用户名: 密码: 验证码:
南美白对虾类Ig的定性、功能和免疫分子进化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着淡海水养殖业的迅速兴起,对虾等养殖动物的病害问题显得日益突出。人们尝试了多种途径来防治虾病,但收效甚微。由此认为虾类免疫学研究是最终战胜虾类病害的重要基础。一般认为,无脊椎动物体液中不具有免疫球蛋白。但近年来,许多学者在无脊椎动物中证实了免疫球蛋白超家族分子,甚至初级适应性免疫的存在。关于虾内是否存在类Ig物质,尚存在争论。本文运用免疫学,蛋白质组学,基因克隆和生物信息学等现代生物学技术,以我国南方主要养殖虾种——南美白对虾为研究对象,对对虾血清中的类Ig物质进行分离、纯化、鉴定和功能分析,为丰富虾类免疫系统研究,探索对虾疾病免疫学防治奠定基础。
     结果表明,对虾血清与羊抗人Ig(IgM、IgG、IgA)在单向扩散板和硝酸纤维膜上可分别形成明显的沉淀环和沉淀斑。对虾血清的Western-blotting实验结果显示,与羊抗人Ig发生特异性结合的对虾类Ig的表观分子量为70 kDa(Wp70),其结合反应可以被特异性阻断和中和。这些与羊抗人IgM、IgG、IgA结合的蛋白质依次称为对虾血清类IgM、IgG和IgA,其在虾血清中的含量依次为0.1578±0.0427、1.2255±0.6844和0.3178±0.1243mg/mL。免疫组化研究证明,对虾组织和血细胞中同样存在与羊抗人Ig发生特异性结合的类Ig物质。对虾类Ig的定性分析,为类Ig的进一步研究奠定了扎实基础。
     将免疫亲和层析和蛋白质组学技术相结合建立了亲和蛋白质组学技术。采用该技术对对虾血清中的类Ig进行分离、纯化和鉴定。结果显示,采用羊抗人IgM、IgG、IgA层析得到的对虾血清类Ig在1-D和2-D电泳上均表现为表观分子量分别为75kDa、73kDa、62kDa的三种蛋白(Ap75、Ap73、Ap62),其中Ap75蛋白与羊抗人IgG反应呈阳性,而Ap73蛋白与羊抗人IgM和IgA反应呈阳性。经MALDI-TOF/MS分析,Ap75、Ap73和Ap62均与南美白对虾血清中的血蓝蛋白具有同源性,其匹配率分别为22%、26%和24%。运用ESI-MS/MS对其进行进一步鉴定,结果发现Ap75和Ap73分别与南美白对虾血蓝蛋白Hcl单体(gi|7414468)和血蓝蛋白前体(gi|1085839)匹配。由此认为,对虾血清中与羊抗人Ig发生特异性结合的蛋白为血蓝蛋白及前体。
     选择不同物种范围,对血蓝蛋白及前体PMF进行Mascot检索。结果表明,血蓝蛋白及前体与高等生物的免疫分子和低等生物的识别分子具有同源性。进一
    
    厦门大学博士学位论文
    步利用生物信息学方法对血蓝蛋白及前体进行保守区的搜索、序列比对、三维结
    构同源建模及进化树的构建,发现血蓝蛋白及前体中含有一个长252个残基,
    位于其c端的19一l议e区。在血蓝蛋白及前体氨基酸序列中存在多个与人19高
    度同源的模序,其中血蓝蛋白前体和Hol单体19一like区的motifoll-625(HPCR611一动
    和motifelg-633在三维结构中的位置与人Ig重链相对应moti玩.55的位置相似。由
    于两者在此模序中的氨基酸序列仅有1个氨基酸不同,故仅选取血蓝蛋白前体
    HPcR6,:一625模序进行序列比对分析,结果发现该模序序列EYNI开GSHGvYPDKR、与
    不同生物的免疫分子(如人Ig、TCR、MHq和识别分子(如细菌粘附分子)
    具有较高的同源性,是一个新发现的在免疫分子进化过程中的保守模序。尤其值
    得重视的是,在血蓝蛋白前体与脊椎动物IgSF的分子进化树中,血蓝蛋白前体
    与兔IgM和人Ig重链等IgSF分子关系非常密切。这些结果提示,血蓝蛋白及
    前体是一类与人Ig密切相关的新的免疫球蛋白超家族(195玛分子。
     利用基因工程技术,对血蓝蛋白基因(Hc基因)及其19一like区(Hc*I基
    因)、19一like+CuB区(He一IB基因)和。+euA区(Hc一NI基因)进行克隆
    和原核表达。取各重组蛋白进行以羊抗人Ig为一抗的immunoblot分析。结果
    表明,Hc,Hc一I和Hc一IB的重组蛋白能与羊抗人Ig反应,而Hc一NI的重组蛋
    白不能与羊抗人Ig反应。说明血蓝蛋白与羊抗人Ig的结合区域为其C端的
    Ig一like保守区。进一步研究显示,其两者之间的特异性结合是血蓝蛋白与人Ig
    的抗原决定簇相似所致。
     在对对虾血清类Ig进行了分析和鉴定的基础上,进一步探讨了血蓝蛋白及
    前体的免疫学功能。结果发现,血蓝蛋白能直接与细菌相互作用,其结合位置在
    血蓝蛋白为19一like保守区,在细菌为膜蛋白ompx和ompc。血蓝蛋白的
    lg一like区重组表达蛋白与细菌外膜蛋白的结合可直接导致血清中酚氧化酶活性
    的变化,其作用机制可能是一种免疫分子与病原微生物之间的分子互作。实验还
    发现,血蓝蛋白前体对鸡红细胞和10种细菌表现出明显的凝集活性,其凝集活
    性仅被N一乙酞神经氨酸强烈抑制。研究结果说明,血蓝蛋白是一种重要的抗感
    染分子。
     为进一步阐明血蓝蛋白的免疫防御功能,采用副溶血弧菌人工感染南美白对
    虾。结果发现,大部分受感染的对虾血清中条带明显增加,其中分子量为28.5
    
    kD a的血蓝蛋白裂解片段帅28.5)在12k前后死亡对虾中出现的比例分别为
    25%和56.5%。经卡方检验,两者之间具有极显著性差异O叙对1卜这些结果
    提示,该蛋白可能与对虾抗感染免疫的能力有关。
     综上所述,本文发现对虾类Ig为血蓝蛋白或其前体,具有免疫防御功能,
    可能是Ig
Shrimp aquaculture has been developed rapidly since it serves as an industrial activity. However, shrimp farms have suffered from dramatic decreases in production due to infectious diseases within the past decade. Interest has been focused on immune molecules and defense mechanisms for the establishment of strategies for disease control. Invertebrate animals lack immunoglobulin, but many molecules of the immunoglobulin super family (IgSF) and a peculiar form of adaptive immune response have been documented to be present in an invertebrate. In shrimp, one of invertebrates, there are no direct evidences of an Ig-like molecule. An attempt was made to identify the protein bound to anti-human Ig (Ig-like protein) in shrimp Penaeus vannamei using immunological, proteomic, genetic and bioinformation technologies in the current study.
    Using immunological methods we found that there were proteins which reacted specifically with goat anti-human Ig (IgM, IgG and IgA), namely Ig-like (IgM-like, IgG-like and IgA-like) proteins, in shrimp serum, haemocyte and tissues. The reactivity could be strongly blocked and neutralized by anti-human Ig and human Ig, respectively. Based on Western blotting analysis we estimated that there was an Ig-like protein about 70 kDa (Wp70) in shrimp serum. And the average concentrations of IgM-like, IgG-like and IgA-like protein were determined to be 0.1578 ?0.0427,1.2255 ?0.6844 and 0.3178 ?0.1243 mg/ml by direct Dot-ELISA, respectively. These findings suggest that there are Ig-like proteins with similar epitopes to human Ig, which was important to purify and identity the Ig-like proteins from shrimp.
    Therefore, we applied affinity chromatography to isolate IgM-like, IgG-like and IgA-like proteins from shrimp serum with the purified antibody of goat anti-human IgM, IgG and IgA respectively. Three kinds of purified Ig-like proteins were subsequently analysed using 1-DE, 2-DE and their immunoblottings. The results showed that three proteins with 75 kDa (Ap75), 73 kDa (Ap73) and 62 kDa (Ap62) were isolated, of which Ap75 was documented to be strongly reacted with goat
    
    
    anti-human IgQ while Ap73 was bound to both of goat anti-human IgM and IgA. The three proteins were cut out from 2-D gel and subjected to MALDI-TOF mass analysis. The database search results indicated that the Ap75, Ap73, Ap62 proteins showed homology with Litoenaeus vannimei hemocyanin of 22%, 26% and 24%, respectively. To increase our confidence peptides from the digested proteins were also analysed by tandem mass spectrometry. When the ESI tandem MS data were subjected to the database search, Ap75 and Ap73 were identified to be Penaeus vannimei hemocyanin Hcl monomer (gi|7414468) and hemocyanin precursor (gi| 1085839), respectively. Thus, the shrimp Ig-like proteins were determined to be hemocyanin and its precursor.
    Peptide mass fringerprints (PMF) of hemocyanin and its precursor were subjected to Mascot search, the results indicated that the two proteins shared homology with many of immune molecules of high levels of organisms or recognition molecules of low levels of organisms. Then bioinformatics technologies were used to analyse the structure and evolution of hemocyanin and its precursor. Results searched of conserved domain showed that there was an Ig-like conserved domain of 252 amino acid residues in the C terminus of hemocyanin and its precursor. Amino acid sequence alignment indicated that hemocyanin and its precursor shared seven conserved motifs with human Ig, in which both of motif 611-625 of hemocyanin precursor (HpCR 511-625 motif) and motif ei9-633of hemocyanin Hcl, one amino acid difference between them, were very similar to motif 41.55 of human Ig in their 3D structures respectively. Then we chose the HpCRei 1-625 motif to analyse its evolution status. The results showed that the HpCR6n-625 motif shared high homology with many immune molecules (eg.human Ig, TCR and MHC) or recognition molecules (eg. bacterial adhesion protein) of organisms. It lead to be indicated that HpCR6ii-625 motif is a novel conserved
引文
1. S argent JR, Tacon AG. Development of farmed fish: a nutritionally necessary alternative to meat. Proc Nutr Soc, 1999; 58 (2): 77-83.
    2. Munro MH, Blunt JW, Dumdei EJ, Hickford SJ, Lill RE, Li S, Battershill CN, Duckworth AR. The discovery and development of marine compounds with pharmaceutical potential. J Biotechnol, 1999; 70 (1-3): 15-25.
    3. 徐洵.海洋生物技术与资源的可持续性利用.中国工程科学,2000;2(8):40-42.
    4. Bachére E. Shrimp immunity and disease control. Aquaculture, 2000; 191: 3-11.
    5. Rosenberry B. World shrimp farming 1996. In: Rosenberry, R. Ed, Shrimp News International, 1996; pp: 167.
    6. Neiland AE, Soley N, Varley JB, Whitmarsh DJ. Shrimp aquaculture: economic perspectives for policy development. Mar. Policy, 2001; 25: 265-279.
    7. 张振华,韩士群,严少华.我国对虾养殖的现状及持续发展对策.江苏农业科学,2002,3:69-71.
    8. 王东石.中国对虾养殖发展中的问题与环境保护.饲料工业,1994;3:2-3.
    9. 江育林.对虾养殖、环境、病害—记第二届亚洲水产养殖病害研讨会.饲料工业,1994;3:4-6.
    10. Roch P. Defense mechanisms and disease prevention in farmed marine invertebrates. Aquaculture, 1999; 172: 125-145.
    11. 黄玉玲.我国虾类淡水养殖概述.水利渔业,2003;23(1):1-3.
    12. 潘鲁青.我国对虾养殖业面临的问题和发展对策.齐鲁渔业,2001,18(3):22-24.
    13. 梁华芳.我国9种养殖对虾形态特征之比较.湛江海洋大学学报,2001;21(2):15-18.
    14. 陈晓汉,陈琴,谢达祥.南美白对虾含肉率及肌肉营养价值的评定.水科技情报,2001;28(4):165-168.
    15. 朱志校,宋峰,丁源.淡水养殖南美白对虾新技术.齐鲁渔业,2002;19(10):35.
    
    
    16. 朱春华.盐度对南美白对虾生长性能的影响.水产科技情报,2002;29(4):166-168.
    17. 陆根海,潘桂平,陈建明,谢林荣.南美白对虾(Penaeusvannamei)池养技术初探及经济效益分析.水产科技情报,2000;27(1):22-24.
    18. 刘昌彬,王金星,刘存仁,吴中华,陈忠科,张红卫.非生物环境因子对用爆发性流行病病原实验感染的中国对虾发病的影响.水产学报,2001;25(1):58-63.
    19. 吴中华,刘昌彬,刘存仁,王金星,张红卫.中国对虾暴发性流行病病原的免疫组织化学研究.山东大学学报(理科版),2002;37(5):452-457
    20. 李华,邢殿楼,马悦欣,王斌,李君丰,李霞,赵燕,陈营,刘长发.1993年中国对虾爆发性流行病病原初步研究.大连水产学院学报,1994;9(4):74-79.
    21. 徐利生,苗素英.广东养殖对虾主要病害和特发性综合症调查研究.中山大学学报论丛,1995;3:68-73.
    22. 郭银汉,林诗发,杨小强,谢联辉.福州地区对虾爆发性白斑病的病原鉴定.福建农业大学学报,2000;29(1):90-94.
    23. 杨淑专,许宏毅,苏文金.厦门养殖对虾主要病原生物.厦门大学学报(自然科学版),1995;34(2):287-291.
    24. Park JH, Lee YS, Lee S, Lee Y. An infection viral disease of penaeid shrimp newly found in korea. Dis Aquat Organ, 1998; 34 (1): 71-75.
    25. Muroga K. Viral and bacterial diseases of marine fish and shellfish in Japanese hatcheries. Aquaculture, 2001; 202: 23-44.
    26. Couch JA. An enzootic nuclear polyhedrosis virus of pink shrimp: ultrastructure, prevalence and enhancement. J Invertebr Pathol, 1974; 24 (3): 311-331.
    27. 孟庆显.对虾疾病防治手册.青岛:青岛海洋大学出版社,1991.
    28. Lightner DV, Redman RM. Shrimp diseases and current diagnostic methods. Aquaculture, 1998; 164: 201-220.
    29. Lightner DV, Redman RM, Bell TA. Observations on the geographic distribution, pathogenesis and morphology of the baculovirus from penaeus mondon Fabricius. Aquaculture, 1983; 32: 209-233.
    
    
    30. 俞开康,战文斌,周丽 海水养殖病害诊断与防治手册.上海:上海科学技术出版社,2000.
    31. 薛清刚,王文兴 对虾疾病的病理和诊治.青岛:青岛海洋大学出版社,1992;60-74.
    32. 丁熵,郑莲.对虾病毒性疾病研究最新进展.台湾海峡,2001;20(3):396-404.
    33. 汪敏,戴继勋.对虾病毒的研究进展.海洋湖沼通报,2000;2:71-77.
    34. 俞开康,战文斌,周丽,孟庆显.我国沿海养殖对虾的疾病及研究现状.中山大学学报(自然科学版),2000;39增刊:1-5.
    35. Yang F, Lin XH, Li Q, Pan D, Zhang XB, Xu X. Complete Genome Sequence of the Shrimp White Spot Bacilliform Virus. J. Virol., 2001; 75 (23): 11811-11820.
    36. Zhang X, Xu L, Xu X. Detection of prawn white spot bacilliform virus by immunoassay with recombinant antigen. J Virol Methods, 2001; 92 (2): 193-197.
    37. Zhang XB, Xu X, Li QG, Xu LM. PCR detection of prawn white spot bacilliform virus (WSBV) using molecular beacon probe. Prog. Biochem. Biophys., 2000; 27 (3): 277-280.
    38. 赵永泉.我国对虾病研究现状.华南师范大学学报(自然科学版),1997;3:103-113.
    39. Snieszko SF. Diseases of fishes and their control in the U.S. In: The Two Lakes Fifth Fishery Management Training Course Report. Jansen, London, 1973; pp. 55-66.
    40. Wang YC, Chang PS. Yellow head virus infection in the giant tiger prawn Penaeus monodon cultured in Taiwan. Fish Pathol, 2000; 35 (1): 1-10.
    41. Lightner DV. A Handbook of Shrimp Pathology and Diagnostic Procedures for Diseases of Cultured Penaeid Shrimp. World Aquaculture Society, Baton Rouge, LA, USA, 1996; pp: 305.
    42. 战文斌,邢婧,王远红,铃木信一,福田颖穗.聚合酶链式反应(PCR)检测养殖对虾的白斑症病毒.中国水产科学,2000;7(1):51-54.
    43. Hossain MS, Otta SK, Karunasagar I. Detection of white spot syndrome virus (WSSV) in wild captured shrimp and in non-cultured crustaceans from shrimp ponds in Bangladesh by polymerase chain reaction. Fish Pathol, 2001, 36 (2):
    
    93-95.
    44. 王吉桥,徐锟.对虾的主要疾病及其诊断方法.水产科学,2002;21(5):23-28.
    45. 章晓波,徐洵,李庆阁,徐丽美.分子信标探针用于PCR检测对虾白斑杆状病毒.生物化学与生物物理进展,2000;27(3):277-280.
    46. 徐丽美,王玮,杨丰.对虾白斑杆状病毒(WSBV)定量PCR检测技术研究.高技术通讯,2001;1:14-16.
    47. 徐丽美,杨丰.利用定量PCR方法研究对虾白斑杆状病毒感染与发病的关系.高技术通讯,2001;12:9-11.
    48. 胡超群,陶保华.综述:对虾弧菌病及其免疫预防的研究进展.热带海洋,2000;19(3):84-94.
    49. Bechteler C, Holler D. Preliminary studies of the immunization of shrimp (Penaeus monodon) against vibrio infection. Berl. Munch. Tierarztl. Wochenschr., 1995;108(12):462-465.
    50. Lewis DH, Lawrence AL. Immunophylaxis to Vibrio sp. in pond reared penaeid shrimp. Proceedings symposium on warm water crustacean aquaculture. Bringham Young Univ. Laie. Hi. 1985.
    51. Itami T, Takahashi Y, Nakamura Y. Efficacy of vaccination against vibriosis in cultured kuruma prawns Penaeus japonicus. J. Aquat. Anim. Health., 1989;1:238-242.
    52. Latchfood JW, Prayitno SB, Alabi A. The use of vaccines in the culture of penaeid prawns. J. Shellfish Res., 1996;15(2):456.
    53. 叶孝经.对虾弧菌菌苗免疫的研究.海洋水产研究丛刊,1990;32:13-18.
    54. 陈水土,苏国成.对虾弧菌制剂试制实验及其在长毛对虾养殖中的应用.海洋通报,1997;2:25-31.
    55. 陶保华,胡超群,任春华.弧菌疫苗对斑节对虾和日本对虾免疫预防的作用.水产学报,2000;24(6):564-569.
    56. 陶保华,胡超群,任春华.海水鱼类病原弧菌对对虾的致病力及其疫苗的免疫预防.热带海洋学报,2001;20(4):68-73.
    57. 丁熵,王雷,李光友.中国对虾复合疫苗的初步研究.海洋与湖沼,1999;30(4):355-361.
    
    
    58. 江晓路,刘树青,牟海津,王慧谧,管华诗.真菌多糖对中国对虾血清及淋巴细胞免疫活性的影响.动物学研究,1999;20(1):41-45.
    59. 刘恒,李光友.免疫多糖对养殖南美白对虾作用的研究.海洋与湖沼,1998;29(2):113-118.
    60. 江晓路,刘树青,张朝晖,管华诗.多糖对中国对虾免疫功能的影响.中国水产科学,1999;6(1):66-68.
    61. 刘树青,江晓路,牟海津,管华诗.免疫多糖对日本对虾血清酶活性的影响.中国水产科学,1999;6(3):107-109.
    62. 刘树青,江晓路,牟海津,王慧谧,管华诗.免疫多糖对中国对虾血清溶菌酶、磷酸酶和过氧化物酶的作用.海洋与湖沼,1999;30(3):278-283.
    63. Sritunyalucksana K, Sithisam P, Withayachumnarnkul B, Flegel TW. Activation of prophenoloxidase, agglutinin and antibacterial activity in haemolymph of the black tiger prawn, Penaeus monodon, by immunostimulants. Fish Shellfish Immunol., 1999;9:21-30.
    64. Lópeza N, Cuzonb G, Gaxiolac G, Taboadac G, Valenzuelac M, Pascualc C, Scnchezc A, Rosasc C. Physiological, nutritional, and immunological role of dietary h 1-3 glucan and ascorbic acid 2-monophosphate in Litopenaeus vannamei juveniles. Aquaculture, 2003;224:223-243.
    65. 刘栋辉,阳会军,刘永坚.β-葡聚糖和维生素C对斑节对虾生长和抗病力的效果.中山大学学报(自然科学版),2002;41(4):59-62.
    66. Song YL, Liu JJ, Chan LC, Sung HH. Glucan-induced disease resistance in tiger shrimp (Penaeus monodon). Dev. Bio. Stand., 1997;90:413-421.
    67. 刘岩,江晓路,吕青,管华诗.聚甘露糖醛酸对中国对虾免疫相关酶活性和溶菌溶血活性的影响.水产学报,2000;24(6):549-553.
    68. 罗日详.中药制剂对中国对虾免疫活性物的诱导作用.海洋与湖沼,1997;28(6):573-577.
    69. 许兵,纪伟尚,徐怀恕,石杰.麦胚凝集素促进对虾免疫功能的初步研究.青岛海洋大学学报,1992;22(4):29-33.
    70. 杜爱芳,叶均安,于涟.复方大蒜油添加剂对中国对虾免疫机能的增强作用.
    
    浙江农业大学学报,1997;23(3):317-320.
    71. 黄美珍,李志棠.微生态制剂在虾病防治应用的研究进展.中山大学学报(自然科学版),2000;39(增刊):75-79.
    72. Verschuere L, Rombaut G, Sorgeloos P, Verstraete W. Probiotic bacteria as biological control agents in aquaculture. Microbiol. Mol. Biol. Rev., 2000; 64 (4): 655-671.
    73. Rengpipat S, Rukpratanporn S, Piyatiratitivorakul S, Menasaveta P. Immunity enhancement in black tiger shrimp (Penaeus monodon) by a probiont bacterium (Bacillus S11). Aquaculture, 2000; 191: 271-288.
    74. Lee MH, Shiau SY. Dietary vitamin C and its derivatives affect immune responses in grass shrimp, Penaeus monodon. Fish Shellfish Immunol, 2002; 12: 119-129.
    75. 白洁,李永祺,李岿然.久效磷对中国对虾血淋巴酚氧化酶活力影响的初步研究.海洋科学,1998;3:35-37.
    76. 白洁,李永祺,李岿然,唐学玺.久效磷对中国对虾血淋巴溶菌活力和细菌含量的影响.海洋科学,1998;6:1-2.
    77. 赵杰,谷子林,崔青曼,李雯.生化黄腐酸对中国对虾生长发育及部分免疫机能的影响.饲料研究,2001;12:23-24.
    78. 沈锦玉,钱冬,尹文林,曹铮,陈月英,沈智华,张念慈.中国对虾某些免疫指标的测定及免疫预防初步研究.科技通报,1997;5324-327.
    79. 王宜艳,孙虎山,李光友.复合免疫药物对中国对虾血淋巴氧化酶和抗氧化酶活力的影响.海洋科学进展,2002;20(3):79-83.
    80. 王雷,李光友,毛远兴,张海岩.口服免疫型药物对养殖中国对虾病害防治作用的研究.海洋与湖沼,1994;25(5):489-491.
    81. 吴谋胜,王三英,彭宣宪.对虾免疫配合饲料研究.台湾海峡,2001;20(增刊):97-100.
    82. Allen Davis D, Arnold CR. The design, management and production of a recirculating raceway system for the production of marine shrimp. Aquac. Eng., 1998; 17: 193-211.
    83. Funge-Smith SJ, Briggs MRP. Nutrient budgets in intensive shrimp ponds:
    
    implications for sustainability. Aquaculture, 1998; 164: 117-133.
    84. Brock JA, Bullis R. Disease prevention and control for gametes and embryos of fish and marine shrimp. Aquaculture, 2001; 197: 137-159.
    85. 李健,孙修涛,刘德月,戴芳钰,赵法箴.不同养殖措施防治对虾暴发性流行病效果的初步研究.海洋水产研究,2000;21(1):1-7.
    86. 宋盛宪,庄世鹏.配合饲料与对虾养殖.广东饲料,2002;11(4):40-41.
    87. 黄翔鹄,李长玲,刘楚吾,郑莲,何嘉.两种微藻改善虾池环境增强凡纳对虾抗病力的研究.水生生物学报,2002;26(4):342-347.
    88. 何义进,王存国.南美白对虾病害防治技术.中国水产,2002;6:81-82.
    89. Kautsky N, Rnnbck P, Tedengren M, Troell M. Ecosystem perspectives on management of disease in shrimp pond farming. Aquaculture, 2000; 191: 145-161.
    90. 陈德芳.对虾病毒防治新方略的研究.齐鲁渔业,1996;13(6):31-33.
    91. 贾翠红,汝少国,姜明,童裳亮,庄岩.中国对虾淋巴器官的显微和超微结构的研究.中国水产科学,1999;6(1):9-11.
    92. 刘晓云,刘树青,姜明.中国对虾类淋巴器结构观察及功能探讨.青岛海洋大学学报,1999;29(1):167-171.
    93. 李光友.中国对虾疾病与免疫机制.海洋科学,1995;4:1-3.
    94. Bauchau AG. Crustaceans, In Invertebrate Blood Cells, ed. by Ratcliffe, NA et al., Academic Press (London, New York), pp.2385-2420.
    95. 李光友,王青.中国对虾血细胞及其免疫研究.海洋与湖沼,1995;26(6):591-596.
    96. 陈平,黄槐,池信才,吴定虎,陈细法.四种对虾血细胞组成及超微结构.水生生物学报,1998;22(2):158-163.
    97. Sung HH, Wu PY, Song YL. Characterisation of monoclonal antibodies to haemocyte subpopulations of tiger, shrimp (Penaeus monodon): immunochemical differentiation of three major haemocyte types. Fish Shellfish Immunol, 1999; 9: 167-179.
    98. Rodriguez J, Boulo V, Mialhe E, Bachére E. Characterisation of shrimp haemocytes and plasma components by monoclonal antibodies. J. Cell Sci., 1995;
    
    108:1043-1050.
    99. 战文斌,张利峰,张志栋,周丽,宋微波.中国对虾血细胞单克隆抗体研制及对虾血细胞类型的鉴别.高技术通讯,2001;6:19-22.
    100. 刘晓云,张志峰,马洪明.中国对虾血细胞酶细胞化学的初步研究.青岛海洋大学学报,2002;32(2):259-265.
    101. 蔡渭明,杜爱芳,洪健,于涟.中国对虾血细胞及其吞噬活力的电镜研究.浙江农业大学学报,1996;22(4):418-424.
    102. Sderhll K, Wingren A, Johansson MW, Bertheussen K. The cytotoxic reaction of hemocytes from the freshwater crayfish, Astacus astacus. Cell Immunol, 1985; 94: 326-332.
    103. 邓欢,陈俅,刘卫东,安育新.中国对虾血细胞包掩作用的超微结构和组织化学观察.应用与环境生物学报,1999;5(3):296-299.
    104. Chisholm JRS, Smith VJ. Comparison of antibacterial activity in the hemocytes of different crustacean species. Comp Biochem Physiol A Physiol, 1999; 110 (1): 39-45.
    105. Sequeira T, Tavares D, Arala-Chaves M. Evidence for circulating hemocyte proliferation in the shrimp Penaeus japonicus. Dev Comp Immunol, 1996; 20 (2): 97-104.
    106. 于建平.日本对虾血细胞分类、密度及组成.青岛海洋大学学报,1993;23(1):107-113.
    107. 杜爱芳,蔡渭明,于涟.中国对虾血细胞吞噬功能的研究.中国水产科学,1997;4(2):1-6.
    108. Washington C, Dankert JR. Phenoloxidase specific activity in the red swamp crayfish Procambarus clarkia. Fish Shellfish Immunol, 1997; 7: 283-295.
    109. Sderhll K. The prophenoloxidase activating system and melanization a recognition of arthropods-A review.Dev. Comp. Immunol, 1982; 6: 601-611.
    110. 孟孔伦,张玉臻,孔健,马桂荣.甲壳动物中酚氧化酶原激货活系统研究评价.海洋与湖沼,1999;30(1):110-115.
    111. Aspán A, Sderhll K. Purification of prophenoloxidase from freshwater crayfish blood cells and its activation by an endogenous serine proteinase. Insect
    
    Biochem., 1991; 21: 363-373.
    112. Gollas-Galván T, Hernández-López J, Vargas-Albores F. Prophenoloxidase from brown shrimp (Penaeus californiensis) hemocytes. Comp. Biochem. Physiol. Part B, 1999; 122: 77-82.
    113. Sritunyalucksans K, Cerenius L, Sderhll K. Molecular cloning and characterization of prophenoloxidase in the black tiger shrimp, Penaeus monodon. Dev. Comp. Immunol., 1999; 23(3): 179-186.
    114. 樊廷俊,汪小锋.中国对虾(Penaeus chinensis)酚氧化酶的分离纯化及其部分生物化学性质.生物化学与生物物理学报,2002;34(5):589-594.
    115. Perazzolo LM, Barracco MA. The prophenoloxidase activating system of the shrimp Penaeus paulensis and assocatiated factors. Dev. Comp. Immunol, 21(5): 385-395.
    116. 刘晓云,张志峰,于利,姜明.中国对虾组织细胞中酚氧化酶活力的研究.高技术通讯,2002;8:89-92.
    117. Sderhll K, Smith VJ. The Prophenoloxidase Activating Cascade as a Recognition and Defence System in Arthropods, In: Humoral and Cellular Immunity in Arthropods. New York: John Wiley & Sons, 1986; 251-285.
    118. Sderhll K, Hall L. Lipopolysaccharide induced activation of the prophenoloxidase activating system in crayfish haemocyte. Biochem. Biophys. Acta, 1984; 797: 99-104.
    119. Ashida M, Yamazaki HI. Biochemistry of the Phenoloxidase System In Insects: With Special Reference to its Activation. In Ishizki Hed. Molting and Metamorphorsis. Springer Verlag Berlin: Japan Sci Soc Press, 1990; 239-263.
    120. Ashida M, Sderhll K. 1984. The prophenoloxidase activating system in crayfish. Comp. Biochem. Physiol, 77 B (1): 21-26.
    121. Aspán A, Sturtevant J, Smith VJ. Purification and characterization of a prophenoloxidase activating enzyme from crayfish blood cells. Insect. Biochem. 1991; 20: 709-718.
    122. Johansson MW, Sderhll K. A cell adhension factor from crayfish haemocytes has degranulating activity towards crayfish granular cells. Insect
    
    Biochem. 1989; 19: 183-190.
    123. 孟凡伦,张玉臻,孔健,马桂荣.甲壳动物中酚氧化酶原激活系统研究评价.海洋与湖沼,1999;30(1):110-115.
    124. 孙兆峰,王雷.中国明对虾(Fenneropenaeus chinensis)和凡纳滨对虾(Litopenaeus vannamei)血清酚氧化物酶活性的研究.高技术通讯,2001;12:24-27.
    125. 王雷,李光友,毛远兴.中国对虾血淋巴中抗菌、溶菌活力与酚氧化物酶活力的测定及其特性研究.海洋与湖沼,1995;26(1):34-41.
    126. Sung HH, Chang HJ, Her CH, Chang JC, Song YL. Phenoloxidase Activity of Hemocytes Derived from Penaeus monodon and Macrobrachium rosenbergii. J. Invertebr. Pathol., 1998; 71, 26-33.
    127.孙册,朱政,莫汉庆.凝集素.北京:科学出版社,1986.
    128. Ratanapo S, Chilavatnatol M. Monodin, a new sialic acid specific lectin from black tiger prawn (Penaeus monodon). Com. Biochem. Physiol., 1990; 97B: 515-520.
    129. Mahes wari R, Mullainadan P, Arumugam M. Characterisations of a natural haemaggluinin with affinity for acetylated aminosugars in the serum of the marine prawn, Penaeus indicus (H. Mine Edwards). Fish Shellfish Immunol, 1997; 7(1): 17-28.
    130. Vargas AF, Guzman MA, Ochaoa JL. A lipopolysaccharide-binding agglutinin isolated from brown shrimp (Penaeus californiensis Holmes) haemolymph. Com. Biochem. Physiol., 1993; 104B (2): 407-413.
    131. Cominettia MR, Marquesb MRF, Lorenzinib DM, Lfgrena SE, Daffrec S, Barracco MA. Characterization and partial purification of a lectin from the hemolymph of the white shrimp Litopenaeus schmitti. Dev. Comp. Immunol., 2002; 26: 715-721.
    132. 彭其胜,郭文场,杨振国,王玉平.中国对虾血淋巴液中的凝集素.中国水产科学,2001;7(4):14-18.
    133. Zenteno R, Vazquez L, Sierra C, Pereyra A, Slomianny MC, Bouquelet S, Zenteno E. Chemical characterization of the lectin from the freshwater prawn
    
    Macrobrachium rosenbergii (De Man) by MALDI-TOF. Comp. Biochem. Physiol. Part B, 2000; 127: 243-250.
    134. Marques MRF, Barracco MA. Lectins, as non-self-recognition factors, in crustaceans. Aquaculture, 2000; 191: 23-44.
    135. 牟海津,江晓路,刘树青,王慧谧,管华诗.中国对虾血细胞凝集素的性能研究.中国水产科学,1999;6(3):32-35.
    136. 罗日祥.中国对虾凝集素活力及弧菌的诱导动力学.海洋与湖沼,1997;28(6):573-577.
    137. 廖绍安,李筠,张晓华,纪伟尚,徐怀恕.日本对虾血清凝集素的基本物理化学性质.中国水产科学,2001;8(4):1-4.
    138. 戴聪杰,陈寅山.日本对虾血清和肌肉提取液凝集活力初步研究.福建师范大学学报,2002;18(4):81-85.
    139. 廖绍安,李筠,张晓华,纪伟尚,徐怀恕.日本对虾血清凝集素及其免疫作用的初步研究.中国水产科学,2002;9(3):224-227.
    140. 彭其胜,郭文场,杨振国,王玉平,田相利.中国对虾血淋巴液凝集素的血凝活性与促噬活性.水产学报,2001;25(3):197-202.
    141. 叶星,白俊杰.抗菌肽的研究及其在水产上的应用前景.大连水产学院学报,2000;15(4):274-279.
    142. Steiner HD, Hultmark, Engstrm H, Bennich H, Boman HG. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature, 1981; 292: 246-248.
    143. 黄自然,郑庭辉,梁怡章.柞蚕抗菌肽的抑菌效果.科学通报,1986;14:1107-1109.
    144. 简玉瑜,吴新荣,莫豪葵,陈凤珍,董春,黄自然.应用基因枪将蚕抗菌肽基因导入水稻获得抗白叶枯病株系.华南农业大学学报,1997;18(4):1-7.
    145. Bachère E, Destoumieux D, Bulet P. Penaeidins, antimicrobial peptides of shrimp: a comparison with other effectors of innate immunity. Aquaculture, 2000; 191: 71-88.
    146. Song Yl, Linc Z, Tsai HJ. Immunostimulation of fresh water giant prawn (Macrobrachium rosenbergii) to induce the microbicidal substances.
    
    International symposium on aquatic animal heath: program and abstracts. Davis, CA (USA) : University of California. School of Veterinary Medicine, 1994; pp59.
    147. Destoumieux D, Bulet P, Loewi D, Van Dorsselaeri A, Rodriguez J, Bachère E. Penaeidins, a New Family of Antimicrobial Peptides Isolated from the Shrimp Penaeus vannamei (Decapoda). J. Biol Chem., 1997; 272: 28398-28406.
    148. Destoumieux D, Muozl M, Cosseaul C, Rodriguez P, Bulet P, Comps M, Bachère E. Penaeidins, antimicrobial peptides with chitin-binding activity, are produced and stored in shrimp granulocytes and released after microbial challenge. J. Cell Sci, 2000; 113 (3): 461-469.
    149. Muoz M, Vandenbulcke F, Saulnier D, Bachère E. Expression and distribution of penaeidin antimicrobial peptides are regulated by haemocyte reactions in microbial challenged shrimp. Eur. J. Biochem, 2002; 269: 2678-2689.
    150. Muoz M, Vandenbulcke F, Gueguena Y, Bachère E. Expression of penaeidin antimicrobial peptides in early larval stages of the shrimp Penaeus vannamei. Dev. Comp. Immunol., 2003; 27: 283-289.
    151. Destoumieux D, Bulet P, Strub JM, Van Dorsselaeri A, Bachère E. Recombinant expression and range of activity of penaeidins, antimicrobial peptides from penaeid shrimp. Eur. J. Biochem, 1999; 266: 335-346.
    152. 高键.甲壳类的体液免疫因子及其环境作用.水产养殖,1992;6:21-23.
    153. 牟海津,江晓路,刘树青,管华诗.日本对虾溶血素的活性测定及性能研究.海洋与湖沼,1999;30(4):362-367.
    154. 王雷,李光友.甲壳动物的体液免疫研究进展.海洋科学,1992;3:18-19.
    155. Canicatti C. The lytic system of Holothuria polii: a review. Boll Zool, 1988; 55 (3): 139-144.
    156. 丁美丽,林林,李光友.有机污染对中国对虾内外环境影响的研究.海洋与湖沼,1997;28(1):7-12.
    157. 徐海圣,徐步进.甲壳动物细胞及体液免疫机理的研究进展.大连水产学
    
    院学报,2001;16(1):49-56.
    158. Aspán A, Sturtevant J, Smith VJ. Purification and characterization of a prophenoloxidase activating enzyme from crayfish blood cell. Insect Biochem, 1990; 20: 709-718.
    159. Hill L, Sderhll K. Purification and properties of a protease inhibitor from crayfish hemolymph. J. Invertebr Pathol, 1982; 39: 29-37.
    160. Moullac G, Soyez C, Saulnier D, Saulnier D, Ansquer D, Avarre JC, Levy P. Effect of hypoxic stress on the immune response and the resistance to vibriosis of shrimp Penaeus stylirostris. Fish Shellfish Immunol, 1998; 8(8): 621-629.
    161. Johansson MW. Cell adhesion molecules in invertebrate immunity. Dev. Comp. Immunol., 1999; 23: 303-315.
    162. Holmblad T, Sderhll K. Cell adhesion molecules and antioxidative enzymes in a crustacean, possible role in immunity. Aquaculture, 1999; 172:111-123.
    163. Johansson MW, Lind MI, Holmblad T, Thrnqvist PO, Sderhll K. Peroxinectin, a novel cell adhesion protein from crayfish blood. Biochem. Biophys. Res. Commun. 1995; 216: 1079-1087.
    164. Kopácek P, Hall M, Sderhll K. Characterization of a clotting protein, isolated from plasma of the freshwater crayfish Pacifastacus leniusculus. Eur. J. Biochem, 1993; 213: 591-597.
    165. Yeh MS, Huang CJ, Leu JH, Lee YC, Tsai IH. Molecular cloning and characterization of a hemolymph clottable protein from tiger shrimp (Penaeus monodon). Eur. J. Biochem, 1999; 266: 624-633.
    166. Vargas-Albores F, Guzman-Murillo A, Ochoa JL. A lipopolysaccharide binding agglutinin isolated from brown shrimp Penaeus californiensis Holmes haemolymph. Comp. Biochem Physiol, 1993 b; 104 A: 407-413.
    167. Vargas-Albores F, Jimenez-Vega F, Sderhll K. A plasma protein isolated from brown shrimp Penaeus californiensis which enhances the activation of prophenoloxidase system by b-1,3-glucan. Dev.Comp.Immunol, 1996; 20: 299-306.
    168. Hall M, van Heusden MC, Sderhll K. Identification of the major
    
    lipoproteins in crayfish hemolymph as proteins involved in immune recognition and clotting. Biochem. Biophys. Res. Commun., 1995; 261(3): 939-946.
    169. 叶淑芳.中国对虾体液免疫实验方法的探讨.海洋科学,1991;6:66-67.
    170. 王雷,李光友,毛远兴.口服免疫药物后中国对虾某些血淋巴因子的测定及方法研究.海洋与湖沼,1995;26(1):43-40.
    171. 王伟庆,李爱杰,兰翠霞,郭健.用免疫消浊法测定中国对虾血清中的免疫因子.水产学报,1998;22(2):170-174.
    172. 章跃陵,彭宣宪,王三英.日本对虾血清三类免疫球蛋白样物质的研究.海洋科学,2001;25(5):37-41.
    173. Adachi K, Hirata T, Nishioka T, Sakaguchi M. Hemocyte components in crustaceans convert hemocyanin into a phenoloxidase-like enzyme. Comp. Biochem. Physiol. Part B. 2003; 134: 135-141.
    174. Destoumieux-Garzon D, Saulnier D, Garnier J, Jouffrey C, Bulet P, Bachère E. Crustacean Immunity: Antifungal peptides are generated from the C terminus of shrimp hemocyanin in response to microbial challenge. J. Biol. Chem, 2001; 276: 47070-47077.
    175. Lee SY, Lee BL, Sderhll, K. Processing of an antibacterial peptide from hemocyanin of the freshwater crayfish Pacifastacus leniusculus. J. Biol. Chem, 2003; 278: 7927-7933.
    176. Rodrguez J, Moullac GL. State of the art of immunological tools and health control of penaeid shrimp. Aquaculture, 2000; 191: 109-119.
    177. Bachère E, Mialhe E, Nol D, Boulo V, Morvan A, Rodriguez J. Knowledge and research prospects in marine mollusc and crustacean immunology. Aquaculture, 1995; 132: 17-32.
    178. Mialhe E, Bachère E, Boulo V, Cadoret JP. Strategy for research and international cooperation in marine invertebrate pathology, immunology and genetics. Aquaculture, 1995; 132: 33-41.
    179. 童竞亚.免疫球蛋白基因超家族.赣南医学院学报.1994;14(1):66-77.
    180. Mendoza HL, Fayeb I. Physiological aspects of the immunoglobulin superfamily in invertebrates. Dev. Comp. Immunol., 1999; 23: 359-374.
    
    
    181. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, et al. Initial sequencing and analysis of the human genome. Nature, 2001; 409: 860-921.
    182. Br mmendorf T, Lemmon V. Immnoglobulin superfamily receptors: cis-interaction, intracellular adapters and alternative splicing regulate adhesion. Curr. Opin. Cell Biol. 2001; 13: 611-618.
    183. Williams AF, Barclay AN. The immunoglobulin super- family-domains for cell surface recognition. Ann Rev Immunol. 1988; 6: 381-405.
    184. Pigot R, Power C. The adhesion molecule facts book. London: Academic Press, 1993.
    185. Harpaz Y, Chotia C. Many of the immunoglobulin superfamily domains in cell adhesion molecules and sur-face receptors belong to a new structural set which is close to that containing variable domains. J. Mol Biol, 1994; 238: 528-539.
    186. Andersson K, Stainer H. Strucutre and properties of protein P4 the major bacteria-inducible protein in pupae of Hyalophora cecropia. Insect Biochem, 1987; 17: 133-140.
    187. Ladendor. NE, Kanost MR. Bacteria-induced protein P4 (hemolin) from Manduca Sexta: a member of the immunoglobulin superfamily which can inhibit hemocyte aggregation. Arch Insect Biochem Physiol, 1991; 18: 285-300.
    188. Shin SW, Park S-S, Park D-S, Kim MG, Kim SC, Brey PT, Park H-Y. Isolation and characterization of immune-related genes from the fall webworm, Hyphantria cunea, using PCR-based di.erential display and subtractive cloning. Insect Biochem Mol Biol, 1998; 28: 827-837.
    189. Bettencourt R, Lanz-Mendoza H, Lindquist KR, Faye I. Cell adhesion properties of hemolin, an insect immune protein in the Ig superfamily. Eur J Biochem, 1997; 25:630-637.
    190. Schmidt O, Faye I, Lindstro m Dinettz I, Sun S-C. Specific recognition by insect hemolin. Comp Dev Immunol, 1993; 17: 195-200.
    191. Lanz-Mendoza H, Bettencourt R, Fabbri M, Faye I. Regulationof the insect immune response: the effect of hemolin on cellular immune mechanisms. Cell
    
    Immunol, 1996; 169: 47-54.
    192. Hoek RM, Smit AB, Frings H, Vink JM, de Jong-Brink M, Geraerts WPM. A new Ig-superfamily member, molluscan defence molecule (MDM) from Lynnea stagnalis, is down-regulated during parasitosis. Eur J Immunol, 1996; 26: 939-944.
    193. Nelson RE, Fessler LI, Takagi Y, Blumberg B, Keene DR, Olson PF, Parker CG, Fessler JH. Peroxidasin: a novel enzyme-matrix protein of Drosophila development. EMBO J, 1994; 13: 3438-3447.
    194. Ramos RGP, Igloi GL, Lichte B, Bauman U, Maier D, Schneider T, Brandsta tter JH, Fro hlich A, Fischbach KF. The irregular chiasm C-roughest locus of Drosophila, which affects axonal projections and programmed cell death, encodes a novel immunoglobulin-like protein. Genes Develp, 1993; 7: 2533-2547.
    195. Seeger MA, Ha.ey L, Kaufman TC. Characterization of amalgam: a member of the immunoglobulin superfamily from Drosophila. Cell, 1988; 55:589-600.
    196. Karlstrom RO, Wilder LP, Bastiani MJ. Lachesin: an immunoglobulin superfamily protein whose expression correlates with neurogenesis in grasshopper embryos. Development, 1993; 118: 509-552.
    197. Garbe JC, Yang E, Gristrom JW. IMPL-2: an essential secreted immunoglobulin family member implicated in neural and ectodermal development in Drosophila. Development, 1993; 119: 1237-1250.
    198. Bieber AJ, Snow PM, Horstch MN, Pate NH, Jacobs JR, Traquina ZR, Schilling J, Goodman CS. Drosophila neuroglian: a member of the immunoglobulin superfamily with extensive homology to the vertebrate neural adhesion molecule L1. Cell, 1989; 59: 447-460.
    199. Horstch M, Goodman SC. Cell and substrate adhesion molecules in Drosophila. Ann Rev Cell Biol, 1991; 7: 505-557.
    200. Pulido D, Campuzano S, Koda T, Modolell J, Barbacid M. Dtrk, a Drosophila gene related to the trk family of neurotrophin receptors, encodes a novel class of neuronal cell adhesion molecule. EMBO J, 1992; 11: 391-404.
    
    
    201. Butler SJ, Ray S, Hiromi Y. klingon, a novel member of the Drosophila immunoglobulin superfamily, is required for the development of R7 photoreceptor neuron. Development, 1997; 124:781-792.
    202. Bailey CH, Chen M, Keller F, Kandel ER. Serotonin- mediated endocytosis of apCAM: an early step of learning-related synaptic growth in Aplysia. Science, 1992; 256: 645-648.
    203. Leung-Hagesteijn Ch, Spence AM, Stem BD, Zhou Y, Su M, Hedgecock EM, Culotti JG. UNC-5, a transmembrane protein with immunoglobulin and thrombospondin type 1 domains, guides cell and pioneer axon migrations in C. elegans. Cell, 1992; 71:289-299.
    204. Prater CA, Plotkin J, Jaye D, Frazier WA. The properdin-like type 1 repeats of human thrombospondin contain a cell attachment site. J Cell Biol, 1991; 112: 1031-1040.
    205. Zallen JA, Yi BA, Bargmann CI. The conserved immunoglobulin superfamily member sax-3/Robo directs multiple aspects of axon guidance in C. elegans. Cell, 1998; 92: 217-227.
    206. Pancer Z, Skorokhod A, Blumbach B, Mu ller EG. Multiple Ig-like featuring genes divergent within and among individuals of the marine sponge Geodia cydonium. Gene, 1998; 207: 227-233.
    207. Benian GM, Ki. JE, Neckelmann N, Moerman DG, Waterston RH. Sequence of an unusually large protein implicated in regulation of myosin activity in C. elegans. Nature, 1989; 342: 42-50.
    208. Glazer L, Shilo B-Z. The Drosophila FGF receptor homolog is expressed in the embryonic tracheal system and appears to required for directed tracheal cell extension. Genes Dev, 1991; 5: 697-705.
    209. Streuli M, Kruger NX, Hall LR, Schlossman SF, Saito H. A new member of the immunoglobulin superfamily that has a cytoplasmic region homologous to the leukocyte common antigen. J Exp Med, 1988; 168: 1523-1530.
    210. Streuli M, Krueger NX, Tsai AYM, Saito H. A family of receptor-linked protein tyrosine phosphatases in humans and Drosophila. Proc Natl Acad Sci
    
    USA, 1989; 86: 8698-8702.
    211. Zhang SM, Leonard PM, Adema CM, Loker ES. Parasite-responsive IgSF members in the snail Biomphalaria glabrata: characterization of novel genes with tandemly arranged IgSF domains and a fibrinogen domain. Immunogenetics, 2001; 53 (8): 684-694.
    212. Bullard B, Linke WA, Leonard K. Varieties of elastic protein in invertebrate muscles. J Muscle Res Cell Motil, 2002; 23 (5-6): 435-447.
    213. Laird DJ, De Tomas AW, Cooper MD, Weissman IL. 50 million years of chordate evolution: Seeking the origins of adaptive immunity. Commentary, 2000; 979 (13): 6924-6926.
    214. Edelman GM. CAMs and Igs. Cell adhesion and evolutionary origins of immunity. Immunol Rev.1987; 100: 11-45.
    215. Teunissen OSP, Faber R, Booms GHR, Latscha T, Boon JH. Influence of vaccination of vibriosis resistance of giant black tiger shrimp Penaeus monodon Fabricius. Aquaculture, 1998; 164:359-366.
    216. Keith IR, Paterson WD, Airorie D, Boston LD. Defence mechanisms of the American lobster (Homarus americanus) vaccination provided protection against galfkemia infections in laboratory and field trials. Fish Shellfish Immunol, 1992; 2: 109-119.
    217. Song YL. Hsieh YT. Immunostimulation of tiger shrimp Penaeus monodon hemocytes for generation of microbicidal substances — analysis of reactive oxygen species. Dev Comp Immunol, 1994; 18: 201-209.
    218. Itami T, Asano M, Toushige K, Kubono K, Nakagawa A, Takeno N, Nishimura H, Maeda M, Kondo M, Takahashi Y. Enhancement of disease resistance of kuruma shrimp, Penaeus japonicus, after oral administration of peptidoglycan derived from Bifidobacterium thermophilura. Aquaculture, 1989; 164: 238-277.
    219. Little TJ, O'Connor B, Colegrave N, Watt K, Read AF. Maternal transfer of strain-specific immunity in an invertebrate. Curr. Biol., 2003; 13: 489-492.
    220. Hildemann WH, Bigger CH, Johston IS, Jockiel PL. Characteristics of
    
    transplantation immunity in the sponge Calyspongia diffusa. Transplantation, 1980a; 30: 362-367.
    221. Hildemann WH, Jockiel PL, Bigger CH, Johston IS. Allogeneic polymorphism and alloimmune memory in coral, Montipora Oerrucosa. Transplantation, 1980b; 30: 297-301.
    222. Hartman RS, Karp RD. Short-term immunologic memory in the allograft response of the American cockroach. Transplantation, 1989; 47: 920-922.
    223. Raftos DA. Allorecognition and humoral immunity in tunicates. Ann. N. Y. Acad. Sci., 1994; 712: 227-244.
    224. Arala-Chaves M, Sequeira T. Is there any kind of adaptive immunity in invertebrates? Aquaculture, 2000; 191: 247-258.
    225. Medzhitov R, Preston-Hulburt P, Janeway CA Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature, 1997; 388: 394-397.
    226. Gay NJ, Keith FJ. Drosophila Toll and IL-1 receptor. Science, 1991; 351: 355-356.
    227. Hultmark D. Insect immunology: ancient relationships. Nature, 1994; 367: 116-117.
    228. Medzhitov R, Preston-Hulburt P, Janeway CA Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature, 1997; 388: 394-397.
    229. Sun SC, Lindstrom I, Boman HG, Faye I, Schmit O. Hemolin: an insect immune protein belonging to the immunoglobulin superfamily. Science, 1990; 250: 1729-1732.
    230. Sun SC, Faye I. Affinity purification and characterization of CIF, an insect immunoresponsive factor with NF-kB-like properties. Comp. Biochem. Phys., 1992; 103B: 225-233.
    231. Klein J. Homology between immune responses in vertebrates and invertebrates: does it exist? Scand. J. Immunol., 1997; 46: 558-564.
    232. Hughes AL. Protein phylogenies provide evidence of a radical descontinuity
    
    between arthropod and vertebrate immune systems. Immunogenetics, 1998; 47: 283-296.
    233. Woychik RP, Klebig ML, Justice MJ, Magnuson TR, Avner ED, and Avrer ED. Functional genomics in the post-genome era. Mut Res, 1998; 400: 3-14.
    234.陈竺,李伟,俞曼,陈赛娟.人类基因组计划的机遇和挑战Ⅰ—从结构基因组学到功能基因组学.生命的化学,1998;18(5):5-13.
    235.陈竺,李伟,俞曼,陈赛娟.人类基因组计划的机遇和挑战Ⅱ—从结构基因组学到功能基因组学.生命的化学,1998;18(5):14-17.
    236. Swinbanks D. Gorernment backs proteome propasal. Nature, 1995; 378: 653.
    237. Wasinger VC, Cordwell SJ, Cerpa-Poljak A. Progress with gene-product mapping of the mollicutes: Mycoplasma genitalism. Electrophoresis, 1995; 16: 1090-1094.
    238. Humphery-Smith I, Cordwell SJ, Blackstock WP. Proteome research: Complementarity and limitation with respect to the RNA and DNA worlds. Electrophoresis, 1997; 18: 1217-1242.
    239.王志珍,邹承鲁.后基因组—蛋白质组研究.生物化学与生物物理学报,1998;30(6):533-539.
    240.卫功宏,印莉萍.蛋白质组学相关概念与技术及其研究进展.生物学技术,2002;19(4):1-3.
    241. Roepstorff P. Mass spectrometry in protein studies from genome to function. Curr. Opin. Biotechnol., 1997; 8: 6-13.
    242.钟南.基因组学在基因组计划中的作用.生命的化学,1999;19(1):9-12.
    243. Fpiru EF, Gpffeau A. Two-hydrid systemic screening of yeast proteome. Bioassays, 1998; 20 (1): 1-5.
    244. Muzio M, Chinnaiyan AM, Kischkel FC. FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing Signaling complex. Cell, 1996; 85 (6): 817-827.
    245. Mercurio F, Zhu HY, Murray BW, Shevchenko A, Bennett BL, Li JW, Young DB, Barbosa M, Mann M. IKK-1 and IKK-2: Cytokine-activated I kappa B kinases essential for NF-kappa B activation. Science, 1997; 278 (5339): 860-866.
    
    
    246. Houry WA, Frishman D, Eckerskorn C, Lottspeich F, Hartl FU. Identification of in vivo substrates of the chaperonin GroEL. Nature, 1999; 402: 147-154.
    247. Mogk A, Tomoyasu T, Goloubinoff P, Rudiger S, Roder D, Langen H, Bukau B. Identification of thermolabile Escherichia coli proteins: prevention and reversion of aggregation by DnaK and ClpB. EMBO J, 1999; 18: 6934-6949.
    248. Molloy MP, Herbert BR, Slade MB, Rabilloud T, Nouwens AS, Williams KL, Gooley AA. Proteomic analysis of the Escherichia coli outer membrane. Eur J Biochem, 2000; 267(10): 2871-2881.
    249.徐新来,安道昌,王芷,李青,付红波.人类基因组计划和生物信息学.高技术通讯,1998,8:60-62.
    250. The U.S. Human Genome Project: The First Five Years FY 1991-1995. by NIH and DOE.
    251.田云,卢向阳,彭丽莎,徐锋.生物信息学及其研究现状.生命科学研究,2002;6(4):153-158.
    252. Bairoch A, Apweiler R. The SWISS-PROT protein sequence data bank and its supplement TrEMBL in 1998. Nucleic Acid Res, 1998; 26: 38-42.
    253. Baker WC, Garavelli JS, Haft DH, Hunt LT, Marzec CR, Orcutt BC, Srinivasarao GY, Yeh LSL, Ledley RS, Mewes HW, Pfeiffer F, Tsugita A. The PIR-International Protein Sequence Database. Nucleic Acid Res, 1998; 26: 27-32.
    254. McGarvey PB, Huang HZ, Barker WC, Orcutt BC, Garavelli JS, Srinivasarao GY, Yeh LL, Xiao C, Wu CH. PIR: a new resource for bioinformatics Bioinformatics, 2000; 16 (3): 290-291.
    255. Bairoch A, Bucher P, Hofmann K. The PROSITE database, its status in 1997. Nucleic Acid Res, 1997; 25: 217-221.
    256. Henikoff S, Henikoff JG. Protein family classification based on searching a database of blocks. Genomics, 1994; 19: 97-107.
    257. Attwood TK, Beck ME, Flower DR, Scordis P, Selley JN. The PRINTS protein fingerprint database in its fifth year. Nucleic Acid Res, 1998; 26:304-308.
    
    
    258. Baldi P, Brunak S, Frasconi P, Soda G, Pollastri P. Exploiting the past and the future in protein secondary structure prediction. Bioinformatics, 1999; 15 (11): 937-946.
    259. Murzin AG, Brenner SE, Hubbard T, Chothia C. SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol, 1995; 247 (4): 536-40.
    260.彭宣宪,万雅各,陈艳萍,何文英.健康人Ig M特异性激活补体类循环免疫复合物的研究.中国公共卫生学报,1994;13(1):45-47.
    261. Peng X.X, Luo W, Zhang JY, Wang SY, Lin SC. Rapid detection of Shigella species in environmental sewage by an immuno-capture PCR with universal primers. Appl. Environ Microbiol, 68, 2002; 2580-2583.
    262. O'Farrel PH. High resolution two-dimensional electrophoresis of proteins, J. Biol. Chem., 1975; 250: 4007-4021.
    263.夏其昌.蛋白质化学研究技术与进展.北京科学出版社,1997.
    264. Bergman AC, Benjamin T, Alaiya A, Waltham M, Sakaguchi K, Franzen B, Linder S. Identification of gel-separated tumor marker proteins by mass spectrometry. Electrophoresis, 2001; 21: 679-686.
    265. Sellos D, Lemoine S, Wormhoudt AV. Molecular cloning of hemocyanin cDNA from Penaeus vannamei (Crustacea, Decapoda): structure, evolution and physiological aspects. FEBS Letters, 1997; 407: 153-158.
    266.洪水根,胡友川,李祺福,夏传武,李筱泉.中国鲎血蓝蛋白研究.厦门大学学报(自然科学版),1997;36(5):763-768.
    267.康彬,童哲.一种利于蛋白质回收的快速SDS-聚丙烯酰胺凝胶电泳染色-脱色方法.生物化学与生物物理进展,2000;27(2):210-211.
    268.沈定霞,崔岩,赵丽萍,吴坚.对环丙沙星的肺炎克雷氏外膜蛋白图谱分析.中国抗生素杂志,1998;23(5):380-382.
    269. Ashida M. Purification and characterization of prophenoloxidase from hemolymph of the silkworm Bombyx mori. Archs Biochem Biophys, 1971; 144: 749-762.
    270. Johnson BA, Bonaventura C, Bonaventura J. Allosteric modulation of
    
    Callinectes sapidus hemocyanin by binding L-lactate. Biochemistry, 1984; 23, 872-878.
    271. Schapiro HC. Immunity in decapod crustaceans. Am. Zool. 1975; 15: 13-19.
    272.章跃陵,王三英,彭宣宪.虾类免疫学的基础和应用研究.海洋科学,2000;24(12):26-29.
    273. Axen R, Porath J, Ernback S. Chemical coupling of peptides and proteins to polysaccharides by means of cyanogen halides. Nature, 1967; 214 (95): 1302-1304.
    274. Murali S, Mullainadhan P, Arumugam M. Purification and characterization of a natural agglutinin from the serum of the hermit crab Diogenes affinis. Biochim. Biophys. Acta, 1999; 1472: 13-24.
    275. Tunkijjanukij S, Olafsen JA. Sialic acid-binding lectin with antibacterial activity from the horse mussel: further characterization and immunolocalization. Dev. Comp. Immunol., 1998; 22 (2): 139-150.
    276.宋礼华,王荣海,付永标,杨玲,杜贤宇,徐键.单克隆抗体亲和层析纯化人白细胞干扰素的研究.生命科学,1996;8(3):47-48.
    277.裴炎,卢晓风,杨星勇,程惊秋,蒋书桶.免疫亲和层析法纯化棕尾别麻蝇(Sarcophagaperegrina)幼虫血淋巴凝集素.中国生物化学与分子生物学报,1999;15(4):633-636.
    278. Hahn UK, Fryer SE, Bayne CJ. An invertebrate (Molluscan) plasma protein that binds to vertebrate immunoglobulins and its potential for yielding false-positives in antibody-based detection systems. Dev. Comp. Immunol., 1996; 20 (1): 39-50.
    279.万晶宏,贺福初.蛋白质组技术的研究进展.科学通报,1999;44(9):904-911.
    280. Chakravarti DN, Fiske MJ, Fletcher LD, Zagursky RJ. Application of genomics and proteomics for identification of bacterial gene products as potential vaccine candidates. Vaccine, 2001; 19: 601-612.
    281. Roepstorff P. Mass spectrometry in protein studies from genome to function. Curr. Opin. Biotechnol., 1997; 8: 6-13.
    
    
    282.成海平,钱小红.蛋白质组研究的技术体系及其进展.生物化学与生物物理进展,2000;27(6):584-588.
    283. Veith PD, Talbo GH, Slakeski N, Reynolds EC. Identification of a novel heterodimeric outer membrane protein of Porphyromonas gingivalis by two-dimensional gel electrophoresis and peptide mass fingerprinting. Eur. J. Biochem., 2001; 268: 4748-4757.
    284. Chakravarti DN, Fiske MJ, Fletcher LD, Zagursky RJ. Application of geneomics and proteomics for identification to bacterial gene prodects as potential vaccine candidates. Vaccine, 2001; 19: 601-612.
    285. Roitt I, Brostoff J, Male D. Immunology. Mosby Year Book Europe Ltd.3rd, 1993; pp: 144.
    286. Zenteno R, Vaquez L, Claudia S, Pereyra A, Slomianny MC, Bouquelet S, Zenteno E. Chemical characterization of the lectin from the freshwater prawn Macrobrachiurn rosenbergii (De Man) by MALDI-TOF. Comp.Biochem. Physiol. Part B, 2000; 127: 243-250.
    287.彭宣宪.双特异性免疫复合物的研究进展.上海免疫学杂志,1996;16(5):315-317.
    288. Khayat M, Funkenstein B, Tietz A, Lubzens E. In vivo, in vitro and cell-free synthesis of hemocyanin in the shrimp Penaeus semisulcatus (de Haan). Comp. Biochem.Physiol., 1995; 112B: 31-38.
    289. Engel DW, Brouwer M, Mercaldo-Allen R. Effects of molting and environmental factors on trace metal body-burdens and hemocyanin concentrations in the American lobster, Homarus americanus. Mar. Environ. Res., 2001; 257-269.
    290. Durstewitz G, Terwilliger NB. Developmental changes in hemocyanin expression in the dugeness crab, Cancer magister. J. Biol. Chem., 1997; 272 (7): 4347-4350.
    291. Lehnert SA, Johnson SE. Expression of hemocyanin and digestive enzyme messenger RNAs in the hepatopancreas of Black Tiger shrimp Penaeus monodon. Comp. Biochem. Physiol. Part B., 2002; 133: 163-171.
    
    
    292. Burmester T. Molecular evolution of the arthropod hemocyanin superfamily. Mol. Biol. Evol., 2001; 18: 184-195.
    293. Burmester T. Identification, molecular cloning, and phylogenetic analysis of non-respiratory pseudo-hemocyanin of Homarus americanus. J. Biol. Chem., 1999; 274 (19): 13217-13222.
    294. van Holde KE, Miller KI. Haemocyanins. Q. Rev. Biophys., 1982; 15: 1-29.
    295. Van Holde KE, Miller KI, Decker H. Hemocyanins and invertebrate evolution. J. Biol. Chem. 2001; 276 (19): 15563-15566.
    296.吕宝忠,王健,王顺德.血蓝蛋白在非线性分子进化上的意义.大自然探索,1998;17(64):22-26.
    297. Terwilliger NB, Terwilliger RC, Applestein M, Bonaventura C, Bonaventura J. Subunit structure and oxygen binding by hemocyanin of the isopod Ligia exotica. Biochemistry, 1979; 18 (1): 102-108.
    298. Lang WH, van Holde KE. Cloning and sequencing of octopus dofleini hemocyanin cDNA: derived sequences of functional units ode and odf. PNAS, 1991; 88: 244-248.
    299. Figueroa-soto CG, de la Barca AMC, Vazquez-Moreno L, Higuera-Ciapara I, Yepiz-Plascencia G. Purification of hemocyanin from white shrimp (Penaeus vannamei Boone) by immobilized metal affinity chromatography. Comp. Biochem. Physiol., 1997; 117B: 203-208
    300. Terwilliger NB. Function adaptations of oxygen-transport proteins. J. Exp. Biol., 1998; 201: 1085-1098.
    301. Jaenicke E, Fll R, Decker H. Spider hemocyanin binds ecdysone and 20-OH-ecdysone. J. Biol. Chem., 1999; 274 (26): 34267-34271.
    302. Paul RJ, Pirow R. The physiological significance of respiratory proteins in invertebrates. Zoology, 1998; 100: 319-327.
    303. Zlateva T, Muro PDI, Salvato B, Beltramini M. The o-diphenol oxidase activity of arthropod hemocyanin. FEBS Lett., 1996; 384: 251-254.
    304. Decker H, Rimke T. Tarantula Hemocyanin Shows Phenoloxidase Activity. J. Biol. Chem., 1998; 273: 25889-25892.
    
    
    305. Salvato B, Sanamaria M, Beltramini M, Alzuet G, Casella L. The enzymatic properties of Octopus vulgaris hemocyanin: o-diphenol oxidase. Biochemistry, 1998; 37:14065-14077.
    306. Decker H, Ryan M, Jaenicke E, Terwilliger N. SDS-induced phenoloxidase activity of hemocyanins from Limulus polyphemus, Eurypelma californicum, and Cancer magister. J. Bio. Chem., 2001; 276: 17796-17799.
    307. Adachi K, Hirata T, Nagai K, Sakaguchi M. Hemocyanin a most likely inducer of black spots in kuruma prawn Penaeus japonicus during storage. J. Food Sci., 2001; 66: 1130-1136.
    308. Nagai T, Kawabata S. A link between blood coagulation and prophenol oxidase activation in arthropod host defense. J. Biol. Chem., 2000; 275: 29264-29267.
    309. Nagai T, Osaki T, Kawabata S. Functional Conversion of Hemocyanin to Phenoloxidase by Horseshoe Crab Antimicrobial Peptides, J. Biol. Chem., 2001; 276: 27166-27170.
    310. Duvic B, Sderhill, K. Purification of a β-1,3-glucan binding protein membrane receptor from blood cells of the crayfish Pacifastacus leniusculus. Eur. J. Biochem. 1992; 207: 223-228.
    311. Yoshida H, Kinoshita K, Ashida M. Purification of a peptidoglycan recognition protein from haemolymph of the silkworm, Bombyx mori. J. Biol. Chem., 1996; 271: 13854-13860.
    312. Vargas-Albores F, Yepiz-Plascencia G. Beta glucan binding protein and its role in shrimp immune response. Aquaculture, 2000; 13-21.
    313. Jomori T, Natori S. Function of the lipopolysaccharide-binding protein of Periplaneta americana as an opsonin. FEBS, 1992; 296: 283-286.
    314. Natori S, Kubo T. Role of lectins in development and morphogenesis in insects. In: Sderhill, K, Iwanaga S, Vasta GR Eds, New Directions in Invertebrate Immunology. SOS Publications, Fair Haven, 1996; pp: 175-187.
    315. Andersen AS, Hansen PH, Schiffer L, Kristensen C. A new secreted insect protein belonging to the immunoglobulin superfamily binds insulin and related
    
    peptides and inhibits their activities. J.Biol Chem., 2000; 275 (22): 16948-16953.
    316. Ohlin M, Borrebaeck CAK. Low affinity, antibody binding of an Escherichia coli-derived component. FEMS Immunol. Med. Microbiol. 1996; 13: 161-168.
    317.赵剑华,王秀琴,刘芝华.功能基因组学的研究内容与方法.生物化学与生物物理进展.2000;27:6-8.
    318. Oleszewski M, Gutwein P, von der Lieth W, Rauch U, Altevogt P. Characterization of the L1-Neurocan-binding site. J. Biol Chem., 2000; 275 (44): 34478-34485.
    319. Conti A, Giuffrida MG, Napolitano L, Quaranta S, Bertino E, Coscia A, Costa S, Fabris C. Identification of the human B-casein C-terminal fragments that specifically bind to purified antibodies to bovine β-lactogolubin. J. Nutr. Biochem., 2000; 11: 332-337.
    320. Fernández JA, Heeb MJ. Griffin JH. Identification of residues 413-433 of plasma protein S as essential for binding to C4b-binding protein. J. Biol Chem., 1993; 268 (22): 16788-16794.
    321.陆庆泉,刘吉山.禽致病性大肠杆菌外膜蛋白研究现状与进展.中国兽药杂志,2002;36(7):40-43.
    322.赵香汝.细菌外膜蛋白的结构与功能.中国兽医科技,1999;29(10):20-23.
    323.鱼艳荣,刘希成,张彦明,王晶钰.革兰氏阴性菌外膜蛋白研究进展.动物医学进展,2000;21(2):35-39.
    324. Muthukkaruppan VR, Nandakumar K S, Palanivel V. Monoclonal antibodies against Salmonella porins: generation and characterization. Immunol. Lett., 1992; 33: 201-206.
    325. Delcour AH. Function and modulation of bacterial porins: insights from electrophysiology. FEMS. Microbiol. Lett., 1997; 151:115-123.
    326. Apirakaramwong A, Fukuchi JI, Kashiwagi K, Kakinuma Y, Ito E, Ishihama A, Igarashi K. Enhancement of cell death due to decrease in Mg2+ uptake by OmpC (cation-selective porin) deficiency in ribosome modulation factor-deficient mutant. Biochem. Biophys.Res.Commun., 1998; 251: 482-487.
    327. Vogt J, Schulz GE. The structure of the outer membrane protein OmpX from
    
    Escherichia coli reveals possible mechanisms of virulence. Structure Fold Des, 1999; 7:1301-1309.
    328. Meesas J, Welch R, Erickson JW, Gross CA. Identification and characterization of an outer membrane protein, OmpX, in Escherichia coli that is homologous to a family of outer membrane proteins including Ail of Yersinia enterocolitica. J. Bacteriol., 1995;177: 799-804.
    329. Pacheco SV, Gonzlez OG, Contreras GLP. The lom gene of bacteriophage lambda is involved in Escherichia coli K12 adhesion to human buccal epithelial cells. FEMS. Microbiol. Lett., 1997;156:129-132.
    330. Heffernan E J, Reed S, Hackett J, Fierer J, Roudier C, Guiney D. Mechanism of resistance to complement-mediated killing of bacteria encoded by the Salmonella typhimurium virulence plasmid gene rck. J.Clin.Invest., 1992; 90: 953-964.
    331. Stoorvoge J, van Bussel MJAWM, van de Klundert JAM. Cloning of a β-lactam resistance determinant of Enterobacter cloacae affecting outer membrane proteins of Enterobacteriaceae. FEMS.Microbiol.Lett.,1987; 48: 277-281.
    332. Kort G, Salimans MMM, van der Bent-Klootwijk P, van Heest C, van Bussel MJAWM, van de Klundert JAM. Glycosylation of the Enterobacter cloacae outer membrane protein OmpX in eukaryotic cells. FEMS.Microbiol. Lett.,1999; 177: 305-311.
    333. Kort G, van der Bent-Klootwijk P, van de Klundert JAM. Immuno-detection of the virulence determinant OmpX at the cell surface of Enterobacter cloacae. FEMS.Microbiol. Lett. I998; 158:115-120.
    334. Decker H, Tuczek F. Tyrosinase/catecholoxidase activity of hemocyanins: structural basis and molecular mechanism. Trends Biochem Sci, 2000; 25, 392-397.
    335. Lin J, Huang SX, Zhang QJ. Outer membrane proteins: key players for bacterial adaptation in host niches. Microbes Infect., 2002; 4: 325-331.
    336. Yamaguchi M, Ogawa T, Muramoto K, Kamio Y, Jimbo M, Kamiya H.
    
    Isolation and characterization of a mannan-binding lectin from the freshwater cyanobacterium (Blue-Green Algae) Microcystis viridis. Biochem. Biophys. Res. Commun., 1999; 265: 703-708.
    337. Wang HX, Gao JQ, Ng TB. A new lectin with highly potent antihepatoma and antisarcoma activities from the Oyster Mushroom Pleurotus Ostreatus. Biochem. Biophys. Res. Commun. 2000; 275: 810-816.
    338. Stoeva S, Idakieva K, Rachev R, Voelter W, Genov N. Amino-terminal oxygen-binding functional unit of the Rapana thomasiana grosse (gastropod) hemocyanin: carbohydrate content, monosaccharide composition and amino acid sequence studies. Comp. Biochem. Physiol., 1997; 117B (1): 101-107.
    339. Dolashka-Angelova P, Schick M, Stoeva S, Voelter W. Isolation and partial characterization of N-terminal function unit of subunit RtH1 from Rapana thomasiana grosse hemocyanin. Int. J. Biochem. Cell Biol., 2000; 32: 529-538.
    340. Idakieva K, Stoeva S, Pervanova K, Genov N, Voelter W. Arrangement of functional units within the Rapana thomasiana hemocyanin subunit RtH2. Biochim. Biophys. Acta., 2000; 149: 175-184.
    341. Terwilliger NB. Functional adaptations of oxygen-transport proteins. J. Exp. Biol., 1998; 201: 1085-1089.
    342. Brouwer M, Syring R, Brouwer TH. Role of copper-specific metallothionein of the blue crab, Callinectes sapidus, in copper metabolism associated with degradation and synthesis of hemocyanin. J. Inorg. Biochem., 2002; 88: 228-239.
    343. Syring RA, Brouwer TH, Brouwer M. Cloning and sequencing of cDNAs encoding for a novel copper-specific metallothionein and two cadmiuminducible metallothioneins from the blue crab Callinectes sapidus. Comp. Biochem. Physiol. Part C, 2000; 125: 325-332.
    344. Adamczewska AM, Morris S. The functioning of the haemocyanin of the Terrestrial Christmas island red crab Gecarcoider natalis and roles for organic modulators. J. Exp. Biol., 1998; 201: 3233-3244.
    345. Takano Y, Kubo S,Onishi T, Isobe H, Yoshioka Y, Yamaguchi K. Theoretical studies on the magnetic interaction and reversible dioxygen binding of active site
    
    in hemocyanin. Chem. Phys. Lett., 2001; 335: 395-403.
    346. Adema CM, Hertel LA, Miller RD, Loker ES. A family of fibrinogen-related proteins that precipitates parasite-derived molecules is produced by an invertebrate after infection. Proc. Natl. Acad. Sci. USA., 1997; 94: 8691-8696.
    347. Moullac GL, Groumellec ML, Ansquer D, Froissard S, Levy P, Aquacop. Haematological and phenoloxidase activity changes in the shrimp Penaeus stylirostris in relation with the moult cycle: protection against vibriosis. Fish Shellfish Immunol., 1997; 2: 227-234.
    348.罗日详.中国对虾凝集素活力及弧菌的诱导动力学.海洋学报,1997;19(4):117-120.
    349. Terwilliger NB, Dumler K. Ontogeny of decapod crustacean hemocyanin: effects of temperature and nutrition. J. Exp. Biol., 2001; 204: 1013-1020.
    350. Engel DW, Brouwer M, Mercaldo-Allen R. Effects of molting and environmental factors on trace metal body-burdens and hemocyanin concentrations in the American lobster, Homarus americanus. Mar. Environ. Res., 2001; 52:257-269.
    351. Yoganandhan K, Thirupathi S, Sahul Hameed AS. Biochemical, physiological and hematological changes in white spot syndrome virus-infected shrimp, Penaeus indicus Aquaculture, 2003; 221: 1-11.
    352. Sritunyalucksana K, Cerenius L, Sderhll K. Molecular cloning and characterization of prophenoloxidase in the black tiger shrimp, Penaeus monodon. Dev. Comp. Immunol., 1999; 23: 179-186.
    353. Marchalonis JJ, Schluter SF. Immunoproteins in evolution. Dev Comp Immunol, 1989; 13 (4): 285-301.
    354. Kamiio K, Kamei M, Iwase T, Namura S, Wago H, Moro I. Expression of joining (j) chain in the silkworm, Bombye mori. Abstracts of the 7th congress of the ISDCI: Session P. pp: 211.
    355. Moro I, Iwase T, Takahashi T, Mestecky J. The joining chain in invertebrates. Abstracts of the 7th congress of the ISDCI: Session O.pp: 201.
    356. Schartau W, Eyerle F, Reisinger P, Geisert H, Storz H, Linzen B. Hemocyanins
    
    in spiders, ⅩⅨ. Complete amino-acid sequence of subunit d from Eurypelma californicum hemocyanin, and comparison to chain e. Hoppe Seylers Z Physiol Chem, 1983; 364 (10): 1383-409.
    357. Hughes AL. Evolution of the arthropod prophenoloxidase/hexamerin protein family. Immunogenetics, 1999; 49 (2): 106-14.
    358. Kusche K, Ruhberg H, Burmester T. A hemocyanin from the Onychophora and the emergence of respiratory proteins. PNAS, 2002; 99 (16): 10545-10548.
    359. Terwilliger NB, Dangott L, Ryan M. Cryptocyanin, a crustacean molting protein: Evolutionary link with arthropod hemocyanins and insect hexamerins. Biochemistry, 1999; 96: 2013-2018.
    360. Decker H, Terwilliger N. Cops and robbers: putative evolution of copper oxygen-binding proteins. J. Exp. Biol., 2000; 203: 1777-1782.
    361. Morrison R, Mason K, Frost-Mason S. A cladistic analysis of the evolutionary relationships of the members of the tyrosinase gene family using sequence data. Pigment Cell Res, 1994; 7(6): 388-393.
    362. Rompel A, Fischer H, Meiwes D, Buldt-Karentzopoulos K, Dillinger R, Tuczek F, Witzel H, Krebs B. Purification and spectroscopic studies on catechol oxidases from Lycopus europaeus and Populus nigra: evidence for a dinuclear copper center of type 3 and spectroscopic similarities to tyrosinase and hemocyanin. J Biol Inorg Chem, 1999; 4 (1): 56-63.
    363. Stoeva S, Dolashka P, Hristova R, Genov N, Voelter W. Subunit composition and N-terminal analysis of arthropod hemocyanins. Comp. Biochem. Physiol. Part B, 1999; 122: 69-75.
    364. Edelman GM, Cunningham BA, Gall WE, Gottlieb PD, Rutishauser U, Waxdal MJ. The covalent structure of an entire γ G immunoglobulin molecule. Proc. Natl. Acad. Sci. U.S.A., 1969; 63: 78-85.
    365. Hill RL, Delaney R, Fellows RE, Lebovitz HE. The evolutionary origins of the immunoglobulins. Biochemistry, 1966; 56: 1762-1769.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700