174,380-385.
    [257]Y.Zhou, J. O. Carnali, Solid-State Hydrolysis of Calcium Tripolyphosphate Scales, Langmuir,2000,16:5159-5168.
    [258]K. Kandori, S. Tsuyama, H. Tanaka, T. Ishikawa, Protein adsorption characteristics of calcium hydroxyapatites modified with pyrophosphoric acids, Colloid Surface B,2007,58:98-104.
    [259]D. Mkhonta,N. de Leeuw, Molecular dynamics simulations of the growth inhibiting effect of Fe2+, Mg2+, Cd2+and Sr2+ on calcite crystal growth J. Mater. Chem.,2002,12,2633.
    [260]R. J. Radlanski, W. Seidl, G. Steding and A. Ja'ger, Prism orientation in human dental enamel Anat. Anz.Jena,1998,168,405.
    [261]R. Rohanizadeh, M. Trecant-Viana and G. Daculsi, Ultrastructural study of apatite precipitation in implanted calcium phosphate ceramic:influence of the implantation site.,Calcif. Tissue Int.,1999,64,430-436.
    [262]A. Lopez-Macipe, J. Gomez-Morales, R. Rodriguez-Clemente, Hydroxyapatite Precipitation from Homogeneous Calcium/Citrate/Phosphate Solutions Using Microwave and Conventional Heating, Adv. Mater.1998,10,49-53.
    [263]X.Y.Guo, Y. Xiao, J. Liu, Z. Shen, Fabrication of nanostructured hydroxyapatite via hydrothermal synthesis and spark plasma sintering, J. Am. Ceram. Soc., 2004,88,1026-1029.
    [264]Y.X. Sun, G. Sh. Guo, Z.H. Wang, H.Y. Guo, Synthesis of single-crystal HAP nanorods, Ceram. Int.2006,32,951-954.
    [265]F. Abbona, A. Baronnet, A XRD and TEM study on the transformation of amorphous calcium phosphate in the presence of magnesium, J.Cryst.Growth, 1996,165,98-105.
    [266]E.C. Moreno, M. Kresak, D.I. Hay, Adsorption of Molecules of Biological Interest onto Hydroxyapatite, Calcif. Tissue Int.,1984,36,48-59.
    [267]G.C. Li, Z.K. Zhang, Synthesis of submicrometer-sized hollow titania spheres with controllable shells, Mater. Lett.2004,58:2768-2771.
    [268]L J Wang, G H Nancollas, Pathways to biomineralization and biodeminerali-zation of calcium phosphates:the thermodynamic and kinetic controls, Dalton Trans.,2009,2665-2672
    [269]G H. Nancollas, W J Wu, Biomineralization mechanisms:a kinetics and interfacial energy approach, J Cryst Growth,2000,211:137-142
    [270]Y. Hu, X. Jiang, Y. Ding, H. X. Ge, Y. Y. Yuan, C. Z. Yang, Synthesis and characterization of chitosan-poly(acrylicacid) nanoparticles, Biomaterials 2002, 23,3193-3201.
    [271]S Mansouri, Y Cuie, F Winnik, et al. Characterization of folate-chitosan-DNA nanoparticles for gene therapy.Biomaterials 2006;27(9):2060-2065
    [272]U Guliyeva, F Oner, S Ozsoy, et al. Chitosan microparticles containing plasmid DNA as potential oral gene delivery sys tem.Eur J Pharm Biopharm 2006;62(1):17-25
    [273]Z X Tang, J Q Qian, L E.Shi, Preparation of chitosan nanoparticles as carrier for immobilized enzyme.Appl Biochem Biotechnol 2007;136 (1):77-96.
    [274]K S C R Dos Santos, J F J Coelho, P Ferreira,et al. Synthesis and Characterization of Mem-branes Obtained by Graft Copolymerization of hydroxyethyl Methacrylate and Acrylic Acid onto Chitosan[J]. International Journal of Pharmaceutics,2006,310 (122):37-45.
    [275]J W Lee, S Y Kim, S S Kim, et al. Synthesis and Characteristics of Interpenetrating Polymer Network Hydrogel Composed of Chitosan and Poly(Acrylic Acid) [J]. J Appl Polym Sci,1999,73(1) 113-120.
    [276]J S Lee, R N Kumar, H D Rozman, et al. Pasting,Swelling and Solubility Properties of UV Initiated Starch-graft-poly (AA)[J].Food Chem,2005, 91(2):203-211.
    [277]Y Simon, W Mark, T Yasuhiko,G M Antonios, Gelatin as a delivery vehicle for the controlled release of bioactive molecules J. Control. Release, 2005,109:256-74
    [278]S Cai, X Z Yu, Z Y Xiao, G H Xu, H Lv, KD Yao, Synthesis and sintering of nanocrystalline hydroxyapatite powders by gelatin-based precipitation method, Ceramics International,2007,33:193-196.
    [279]马宁,汪琴,孙胜玲,王爱勤,甲壳素和壳聚糖化学改性研究进展,化学进展,2004,16,643-652.
    [280]陈鲁生,完全水溶性壳聚糖制备条件的研究[J].化学通报,998,(8):48.
    [281]V I Pedroni, P. C. Schulz, M. E. Gschaider, et al. Chitosan structure in aqueous solution[J]. Colloid Polym. Sci.,2003,282:100-102.
    [282]廖戎,甲壳素制备壳聚糖脱乙酰度可控性的研究,四川化工,2007,10(2):14-17.
    [283]姜俊艳,壳聚糖的制备及应用,化学工程师,2003,98(5):57-58.
    [284]蒋挺大.甲壳素[M].北京:化学工业出版社,2007.
    [285]唐振兴,石陆娥,易喻,壳聚糖及其降解物分子量的测定,化工技术与开发,2004,33(6):38-39.
    [286]倪红,杨艳燕,阎达中,溶剂对壳聚糖粘度及Mark-Houwink方程参数的影响,化学世界,2003,8:416-418.
    [287]X Y Guo,P Xiao,Effects of solvents on properties of nanocrystalline hydroxyapatite produced from hydro-thermal process J. Eur. Ceram. Soc.2006, 26:3383-91
    [288]K C R Bahadur, S Aryal, N Bhattarai, H Y Kim,Ceramic modification of N-acylated chitosan stabilized goldnanoparticles Scr. Mater.2006, 54:2029-2034
    [289]汪山献松,路平,张幼维,吴承训,原位自组装明胶/PAA纳米微球,材料科学与工程学报,2007,25:662-666.
    [290]C. G.Blanco, L. J Rodriguez, M. M.Velasquez [J]. Langmuir,1997 13:1938-1945.
    [291]O. M.Chamekh, Q. T. Nguyen, M.Metayer Saiter M., GardaM. R. [J] Polymer,2004,45:4181-8187.
    [292]H B Zhang, K C Zhou, Z Y Li,et al. Synthesis of hollow hybrid hydroxyapatite microspheres based on chitosan-poly(acrylic acid) microparticles, Biomed. Mater.2009,4(031002):1-6
    [293]M N Taravel,A Domard,Relation between the physicochemical characteristics of collagen and its interaction with chitosan:Ⅰ. Biomaterials,1993,14:930-938
    [294]M Cheng, J Deng, F Yang, Y D Gong, N M Zhao, X F Zhang Study on physical properties and nerve cell affinity of composite films from chitosan and gelatin solutions Biomaterials 2003,24:2871-2880.
    [295]M. Tanahashi, T. Matsuda, Surface functional group dependence on apatite formation on self-assembled monolayers in a simulated body fluid. Journal of Biomedical Materials Research,1997,34:305-315.
    [296]S Young, M Wong, Y Tabata,et al. Gelatin as a delivery vehicle for the controlled release of bioactive molecules, Journal of Controlled Release, 2005,109:256-274.
    [297]M C Chang, C C Ko, W H Douglas, Preparation of hydroxyapatite-gelatin nanocomposite, Biomaterials,2003,24:2853-2862.
    [298]M. S Fernandez,.; A.Moya,; L Lopez,.; J. L.Aria, Secretion pattern, ultrastructural localization and function of extracellular matrix molecules involved in eggshell formationMatrix Biol.2001,19,793-803.
    [299]M C Chang, W H Douglas, J Tanaka, et al. Organic-inorganic interaction and the growth mechanism of hydroxyapatite crystals in gelatin matrices between 37 and 80℃, J Mater Sci:Mater Med,2006,17:387-396
    [300]R Tannenbaum, M Zubris,EP. Goldberg,et al.Polymer-Directed Nanocluster Synthesis:Control of Particle Size and Morphology, Macromolecules 2005, 38:4254-425.
    [301]黄立业,徐可为.纳米针状羟基磷灰石涂层的制备及性能的研究[J].硅酸盐学报,1996,27(3):351-355.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700