用户名: 密码: 验证码:
枯草芽孢杆菌SC02和施氏假单胞菌F1M对草鱼养殖水体水质的影响及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究通过分离得到一株具有反硝化功能的菌株SC02,经16s RNA鉴定为枯草芽孢杆菌。通过测定菌株SC02在不同氮源、初始氨氮浓度、初始亚硝酸盐氮浓度、pH值、温度和溶氧条件下对氨氮和亚硝酸盐氮的去除效果,获得该菌株的最佳脱氮条件:氮源为亚硝酸钠或硝酸钠;初始氨氮浓度为10mg/L;初始亚硝酸盐氮浓度为10-30mg/L;摇床转速为0-50rpm;温度为25-37℃;pH为7-9。同时将菌株SC02(1×108cfu/L)及其与施氏假单胞菌F1M的复合菌(按1:1比例复合混合,2×108cfu/L)直接添加到草鱼养殖水体中,评价益生菌对草鱼养殖水体水质的影响,结果表明,水体中添加枯草芽孢杆菌及其与假单胞菌的复合菌在一定时间内(15d)可有效降低养殖水体中氨氮、亚硝酸盐氮、硝酸盐氮、总无机氮和总氮等含氮化合物含量,改善养殖水体水质。
     随后,采用454焦磷酸测序技术研究益生菌对草鱼养殖环境菌群结构的影响,结果发现:(1)添加枯草芽孢杆菌SC02可增加养殖水体中菌群的多样性;与对照组相比,SC02组中变形菌门和厚壁菌门减少,放线菌门和拟杆菌门增加;对变形菌门深入分析发现,与对照组相比,SC02组中的α-和β-变形菌纲增加,而△-和γ-变形菌纲减少;利用Megan4软件进一步分析发现,从门到属的水平对照组和SC02组样品中各菌相对丰度不同,尤其在属的水平上差异最为明显。(2)添加施氏假单胞菌F1M在第6天时拟杆菌门和厚壁菌门增加,变形菌门和疣微菌门减少;第12天时,拟杆菌门、厚壁菌门和疣微菌门减少,放线菌门和变形菌门增加。利用megan4软件比较分析发现,对照和处理组样品在第6天和第12天从门到属的相对丰度都存在差异。在每个时间点,对照和处理样品中既有其共享的菌,也存在其特有菌。(3)与对照组相比,复合菌组在第6天时,养殖水体中变形菌门、拟杆菌门、放线菌门和厚壁菌门含量增加,蓝细菌门和疣微菌门减少;第15天时,蓝细菌门、拟杆菌门和厚壁菌门含量增加,变形菌门、放线菌门和疣微菌门减少;基于代谢、需氧情况和生态关系的分析发现,第6天时,复合菌组中好氧菌、厌氧菌、氨氧化细菌、反硝化细菌、亚硝酸盐还原细菌、游离菌和共生菌显著增加(P<0.05),第15天时无显著性差异(P>0.05)。(4)养殖水体中添加复合菌可降低沉积物中变形菌门和梭状杆菌门,增加厚壁菌门、拟杆菌门和蓝细菌门;基于代谢、需氧情况和生态关系分析发现,复合菌组中氨氧化细菌和游离菌显著增加(P<0.05),亚硝酸盐还原菌显著减少(P<0.05),对好氧菌,厌氧菌和共生菌无显著性影响(P>0.05)。
     复合菌对草鱼肝脏和肠粘膜免疫、抗氧化以及肠道内容物菌群结构影响的研究发现,养殖水体中添加复合菌可显著提高草鱼肠粘膜中MHCI和TLR3及肝脏中IgM、TLR3和TLR7表达量,显著降低肠粘膜中MyDd88和TLR7及肝脏中TNF-a、IL-8和TGF-β表达量;可显著增加肠粘膜中总抗氧化能力(T-AOC)、超氧化物歧化酶(SOD)和谷胱甘肽过氧化物酶(GSH-Px)含量,但对丙二醛(MDA)和肝脏抗氧化功能无显著性影响。454测序结果表明,草鱼肠道主要菌为变形菌门、蓝细菌门、浮霉菌门(Planctomycetes)、疣微菌门、厚壁菌门和放线菌门(Actinobacteria)。与对照组相比,复合菌组中蓝细菌门、疣微菌门、浮霉菌、放线菌门和厚壁菌门增加,变形菌门减少。此外,从门到属的水平对照和复合菌组中各菌相对丰度不同。在属的水平上,有些是两组样品共有的菌(如Lactococcus, Anoaerostipes, Faecalibacterium等),每个样品也有各自特有的菌(如对照组中的Sphingobacterium, Enterococcus和Desulfobacca等,处理组中的Acfipia, Thermomonas和Nannocystis等)。以上结果表明,复合菌作为水质改良剂可提高草鱼的免疫和抗氧化功能、改善肠道健康、降低应激和炎症反应。
     综上所述,在特定条件下水体中添加益生菌改善养殖水体水质的机理为:益生菌本身具有脱氮功能;益生菌可改变水体和底泥的微生物组成和结构;益生菌可改善肠道菌群结构,提高草鱼免疫功能,降低应激反应,改善鱼体健康。
The strain SC02with denitrification activity was isolated and identified as Bacillus subtilis through16S rDNA sequence analysis. The present study was designed to evaluate the removal efficiency of ammonia nitrogen and nitrite nitrogen under different nitrogen sources, initial ammonia-nitrogen and nitrite-nitrogen concentrations, pH, temperatures and DO. The results showed that the optimal conditions for SC02to remove nitrogen were: nitrogen source was ammonia nitrogen or nitrate nitrogen, initial ammonia and nitrite nitrogen concentration was10mg/L and10-30mg/L, respectively, rotation speed was0-50rpm, pH was7-9, and the temperature was25-37℃. We also evaluated the effects and mechanisms of strain SC02(lx108cfu/L) and complex bacteria (Bacillus subtilis SC02:Pseudomonas stutzeri F1M=1:1,2x108cfu/L) on water quality in grass carp culture. The results showed that Bacillus subtilis SC02and complex bacteria added into grass carp culture water could significantly reduce nitrogen compounds levels (ammonia, nitrite nitrogen, nitrate nitrogen, total inorganic nitrogen and total nitrogen, etc.) in water over an extended period, and improve water quality.
     454-pyrosequencing technology was applied to evaluate the effects of probiotics on microbial community structure in grass carp farming environment. The results showed that:(1) SC02could increase the bacterial richness in grass carp culture water. Compared with the control, the proportions of phylum proteobacteria and firmicutes were decreased in SC02group, while bacteroidetes and actinobacteria were increased. For proteobacteria, alphaproteobacteria and betaproteobacteria in SC02treatment were increased, while deltaproteobacteria and gammaproteobacteria were decreased, compared with control. To further compare the microbial communities of the two samples from the control and treatment groups, all-against-all comparison was conducted by using the MEGAN software. The results showed that the relative abundance from the phylum to the genus in the two samples was different, especially at the level of genus.(2) Compared with the control, firmicutes and bacteroidetes were increased, while verrucomicrobia and proteobacteria were decreased in F1M group on the6th d; On the12th d, firmicutes, verrucomicrobia and bacteroidetes were decreased, while actinobacteria and proteobacteria were increased. Samples compared by MEGAN suggested that the relative abundance from the phylum to the genus in the control and treatment samples on the6th d and12th d was different. Not only there are shared bacteria for both groups, but also has their specific strains for each group at different time point.(3) Compared with the control, complex bacteria could increase the level of proteobacteria, bacteroidetes, actinobacteria and firmicutes on the6th d and decrease the relative abundance of cyanobacteria and verrucomicrobia; increase the relative abundance of cyanobacteria, bacteroidetes and firmicutes on the15th d, and decrease proteobacteria, actinobacteria and verrucomicrobia. In addition, based on oxygen requirement, metabolism and biotic habitat, the relative abundance of aerobic bacteria, anaerobic bacteria, ammonia oxidizer bacteria, denitrifying bacteria, nitrite reducer bacteria, free living bacteria, and symbiotic bacteria were increased in complex bacteria group on the6th d (P<0.05). There was no differences between the two groups on the15th d (P>0.05).(4) Complex bacteria added in to water could decrease the bacterial richness in the sediments of grass carp culture, decrease proteobacteria and fusobacteria, while increase bacteroidetes, firmicutes and cyanobacteria. Based on oxygen requirement, metabolism and biotic habitat, ammonia oxidizer bacteria and free living bacteria were significantly increased in complex bacteria (P<0.05), while nitrite reducer bacteria was significantly decreased (P>0.05).
     The study was designed to evaluate the effect of complex bacteria on immunity, antioxidant activities and gut contents microbial community structure of grass carp. The results showed that complex bacteria added into water could increase the expression of MHCI and TLR3in liver, as well as IgM, TLR3and TLR7in mucosa, while decrease the gene expression of MyDd88and TLR7in mucosa, as well as TNF-a, IL-8and TGF-p in liver. Compared with the control, the levels of total antioxidant activity (T-AOC), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in the mucosa were significantly increased (P<0.05). There was no difference about maleic dialdehyde (MDA) in mucosa and antioxidant activities in liver between two groups. The results of454sequencing showed that proteobacteria, cyanobacteria, planctomycetes, verrucomicrobia, firmicutes and actinobacteria were dominant in gut contents of grass carp. Compared with the control, the relative abundances of cyanobacteria, planctomycetes, verrucomicrobia, firmicutes and actinobacteria were increased, while proteobacteria was decreased. Samples from control and treatment groups were compared by MEGAN showed that the relative abundance from the phylum to the genus in the two groups were differences. At the genus level, there were some shared bacteria for two groups, such as Lactococcus, Anoaerostipes, Faecalibacterium, etc and some specific bacteria for each group, for example, Sphingobacterium, Enterococcus and Desulfobacca resisted only in control group, while Acfipia, Thermomonas and Nannocystis only in complex group. As above, the results indicated that complex bacteria as water additive could enhance the immunity and antioxidant activities, improve the gut healthy, reduce stress and inflammatory response of Grass carp.
     In conclusion, probiotics added into water can improve aquaculture water quality under certain conditions, and its mechanism is that probiotics have denitrification capabilities; Probiotics can change the microbial structure of water and sediment; Probiotics can improve the intestinal microflora, enhance immune function, reduce stress, and improve fish health.
引文
Abbasim K, Adams WA. Loss of nitrogen in compacted grassland soil by simultaneous nitrification and denitrification [J]. Plant Soil.1998,200: 265-277.
    Ackefors H, Enell M. Discharge of nutrients from Swedish fish farming to adjacent sea areas [J]. Ambio,1990: 28-35.
    Aggergaard S, Jensen FB. Cardiovascular changes and physiological response during nitrite exposure in rainbow trout [J]. Journal of Fish Biology, 2001,59(1):13-27.
    Ai Q, Xu H, Mai K, et al. Effects of dietary supplementation of Bacillus subtilis and fructooligosaccharide on growth performance, survival, non-specific immune response and disease resistance of juvenile large yellow croaker, Larimichthys crocea [J]. Aquaculture, 2011,317(1):155-161.
    Andersson AF, Riemann L, Bertilsson S. Pyrosequencing reveals contrasting seasonal dynamics of taxa within Baltic Sea bacterioplankton communities [J]. The ISME journal, 2010, 4(2): 171-181.
    Arndt D, Xia J, Liu Y, et al. METAGENassist: a comprehensive web server for comparative metagenomics [J]. Nucleic acids research, 2012, 4O(W1): W88-W95.
    Autry AR, Ellis GM. Broremediation: An effective remedial alternative for peltoleum hydrocarbon-contaminated soil [J]. Environ prog, 1992, 11(4):318-323.
    Badri DV, Chaparro JM, Zhang R, et al. Application of natural blends of phytochemicals derived from the root exudates of Arabidopsis to the soil reveal that phenolic-related compounds predominantly modulate the soil microbiome [J]. Journal of Biological Chemistry, 2013, 288(7): 4502-4512.
    Bondad-Reantaso MG, Subasinghe RP, Arthur JR, et al. Disease and health management in Asian aquaculture [J]. Veterinary parasitology, 2005, 132(3):249-272.
    Bostock J,McAndrew B,Richards R,et al. Aquaculture: global status and trends [J]. Philosophical Transactions of the Royal Society B:Biological Sciences,2010, 365(1554):2897-2912.
    Boyd CE. Water quality in ponds for aquaculture [M]. Alabama: Auburn UniversityPress, 1992,195-392.
    Boynton WR, Kemp WM. Nutrient regeneration and oxygen consumption by sediments along an estuarine salinity gradient [J]. Marine ecology progress series. Oldendorf, 1985,23(1):45-55.
    Buee M, Reich M, Murat C, et al.454 Pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity [J]. New Phytologist, 2009, 184(2): 449-456.
    Cao L, Wang W, Yang Y, et al. Environmental impact of aquaculture and countermeasures to aquaculture pollution in China [J]. Environmental Science and Pollution Research-International, 2007, 14(7): 452-462.
    Cao L, Wang W. Wastewater management in freshwater pond aquaculture in China [M]. Sustainability in Food and Water. Springer Netherlands, 2010, 181-190.
    Caporaso JG, Bittinger K, Bushman FD, et al. PyNAST: a flexible tool for aligning sequences to a template alignment [J]. Bioinformatics, 2010, 26(2):266-267.
    Caporaso JQ Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data [J]. Nature methods, 2010, 7(5):335-336.
    Cha JH, Rahimnejad S, Yang SY, et al. Evaluations of Bacillus spp. as dietary additives on growth performance, innate immunity and disease resistance of olive flounder (Paralichthys olivaceus) against Streptococcus iniae and as water additives [J]. Aquaculture, 2013,402:50-57.
    Chesness JL, Poole WH, Hill TK. Settling basin design for raceway fish production systems [Catfish] [J]. Transactions of the AS AE (USA), 1975,18:159-162.
    Cole DW, Cole R, Gaydos SJ, et al. Aquaculture:Environmental, toxicological, and health issues [J]. International Journal of Hygiene and Environmental Health, 2009, 212(4):369-377.
    Collins SM, Surette M, Bercik P. The interplay between the intestinal microbiota and the brain [J]. Nature Reviews Microbiology, 2012, 10(11):735-742.
    Colt J. Water quality requirements for reuse systems [J]. Aquacultural engineering, 2006, 34(3):143-156.
    Cooper AJ, Plum F. Biochemistry and physiology of brain ammonia [J]. Physiological reviews, 1987, 67(2):440-519.
    Crab R, Avnimelech Y, Defoirdt T, et al. Nitrogen removal techniques in aquaculture for a sustainable production [J]. Aquaculture, 2007, 270(1):1-14.
    Daum M, Zimmer W, Papen H, et al. Physiological and molecular biological characterization of ammonia oxidation of the heterotrophic nitrifier Pseudomonas putida [J]. Current microbiology, 1998, 37(4):281-288.
    De Filippo C, Cavalieri D, Di Paola M, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa[J]. Proceedings of the National Academy of Sciences, 2010,107(33):14691-14696.
    DeAngelis KM, Wu CH, Beller HR, et al. PCR amplification-independent methods for detection of microbial communities by the high-density microarray PhyloChip [J]. Applied and environmental microbiology, 2011,77(18): 6313-6322.
    Devaraja TN,Yusoff FM,Shariff M. Changes in bacterial populations and shrimp production in ponds treated with commercial microbial products [J]. Aquaculture, 2002,206(3): 245-256.
    Di Maiuta N, Schwarzentruber P. Molecular detection of bacteria in calcium carbonate powder used in cosmetic formulations [J]. International journal of cosmetic science, 2011,33(5):426-431.
    Dincer AR, Kargi F. Salt inhibition of nitrification and denitrification in saline wastewater [J]. Environmental Technology, 1999, 20(11):1147-1153.
    Egli K, Langer C, Siegrist H R, et al. Community analysis of ammonia and nitrite oxidizers during start-up of nitritation reactors[J]. Applied and environmental microbiology, 2003, 69(6):3213-3222.
    Emerson K, Russo RC, Lund RE, et al. Aqueous ammonia equilibrium calculations: effect of pH and temperature [J]. Journal of the Fisheries Board of Canada, 1975, 32(12):2379-2383.
    Esiobu N, Armenta L, Ike J. Antibiotic resistance in soil and water environments [J]. International Journal of Environmental Health Research, 2002, 12(2):133-144.
    FAO (Food and Agricultural Organization of the United Nations). The state of world fisheries and aquaculture. Rome: FAO. 2010.
    FAO. Biotechnologies for Agricultural Development: Proceedings of the FAO international technical conference on "Agricultural Biotechnologies in Developing Countries: options and opportunities in crops, forestry, livestock, fisheries and agro-industry to face the challenges of food insecurity and climate change" (ABDC-10), FAO, Rome, 2011.
    Figuerola ELM, Erijman L. Bacterial taxa abundance pattern in an industrial wastewater treatment system determined by the full rRNA cycle approach [J]. Environmental microbiology, 2007, 9(7):1780-1789.
    Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing [J]. Nature,2000,408(6809):239-247.
    Forshay KJ, Stanley EH. Rapid nitrate loss and denitrification in a temperate river flood plain [J]. Biogeochemistry, 2005, 75(1):43-64.
    Franco-Nava MA, Blancheton J P, Deviller Q et al. Effect of fish size and hydraulic regime on particulate organic matter dynamics in a recirculating aquaculture system: elemental carbon and nitrogen approach [J]. Aquaculture, 2004, 239(1):179-198.
    Fredrickson JK, Bolton H Jr, Brockman FJ. In situ and on-site bioreclamation [J]. Environmental Science and Technology, 1993,27(9):1711-1716.
    Fuller R. Probiotic in man and animals [J]. J Appl Bacteriol, 1989, 66(5):365-378.
    Gatesoupe FJ. The use of probiotics in aquaculture [J]. Aquaculture,1999. 180,147-165.
    Gildberg A,Mikkelsen A,Sandaker E,et al. Probiotic effect of lactic acid bacteria in the feed on growth and survival of fry of Atlantic cod (Gadusmorhua) [J]. Hydrobiologya, 1997,352:279-285.
    Golebiewski M, Deja-Sikora E, Cichosz M, et al. 16S rDNA Pyrosequencing Analysis of Bacterial Community in Heavy Metals Polluted Soils [J]. Microbial ecology, 2014: 1-13.
    Goodfellow M, Haynes J A. Actinomycetes in marine sediments [A]. In: Oritz-Oritz L, Bojalil L F, Yakoleff V (Eds.), Biological, biochemical and biomed ical aspects of actinomycetes Academic [C]. New York: 1984,453-472
    Gram L, Melchiorsen J, Spanggaard B, et al. Inhibition of Vibrio anguillarum by Pseudomonas fluorescens AH2, a possible probiotic treatment of fish [J]. Applied and Environmental Microbiology, 1999, 65(3):969-973.
    Gregory R, Zabel TF, Pontius FW (Ed.). Water Quality and Treatment: A Handbook of Community Water Supplies (4th edn) [M]. McGraw-Hill, New York, 1990), 367-453.
    Grommen R, Van Hauteghem I, Van Wambeke M, et al. An improved nitrifying enrichment to remove ammonium and nitrite from freshwater aquaria systems [J]. Aquaculture, 2002, 211(1):115-124.
    Gu S, Chen D, Zhang J N, et al. Bacterial Community Mapping of the Mouse Gastrointestinal Tract [J]. PloS one, 2013,8(10): e74957.
    Gupta SK, Kshirsagar M. Quantitative estimation of Thiosphaera pantotropha from aerobic mixed culture [J]. Water Research,2000,34(15):3765-3768.
    Hall P, Holby O, Kollberg S. Chemical fluxes and mass balances in a marine fish cage farm [J]. Nitrogen. Mar. Ecol. Progr. Ser. 89:81-91,1992.
    Han S, Liu Y, Zhou Z, et al. Analysis of bacterial diversity in the intestine of grass carp (Ctenopharyngodon idellus) based on 16S rDNA gene sequences [J]. Aquaculture Research,2010,42(1):47-56.
    Hargreaves JA. Photosynthetic suspended-growth systems in aquaculture [J]. Aquacultural engineering, 2006, 34(3):344-363.
    Hollister EB, Engledow AS, Hammett AJM, et al. Shifts in microbial community structure along an ecological gradient of hypersaline soils and sediments [J]. The ISME journal, 2010, 4(6):829-838.
    Hopkins JS, Hamilton RD, Sandier PA, et al. Effect of water exchange rate on production, water quality, effluent characteristics and nitrogen budgets of intensive shrimp ponds [J]. Journal of the World Aquaculture Society, 1993,24(3):304-320.
    Hu M, Wang X, Wen X, et al. Microbial community structures in different wastewater treatment plants as revealed by 454-pyrosequencing analysis [J]. Bioresource technology, 2012, 117:72-79.
    Hussenot JME. Emerging effluent management strategies in marine fish-culture farms located in European coastal wetlands [J]. Aquaculture, 2003,226(1):113-128.
    Hutalle-Schmelzer KML, Zwimmann E, Kruger A, et al. Enrichment and cultivation of pelagic bacteria from a humic lake using phenol and humic matter additions [J]. FEMS Microbiology Ecology, 2010, 72:58-73
    Irianto A, Austin B. Use of probiotics to control furunculosis in rainbow trout, Oncorhynchus mykiss (Walbaum) [J]. Journal of Fish Diseases,2002,25,333-342.
    Irianto A, Austin B. Use of probiotics to control furunculosis in rainbow trout, Oncorhynchus mykiss (Walbaum) [J]. Journal of Fish Diseases,2002,25,333-342.
    Jensen FB, Andersen NA, Heisler N. Effects of nitrite exposure on blood respiratory properties, acid-base and electrolyte regulation in the carp (Cyprinus carpio) [J]. Journal of Comparative Physiology B, 1987, 157(5):533-541.
    Jensen FB. Nitrite disrupts multiple physiological functions in aquatic animals [J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2003,135(1):9-24.
    Jensen FB.Sublethal physiological changes in freshwater crayish,Astacus astacus, exposed to nitrite: haemolymph and muscle tissue electrolyte status, and haemolymph acid-base balance and gas transport [J]. Aquatic Toxicology, 1990, 18:51-60
    Jensen PR, Lauro FM. An assessment of actinobacterial diversity in the marine environment [J]. Antonie van Leeuwenhoek, 2008,94: 51-62
    Jobom A, Oisson JC, Westerdahl A, et al. Colonisation in the fish intestinal tract and production of inhibitory substances in intestinal mucus and fecal extracts by Carnobacterium sp., stain k1 [J]. Journal of Fish Diseases, 1997, 20: 383-392.
    Kim JK, Park KJ, Cho KS, et al. Aerobic nitrification-denitrification by heterotrophic Bacillus strains [J]. Bioresource Technology, 2005,96(17):1897-1906.
    Kirchman DL. The ecology of Cytophaga-Flavobacteria in aquatic environments [J]. FEMS Microbial ecology, 2002, 39: 91-100
    Kllham K. Heterotrophic nitrification [M]. Prosser JI, Nitrification. Oxford: IRL Press, 1986.
    Korner S,Das SK,Veenstra S,et al. The effect of pH variation at the ammonium/ammonia equilibrium in wastewater and its toxicity to Lemna gibba [J]. Aquatic botany,2001, 71(1):71-78.
    Kozasa M. Toyocerin (Bacillus toyoi) as growth promotor for animal feeding [J]. Microbiol. AUment. Nutr, 1986,4(1):121-135.
    Kroupova H, Machova J, Svobodova Z. Nitrite influence on fish: a review [J]. VETERINARNIMEDICINA-PRAHA-,2005,50(11):461-471.
    Labbe N, Laurin V, Juteau P, et al. Microbiological community structure of the biofilm of a methanol-fed, marine denitrification system, and identification of the methanol-utilizing microorganisms [J]. Microbial Ecology,2007,53:621-630
    Lalloo R, Ramchuran S, Ramduth D, et al. Isolation and selection of Bacillus spp. as potential biological agents for enhancement of water quality in culture of ornamental fish [J]. Journal of Applied microbiology, 2007, 103(5):1471-1479.
    Lauber CL, Hamady M, Knight R. Pyrosequencing-Based Assessment of Soil pH as a Predictor of Soil Bacterial Community Structure at the Continental Scale [J]. Appl Environ Microbiol, 2009, 75(15):5111-5120.
    Li WF, Zhang XP, Song WH, et al. Effects of Bacillus preparations on immunity and antioxidant activities in grass carp (Ctenopharyngodon idellus)[J]. Fish physiology and biochemistry, 2012,38(6):1585-1592.
    Lopez-Velasco G, Welbaum GE, Boyer RR, et al. Changes in spinash phylloepiphytic bacterial communities following minimal processing and refrigerated storage described using pyrosequencing of 16S rRNA amplicons [J]. Journal of Applied Microbiology, 2011,110(5):1203-1214.
    Lors C, Tiffreau C, Laboudigue A. Effects of bacterial activities on the release of heavy metals from contaminated dredged sediments [J]. Chemosphere, 2004, 56(6): 619-630.
    Lyles C, Boopathy R, Fontenot Q, et al. Biological treatment of shrimp aquaculture wastewater using a sequencing batch reactor [J]. Appl Biochem Biotech, 2008, 151: 474-479.
    Madsen EL. Determining in situ biodegradation [J]. Environmental Science & Technology, 1991,25(10):1662-1673.
    Mariangel L, Aspe E, Marti MC, et al. The effect of sodium chloride on the denitrification of saline fishery wastewaters [J]. Environmental Technology, 2008, 29(8):871-879.
    Martinez Cruz P, Ibanez A L, Monroy Hermosillo O A, et al. Use of Probiotics in Aquaculture [J]. ISRN microbiology, 2012: 1-13.
    Martinez-Alvarez RM, Morales AE, Sanz A. Antioxidant defenses in fish: biotic and abiotic factors [J]. Reviews in Fish Biology and Fisheries, 2005,15(1-2):75-88.
    McCord JM. Oxidative Stress Related Diseases-overview [A]. In: Cutler RG & Rodriguez H (eds) Critical Reviews of Oxidative Stress and Ageing [C]. World Scientific Publishing. 2003,883-924.
    Midlen A, Redding TA. Environmental Management for Aquaculture. Chapman & Hall, London, UK, 1998.
    Montagnier L, Olivier R, Pasquier C. Oxidative stress in cancer, AIDS, and neurodegenerative diseases[M]. CRC Press, 1997.
    Moriarty DJW. Control of luminous Vibrio species in penaeid aquaculture ponds [J]. Aquaculture,1998,164(1-4):351-358.
    Moriyama K, Sato K, Harada Y, et al. Renovation of an extended aeration plant for simultaneous biological removal of nitrogen and phosphorus using oxic-anaerobic-oxic process. Water Science & Technology, 1990, 22(7-8):61-68.
    Nam YD, Jung MJ, Roh SW, et al. Comparative analysis of Korean human gut microbiota by barcoded pyrosequencing[J]. PLoS One, 2011,6(7):e22109.
    NavinChandran M, Iyapparaj P, Moovendhan S, et al. Influence of probiotic bacterium Bacillus cereus isolated from the gut of wild shrimp Penaeus monodon in turn as a potent growth promoter and immune enhancer in P. monodon [J]. Fish & Shellfish Immunology, 2014, 36(1):38-45.
    Nayak SK. Probiotics and immunity: a fish perspective. Fish & shellfish immunology, 2010,29(1):2-14
    Nayak SK. Role of gastrointestinal microbiota in fish. Aquaculture Research, 2010, 41(11):1553-1573.
    Nealson KH. Sediment bacteria: who's there, what are they doing, and what's new? [J]. Annual Review of Earth and Planetary Sciences,1997,25(1):403-434.
    Ni J, Yan Q, Yu Y, et al. Factors influencing the grass carp gut microbiome and its effect on metabolism [J]. FEMS microbiology ecology, 2013, 87, (3):704-714.
    Nora'aini A, Wahab Mohammad A, Jusoh A, et al. Treatment of aquaculture wastewater using ultra-low pressure asymmetric polyethersulfone (PES) membrane [J]. Desalination, 2005, 185(1):317-326.
    Oerther DB, De Los Reyes Ⅲ FL, De los Reyes MF, et al. Quantifying filamentous microorganisms in activated sludge before, during, and after an incident of foaming by oligonucleotide probe hybridizations and antibody staining [J]. Water Research, 2001,35(14):3325-3336.
    Olive JD. The viable but nonculturable state in bacteria [J]. J Microbiol, 2005,43:93-100
    Otles S, Cagindi O, Akcicek E. Probiotics and health [J]. Asian Pac J Cancer Prev, 2003, 4 (4):369-372.
    Pace NR. A molecular view of microbial diversity and the biosphere [J]. Science, 1997, 276: 734-740.
    Park IS, Lee J, Hur JW, et al. Acute Toxicity and Sublethal Effects of Nitrite on Selected Hematological Parameters and Tissues in Dark-banded Rockfish, Sebastes inermis [J]. Journal of the World Aquaculture Society, 2007, 38(2): 188-199.
    Parker RB. Probiotics, the other half of the antibiotics story [J]. Anim Nutr Health, 1974, 29: 4-8.
    Pedersen H, Dunkin KA, Firestone MK. The relative importance of autotrophic and heterotrophic nitrification in a conifer forest soil as measured by15N tracer and pool dilution techniques [J]. Biogeochemistry, 1999, 44(2):135-150.
    Peralta AL, Matthews JW, Kent A D. Microbialcommunity structure and denitrification in a wetland mitigation bank [J]. Appl. Environ. Microbiol, 2010,76,4207-4215.
    Pfennig N, Truper HG The photosynthetic bacteria. In Buchanan RE and Gibson NE, eds. Bergey's manual of determinative bacteriology, 8th ed, 1974, 24-75. Baltimore: Williams and Wilkins.
    Pfennig N. Photosynthetic bacteria [J]. Annu Rev Microbiol, 1967, 21:285-324.
    Phillips I, Casewell M, Cox T, et al. Does the use of antibiotics in food animals pose a risk to human health? A critical review of published data[J]. Journal of Antimicrobial Chemotherapy,2004(53):28-52.
    Prosfler JI. Autotrophic nitrification in bacteria[J]. Adv Microb Physiol, 1989,30:125-181.
    Qi Z, Zhang XH, Boon N, et al. Probiotics in aquaculture of China—current state, problems and prospect [J]. Aquaculture, 2009, 290(1):15-21.
    Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing[J]. Nature, 2010, 464(7285):59-65.
    Randall DJ, Tsui TKN. Ammonia toxicity in fish [J]. Marine pollution bulletin, 2002, 45(1):17-23.
    Robertson PAW, O'Dowd C, Burrells C, et al. Use of Carnobacterium sp. as a probiotic for Atlantic salmon (Salmo salar L.) and rainbow trout (Oncorhynchus mykiss, Walbaum)[J]. Aquaculture, 2000, 185(3):235-243.
    Robertsonl A, Kuenen J G Aerobic denitrification: a controversy revived [J]. Arch of Microbiol, 1984,139(4):351-354.
    Rudneva II. Blood antioxidant system of Black Sea elasmobranch and teleosts[J]. Comparative Biochemistry and Physiology Part C:Pharmacology, Toxicology and Endocrinology, 1997, 118(2):255-260.
    Sabaty M, Schwintner C, Cahors S,et al. Nitrite and Nitrous Oxide Reductase Regulation by Nitrogen Oxides in Rhodobacter sphaeroides f. sp.denitrificans IL106 [J]. Journal of bacteriology, 1999, 181(19):6028-6032.
    Sanapareddy N, Hamp TJ, Luis C, et al. Clinton molecular diversity of a north Carolina wastewater treatment plant as revealed by pyrosequencing [J]. Applied and Environmental Microbiology,2009, 75 (6):1688-1696.
    Sapcharoen P, Rengpipat S. Effects of the probiotic Bacillus subtilis (BP11 and BS11) on the growth and survival of Pacific white shrimp, Litopenaeus vannamei. Aguaculture Nutrition, 19(6),946-954.
    Scarano G, Saroglia MG Recovery of fish from functional and haemolytic anaemia after brief exposure to a lethal concentration of nitrite. Aquaculture, 1984, 43:421-426.
    Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks [J]. Genome research, 2003,13(11): 2498-2504.
    Shapleigh JP. Oxygen control of nitrogen oxide respiration, focusing on a-proteobacteria [J]. Biochemical Society Transactions, 2011,39: 179-183
    Sharrer MJ, Summerfelt ST, Bullock GL, et al. Inactivation of bacteria using ultraviolet irradiation in a recirculating salmonid culture system[J]. Aquacultural Engineering, 2005,33:135-149.
    Silva J, Laranjeira A, Serradeiro R, et al. Ozonated seawater induces genotoxicity and hematological alterations in turbot (Scophthalmus maximus)-Implications for management of recirculation aquaculture systems [J]. Aquaculture, 2011,318(1-2): 180-184
    Song K, Lee SH, Kang H. Denitrification rates and community structure of denitrifying bacteria in newly constructed wetland mesocosms [J]. Eur. J. Soil Biol, 2011 47, 24-29.
    Song ZF, An J, Fu GH, et al. Isolation and characterization of an aerobic denitrifying Bacillus sp. YX-6 from shrimp culture ponds [J]. Aquaculture, 2011,319:188-193.
    Stackebrandt E, Murray RGE, Triiper HG Proteobacteria classis nov., a name for the phylogenetic taxon that includes the "purple bacteria and their relatives"[J]. International Journal of Systematic Bacteriology, 1988,38(3):321-325
    Stackebrandt E. Unifying phylogeny and phenotypic diversity [A]. In: Balows A, Truper H G, Dworkin M, et al (Eds.), The Prokaryotes [C]. Springer-Verlag, New York. 1992,19-47.
    Stamper DM, Walch M, Jacobs RN. Bacterial population changes in a membrane bioreactor for graywater treatment monitored by denaturing gradient gel electrophoretic analysis of 16S rRNA gene fragments [J]. Appl. Environ. Microbiol, 2003,69 (2):852-860.
    Stanier RY, DoudoroffM, Adelberg EA. The microbial world (2nd Ed.) [M]. Prentice-Hall Inc. Englewood Cliffs, N.J.,1963.
    Subasinghe RP, Curry D, McGladdery SE, et al. Recent technological innovations in aquaculture [J]. Review of the State of World Aquaculture, FAO Fisheries Circular, 2003,59-74.
    Sugita H, Shibuya K, Shimooka H, et al. Antibacterial abilities of intestinal bacteria in freshwater cultured fish[J]. Aquaculture, 1996, 145(1):195-203.
    Thimmalapura N D, Fatimah M Y, Mohamed S. Changes in bacterial populations and shrimp production in ponds treated with commercial microbial products [J]. Aquaculture, 2002,206:245-256.
    Timmons MB, Ebeling JM, Wheaton FW, et al. Recirculating aquaculture systems [M].NRAC Publication (2nd edition), vol. 01-002 (2002)
    Timmons MB. Use of foam fractionation in aquaculture[J]. Dev. Aquae. Fish. Sci., 1984, 27247-279.
    Torsvik V, S?rheim R, Goks?yr J. Total bacterial diversity in soil and sediment communities—a review[J]. Journal of Industrial Microbiology, 1996, 17(3-4): 170-178.
    Tosques I E, Kwiatkowski A V, Shi J, Shapleigh J P. Characterization and regulation of the gene encoding nitrite reductase in Rhodobacter sphaeroides 2.4.3 [J]. J Bacteriol, 1997,179:1090-1095.
    Tucker CS, Hargreaves JA. Pond water quality. In: Tucker CS, Hargreaves JA (eds) Biology and culture of channel catfish. Elsevier, New York,2004.
    Twarowska JQ Westerman PW, Losordo TM. Water treatment and waste characterization evaluation of an intensive recirculating fish production system [J]. Aquacultural Engineering, 1997,16(3):133-147.
    Van Rijn J. The potential for integrated biological treatment systems in recirculating fish culture—review [J]. Aquaculture, 1996, 139(3):181-201.
    Verschuere L, Rombaut Q Sorgeloos P, et al. Probiotic bacteria as biological control agents in aquaculture [J]. Microbiology and molecular biology reviews, 2000, 64(4): 655-671.
    Vidali M. Bioremediation. An overview [J]. Pure and Applied Chemistry, 2001,73(7): 1163-1172.
    Wagner M, Loy A. Bacterial community composition and function in sewage treatment systems [J]. Current Opinion in Biotechnology, 2002, 13(3):218-227
    Walsh PJ, Wright PA. Nitrogen Metabolism and Excretion [M].CRC Press, Florida, USA. 1995, 352.
    Wang L, Liu L, Zheng B, et al. Analysis of the bacterial community in the two typical intertidal sediments of Bohai Bay, China by pyrosequencing [J]. Marine pollution bulletin,2013,72(1):181-187.
    Wang X, Hu M, Xia Y, et al. Pyrosequencing analysis of bacterial diversity in 14 wastewater treatment systems in China [J]. Applied and environmental microbiology, 2012, 78(19):7042-7047.
    Wang X, Wen X, Yan H, et al. Community dynamics of ammonia oxidizing bacteria in a full-scale wastewater treatment system with nitrification stability[J]. Frontiers of Environmental Science & Engineering in China, 2011,5(1):92-98.
    Wang Y, Sheng HF, He Y, et al. Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of illumina tags[J]. Applied and environmental microbiology, 2012, 78(23):8264-8271.
    Whitfield M. The hydrolysis of ammonium ions in sea water-a theoretical study [J]. Journal of the Marine Biological Association of the United Kingdom, 1974, 54(03): 565-580.
    Wilkie M F. Ammonia excretion and urea handling by fish gills:present understanding and future research challenges [J]. Journal of Experimental Zoology, 2002, 293(3): 284-301.
    Witte W. Selective pressure by antibiotic use in livestock[J]. International Journal of Antimicrobial Agents, 2000,16:19-24
    Wu S, Wang Q Angert ER, et al. Composition, diversity, and origin of the bacterial community in grass carp intestine [J]. PloS one, 2012, 7(2):e30440.
    Wu ZX, Feng X, Xie LL, et al. Effect of probiotic Bacillus subtilis Ch9 for grass carp, Ctenopharyngodon idella (Valenciennes, 1844), on growth performance, digestive enzyme activities and intestinal microflora [J]. Journal of Applied Ichthyology, 2012, 28(5):721-727.
    Yang ZY, Guo CH, Chen QY. A study on the environmental problems in aquaculture industry of China [C]. Forward Forum10, 44-46.
    Ye W, Liu X, Lin S, et al. The vertical distribution of bacterial and archaeal communities in the water and sediment of Lake Taihu [J]. FEMS microbiology ecology, 2009, 70(2): 263-276.
    Zhang T, Shao MF, Ye L. 454 Pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants [J]. ISME J, 2012, 6 (6):1137-1147.
    Zhou T, Wang Y, Tang J, et al. Bacterial communities in Chinese grass carp (Ctenopharyngodon idellus) farmning ponds [J]. Aquaculture Research, 2013,45(1): 138-149.
    Zhou XX, Wang YB, Li WF. Effect of probiotic on larvae shrimp (Penaeus vannamei) based on water quality, survival rate and digestive enzyme activities [J]. Aquaculture, 2009,287:349-353.
    Zhu D, Tanabe S H, Yang C, et al. Bacterial Community Composition of South China Sea Sediments through Pyrosequencing-Based Analysis of 16S rRNA Genes[J]. PloS one, 2013,8(10):e78501.
    Zinder SH. Bacterial Diversity [A]. In: Balows A, Duerden B I (Eds.), Topley and Wilson's Microbiology and Microbial Infections, Vol 2, Systematic Bacteriology [C]. London: Arnold. 1998,125-147
    Zinger L, Amaral-Zettler LA, Fuhrman JA, et al. Global patterns of bacterial beta-diversity in seafloor and seawater ecosystems[J]. PLoS One, 2011,6(9): e24570.
    安健,宋增福,杨先乐,等.好氧反硝化芽孢杆菌筛选及其反硝化特性[J].环境科学研究,2010,23(1):100-105
    安健.好氧反硝化芽孢杆菌筛选及其水产养殖水质调控研究[D].上海海洋大学,2010.
    毕永红,王武.产养殖业中的应用[J].水产科技情报,2001,28(1):15-18.
    曹煜成,李卓佳,杨莺莺,等.地衣芽孢杆菌De株对黄鳍鲷生长及其养殖池塘主要环境因子的影响[J].南方水产,2010,6(3):1-6.
    陈秋红,施大林,吕惠敏,等.复合微生态制剂对水产养殖水体净化作用的研究[J].生物技术,2004,14(4):63-64.
    陈文新.土壤和环境微生物学[M].北京农业大学出版社,1990:125-126.
    陈孝煊,吴志新,罗宇良,等.呋喃唑酮对饲养水及草鱼体表粘液中菌群的影响[J].华中农业大学学报,1999,18(1):68-71.
    丛静.微生态制剂的作用、应用前景及注意事项[J].饲料与添加剂,2012,1:67.
    崔华平,林炜铁.固定化微生物在水产养殖中的应用[J].水产科学,2008,27(4): 213-216.
    付保荣,曹向宇,冷阳,等.光合细菌对水产养殖水质和水生生物的影响[J].生态科学,2008,27(2):102-106.
    高存川,徐春厚.微生态制剂在水产养殖水质改良中的应用[J].湖北农业科学,2012,51(7):1419-1422.
    高健,邓先余,许爱清,等.湘江长沙段污染沉积物中微生物群落结构与污染物关联性的研究.海洋与湖沼,2011,42(2):237-243.
    何杰.高锰酸钾在水产养殖中的应用[J].河北渔业,2007,5:32-32.
    贺锋,吴振斌.水生植物在污水处理和水质改善中的应用①[J].植物学通报,20(6):641-647.
    洪美玲,陈立侨,顾顺樟,等.氨氮胁迫对中华绒螯蟹免疫指标及肝胰腺组织结构的影响[J].中国水产科学,2007,14(3):412-418
    洪奕娜,张国海,庄惠如.藻菌混合固定化胶球在海水贝类育苗中的应用初探[J].安徽农学通报,2011,17(05):44-46.
    侯颖,孙军德.微生态制剂在水产养殖中的作用[J].微生物学杂志,2004,24(4):49-52.
    黄正,范玮,李谷,等.固定化硝化细菌去除养殖废水中氨氮的研究[J].华中科技大学学报(医学版),2002,31(1):18-20.
    黄瑛湘.生物修复在水产养殖中的应用[J].江西水产科技,2009,1:14-16.
    黄永春.有效微生物菌群对养虾水体细菌生态和水质的影响[J].广东海洋大学学报,2009,29(1):44-48.
    贾俊涛,吕艳,李筠.对虾围隔生态系底泥中细菌数量动态研究[J].动物医学进展,2003,24(4):76-78.
    金红春,杨春浩.浅淡微乍物制剂在水产养殖业上的应用[J].渔业致富指南,2009,21:60-62.
    李兵,林炜铁.1株好氧反硝化芽孢杆菌的脱氮特性研究[J].2009,2(3):48-52.
    李革雷,陈昌福,高宇,等.3种养殖模式水体中细菌多样性研究[J].华中农业大学学报,2012,31(3):381-390.
    李勤生.水产养殖与微生物[M].武汉出版社,2000.
    李卫芬,张小平,宋文辉,等.养殖水体中添加芽孢杆菌对草鱼免疫和抗氧化功能的影响.中国水产科学,2012,19(6): 1027-1033
    李卫芬,张小平,宋文辉,等.芽孢杆菌对草鱼养殖水质调控作用的研究[J].渔业现代化,2011,38(4):22-26.
    李卓佳,林亮,杨莺莺,等.芽孢杆菌制剂对虾池环境微生物群落的影响[J].农业环境科学学报,2007,26(3):1183-1189.
    林亮,李卓佳,郭志勋,等.施用芽孢杆菌对虾池底泥细菌群落的影响[J].生态学杂志,2005,24(1):26-29
    林林,丁美丽,孙舰军等.有机污染提高对虾对病原菌易感性研究[J].海洋学报.1998.20:90-93
    林钦,朱志红.有益微生物专题之一:有益微生物菌群在水产养殖中的应用研究[J].中国水产,2008,10:48-49.
    林燕,孔海南,何义亮,等.异养硝化细菌的分离及其硝化特性实验研究[J].环境科学,2006,27(2):324-328.
    蔺凌云,尹文林,潘晓艺,等.有益微生物对中华鳖养殖池塘水质及细菌数量的影响[J].安徽农业科学,2012,31:15283-15284,15287.
    刘国才,李德尚.对虾综合养殖生态系底泥细菌的数量动态[J].应用生态学报,2000,11(1):138-140.
    刘长发,綦志仁,何洁.环境友好的水产养殖业——零污水排放循环水产养殖系统[J].大连水产学院学报,2002,17(3):220-226.
    刘志华,王铁军.pH值对水产养殖的影响[J].中国畜牧兽医文摘,2012(12):99-99
    龙华.温度对鱼类生存的影响[J].中山大学学报:自然科学版,2005,44(B06):254-257.
    卢宪辉,王付同,黄超红,等.微生物固化载体的选择及对养殖水体的作用效果分析[J].安徽农业科学,2011,39(3):1479-1481.
    陆家昌,黄翔鹄,李活,等.光合细菌对养殖水质及凡纳滨对虾抗病力的影响[J].广东海洋大学学报,2009,29(6):87-91.
    罗晓华.反硝化细菌的作用及其在水产上的应用[J].渔业致富指南,2008,3:22-23.
    吕晓燕,李嘉尧,方燕,等.亚硝酸盐对红螯光壳螯虾不同组织免疫相关酶活性及超微结构的影响[J].水产学报,2011(12):1812-1820.
    马海军,赵振良,穆珂馨.复合微生态制剂在半封闭混养池塘中的应用[J].大连海洋大学学报,2010,25(6):556-559.
    马建新,刘爱英,宋爱芹.对虾病毒病与化学需氧量相关关系研究[J].海洋科学.2002.26:68-71.
    马军,翟学东,刘娟,等.高锰酸盐、预臭氧化低温低浊水的效能[J].中国给水排水,2004,20(5):9-12
    马英,钱鲁闽,王永胜.对虾养殖池沉积物细菌的遗传多样性[J].海南大学学报:自然科学版,2009,27(4)::369-374.
    沈涛.水体中添加光合细菌对草鱼养殖水质及其消化和免疫功能的影响[D].浙江大学.2011.
    沈文英,余东游,李卫芬,等.地衣芽孢杆菌对三角帆蚌消化酶活性、免疫指标和抗氧化指标的影响[J].动物营养学报,2009,21(1):95-100.
    史建华,王韩信,徐琴英,等.稳定性二氧化氯制剂及其在水产养殖上的应用.水产科技情报,2006,6:257-260
    宋文辉.芽孢杆菌对草鱼养殖水质和生长的影响及其机理研究[D].浙江大学,2010.
    宋志文,徐敏,温少鹏,等.硝化细菌制剂对淡水水族箱水质的净化效果[J].河北渔业,2007,11:29-31,60.
    孙德文,詹勇,许梓荣.环境温度在鱼类养殖业中的重要作用研究[J].水产养殖,2003(2):36-39.
    孙德文,詹勇.微生态制剂在水产养殖中的应用[J].淡水渔业,2002,32(3):54-57.
    孙士权,马军,黄晓东,等.高锰酸盐预氧化去除太湖原水中稳定性铁、锰[J].中国给水排水,2006,22(21):6-13
    孙永威,赵文军,熊云.高锰酸钾氧化助凝在给水处理中的应用研究[J].黑龙江水专学报,2007,34(2):109-111
    孙运忠.添加红糖和芽胞杆菌对日本囊对虾室内集约化养殖水质的调控作用[J].渔业科学进展,2012,33(3):70-76.
    王刚.微生态制剂在水产养殖上的应用[J].水产科学,2002,21(3):34-36.
    王敏,丁建华,韩广建.固定化微生物制剂在改良水质及网箱养殖中的应用研究[J].淮海工学院学报(自然科学版),2006,15(3):62-64.
    王超.生物修复技术在环境污染修复中的应用[J].科学时代,2013(16).
    王峰,雷霁霖,高淳仁,等.国内外工厂化循环水养殖模式水质处理研究进展[J].中国工程科学,2013,15(10): 16-23.
    王峰慧,智利,魏巍.微生态菌剂直投技术原位修复徽污染水源水的试验研究[J].积水排水,2011,37(1):143-146.
    王继英.硝化细菌浓度及滤料对养殖水中氨氮处理效果的影响[J].渔业现代化,2012,39(3):7-11.
    王靖宇,邬立刚.影响微生态制剂效果的因素及使用注意事项[J].饲料与种植,2010,7:71.
    王伟.塘库水质有机物含量对类养殖的影响及建议[J].重庆水产,1992,3: 29-32.
    王文娟,潘宝海,孙冬岩,等.水产动物肠道菌群的形成及其生理作用[J].饲料研究,2012,2:37-39
    王易.国内外水产养殖水质处理方法.福建水产.1996,(4):47-50.
    吴自飞,韩克清.氨氮及亚硝酸盐的危害和防治措施[J].水产养殖,2013,02:18-19.
    向燕,李建光,杨兴,等.微生物制剂对养殖池塘细菌群落影响的PCR-DGGE分析[J].水生态学杂志,2012,33(2):100-103.
    谢骏,方秀珍,郁桐炳,等.池塘氮循环中各种细菌与理化因子的相关性研究.水生生物学报,2002,26(2):180-187.
    熊晖,梁运祥.外加光合细菌对养殖水体水质及微生物群落的影响[J].湖北农业科学,2011,50(22):4682-4685.
    杨希,刘德立,邓灵福,等.蜡状芽孢杆菌好氧反硝化特性研究.环境科学研究,2008,21(3):155-159.
    杨爱娬.浅谈水中溶解氧与养鱼的关系[J].黑龙江水产,1997,3:018.
    杨海君,肖启明,刘安元.土壤微生物多样性及其作用研究进展[J].南华大学学报(自然科学版),2005,19(4):21-26,31.
    杨蕾,张瑞芹,燕启社.高锰酸钾与颗粒活性炭联用去除水微量有机污染物[J].郑州大学学报(理学版),2007,39(4):164-169.
    易戈.利用微生物净化鱼塘养殖污水的研究[J].湖北农业科学,2012,49(10):2509-2511.
    易力,汪洋,陈万光,等.固定化浓缩光合细菌对养殖水环境的影响[J].贵州农业科学,2011,39(6):152-154.
    尹恒,高启平,谢骏,等.饲料中添加三种芽孢杆菌对建鲤生长及肠道菌群比较研究[J].饲料工业,2012,33(18):16-19.
    尹文林,沈锦玉,潘晓艺,等.复合硝化菌制剂对水质改良的应用效果[J].水产养殖,2010,31(9):12-17.
    于爱茸,李尤,俞吉安.一株耐氧反硝化细菌的筛选及脱氮特性研究[J].微生物学杂志,2005,25(3):77-81.
    于爱茸,李尤,俞吉安.一株耐氧反硝化细菌的筛选及脱氮特性研究[J].微生物学杂志,2005,25(3):77-81.
    原雅纬,傅莲英,刘国生,等.海水养殖沉积环境细菌多样性PCR-DGGE分析[J].河南师范大学学报:自然科学版,2010,38(5):150-154.
    岳强.生物絮团对中华锯齿米虾生长及水质的影响[J].河北渔业,2012,2:4-6.
    翟茜,汪苹,李秀婷,等.活性污泥中好氧反硝化菌的富集筛选及鉴别[J].环境科学与技术,2007,30(1):11-13.
    张艳,李秋芬,王印庚.大菱鲆工厂化养殖水质净化菌的筛选与系统发育分析[J].海洋水产研究,2007,28(4):21-25.
    张峰峰,谢凤行,赵玉洁,等.枯草芽孢杆菌水质净化作用的研究[J].华北农学报,2009,4(4):218-221.
    张庆华,封永辉,王娟,等.地衣芽孢杆菌对养殖水体氨氮、残饵降解特性研究[J].水生生物学报,2011,35(3):498-503.
    张小玲,袁科平,耿康.好氧反硝化菌对水质和鱼体饲喂效果的影响研究[J].水生 态学杂志,2011,32(3):114-119.
    张小玲,张卫东,张玲,等.好氧反硝化菌的选育及其初步应用[J].微生物学通报,2008,35(10):1556-1561.
    张永吉,南军,周玲玲,等.高锰酸钾对水中天然有机物氯化活性的影响[J].环境科学,2006,27(9):1798-1801.
    赵亮,孙德祥,陈红玲.光合细菌对河蟹育苗系统细菌类群的影响[J].水利渔业,2004,24(5):10-13.
    郑虹,施巧琴,施碧红,等.芽孢杆菌对养殖水体净化作用的比较研究[J].微生物学杂志,2005,25(6):41-44.
    郑卉.一株光合细菌对养殖水水质调控及其在水体中的动态变化研究[D].宁波大学.2012.
    郑佳佳. Pseudomonas stutzeri F1M反硝化特性及其调节草鱼养殖水体水质的研究[D].浙江大学,2013.
    郑佳佳,彭丽莎,张小平,等.复合益生菌对草鱼养殖水体水质和菌群结构的影响[J].水产学报,2013,37(003):457-464.
    郑平,徐向阳,胡宝兰.新型生物脱氮理论与技术[M].北京:科学出版社,2004:55-74
    郑喜春,郭晓军,姚娜,等.反硝化芽孢杆菌的筛选鉴定及反硝化特性[J].生态学杂志,2012,31(6):1447-1452.
    周春霞,翟双且.施用微生物制剂的注意事项[J].内陆水产,2006,6:9.
    周国勤,陈树桥,茆建强,等.益生菌在水产养殖方面的研究进展[J].安徽农业科学,2006,34(11):2421-2425.
    周金敏,吴志新,曾令兵,等.黄颡鱼肠道及养殖水体中菌群的分析[J].华中农业大学学报,2010,29(5):613-617.
    周涛.草鱼养殖池塘内细菌群落及益生菌对水质和细菌群落的影响[D].浙江大学,2012.
    周玉法,李代军,刘东燕,等.4种常见淡水鱼肠道菌群的分析[J].中国畜牧兽医学报,2012,39(8):220-223.
    朱海霞,陈林海,张大伟,等.活性污泥微生物菌群研究方法进展[J].生态学报,2007,1:314-322.
    朱将伟.一种水产养殖用微生物制剂的研究[J].饲料工业,2011,32(20):55-58.
    朱永久,陈万光.生石灰对池塘水质影响的初步研究[J].淡水渔业,1998,28(1):27-28.
    朱正国,臧维玲,戴习林,等.盐度与滤料量对生物膜降氨氮作用的影响[J].上海水产大学学报,2007,16(6):537-541.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700