用户名: 密码: 验证码:
SQR 9微生物有机肥防治黄瓜土传枯萎病的效应与机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄瓜枯萎病是一种土传病害,由致病性的尖孢镰刀菌黄瓜专化型Fusariutm. oxysporum f. sp. cucumerinum J. H. Owen (FOC)引起,发病严重时田间病株率达50%以上,已成为困扰设施农业的重要病害。目前防治此类病害主要用化学农药,但化学农药的防治易造成环境污染、农药残留等问题,所以采用安全、高效、环境友好型生物防治成为有前景的另一选择。单纯使用菌株制剂抑制土传病害的效果往往有限,利用优质有机肥做载体,复合几种拮抗菌二次发酵后生产的微生物有机肥料,对连作障碍中枯萎病的生防效果较好。本文从拮抗菌的筛选鉴定、抗菌物质的分离提纯、定殖情况、诱导植物产生系统抗性、土壤微生物区系的变化等方面对微生物有机肥防治黄瓜枯萎病进行了较为系统的研究。
     采用传统的形态、生理生化特性分析和分子生物学的方法对筛选的拮抗细菌SQR9进行了鉴定,确定其为枯草芽孢杆菌(Bacillus subtilis)。平板对峙实验表明菌株SQR9对黄瓜枯萎病致病菌尖孢镰刀菌的生长有抑制作用。以菌株SQR 9的基因组DNA为模板PCR扩增得到11个与脂肽抗生素surfactin, fengycin, iturin, bacillomycin, subtilosin, subtilisin的合成相关的基因。菌株SQR 9的发酵液进行酸沉淀、甲醇抽提后的粗提液稀释2倍,对尖孢镰刀菌菌丝的生长抑制率为54.9%,稀释1倍和未经稀释的粗提液,使黄瓜枯萎病病原菌孢子萌发率分别比对照降低了70.1%、83.6%。粗提液对多种土传病原菌有强烈的抑制作用。HPLC-ESI-MS分析表明,粗提液中检测出质荷比(M+H)+为1063.6、1017.5、1031.6、1045.6、1059.6以及1506.0、1435.0、1449.9、1463.9、1492.9、1477.9的两组物质,分别为bacillomycin和fengycin的同系物。
     将拮抗菌SQR 9与Trichoderma harzianum SQR T-037接种于合适的有机肥(OF)载体中,进行二次固体发酵,获得了3种分别含SQR 9 (BIO A)、含SQR T-037 (BIOB)、含SQR 9和SQR T-037 (BIO AB)的微生物有机肥。盆栽试验采用营养钵育苗和盆钵中同时添加肥料的方法,比较了有机肥与3种微生物有机肥防治黄瓜枯萎病的效果差异。结果表明,黄瓜移栽后60 d,3种生物有机肥处理的植株的地上部生物量提高了1.9-2.3倍,根系生物量平均提高了2.1倍,株高平均增加了72.7%。有机肥对黄瓜生长的促进作用不及微生物有机肥。对照黄瓜枯萎病的发病率最高(73%),BIOAB处理的发病率最低,仅为15%。施用有机肥处理的黄瓜发病率比对照降低了43.2%。
     采用Komada选择性培养基对根际土壤尖孢镰刀菌计数表明,黄瓜移栽后第60天,对照根际土的病原菌数量显著高于其它处理,达1.48×105CFU·g-1(根鲜重)。单施有机肥的黄瓜根际土的病原菌降低了84.6%,BIO AB处理的黄瓜根际土内的病原菌数量最低(1.2×103CFU·g-1(根鲜重))。用尖孢镰刀菌黄瓜转化型的特异引物扩增其基因组的一段DNA片段,对F. oxysporum数量进行Real-time PCR定量结果可知,各处理根际土的DNA拷贝数在3.4×105-1.32×107copy·g-1(根鲜重)之间,定量PCR的计数与传统的选择性培养基计数法所得到的结果呈现相同的规律,即施用微生物有机肥处理的根际土待测DNA拷贝数比对照显著降低,3种微生物有机肥处理的黄瓜根际土壤的病原菌DNA片段的拷贝数比对照低2个数量级。采用枯草芽孢杆菌选择性培养基在未接种的对照(CK)、有机肥(OF)、生物有机肥B (BIO B)处理的黄瓜根际土中没有分离出符合SQR 9特征的菌落,而在BIO A和BIO AB处理的植株根际能分别回收到6.03×104、1.62×104CFU·g-1(根鲜重)的SQR 9。用哈茨木霉的专用引物进行定量PCR扩增结果看来,未接种处理的土壤哈茨木霉数量为102-103copy·g-1(根鲜重),BIO B和BIO AB处理的木霉增殖至4.9-5.0 log copy·g-1 (根鲜重),表明B. subtilisSQR 9和T. harzianum SQR-T037已经在根际土成功定殖,因而能有效地阻止病原菌的入侵。盆栽试验还发现,待黄瓜植株枯萎病开始发病时(移栽后30 d),施用有机肥和生物有机肥处理的黄瓜叶片内的MDA含量比对照显著降低,生物有机肥处理的黄瓜过氧化氢酶(CAT)比对照提高了35.4-59.0%,过氧化物酶(POD)活性比对照提高了46.1-86.8%,超氧化物酶(SOD)活性平均提高了33.3%,苯丙氨酸解氨酶(PAL)活性提高了71.2-109.3%;微生物有机肥的施用还提高了黄瓜叶片中β-1,3-葡聚糖酶和几丁质酶的活性,两者比对照分别平均提高了58.5-86.5%、52.1-71.4%。定殖实验中,通过电转化的方法成功获得了具GFP标记和卡那霉素抗性的转化子SQR9-gfp,菌株SQR 9-gfp可以通过蘸根的方法在自然土壤中成功定殖,其在黄瓜根表的定殖数量最多(106-107CFU·g-1根),其次为根际土壤、根内,土体土中数量最少。菌体在根表和根际土的定殖有利于其在根表形成“防御层”抵御病原菌的侵染。主要定殖部位为主根伸长区和根毛区、主根与侧根的分岔处,根尖部分定殖很少,这可能是因为这些部位根系分泌物的组成与浓度有关,也表明菌体可能是在根形成后迁移过去的,而不是随根尖生长点扩散的。
     对BIO AB, OF和CK 3个土壤样品细菌16S rDNA进行454高通量测序,结果表明3个土壤样品的细菌群落构成相似,均以厚壁菌门(Firmicutes)含量最多、其次为变形菌门(Proteobacteria)、再次为放线菌门(Actinobacteria)。但不同处理间某些菌群数量有差异,样品BIO AB和OF中芽孢杆菌纲内的属含量最高的3个属都依次是Bacillaceae、Paenibacillaceae和Planococcaceae,而对照样品土壤中芽孢杆菌纲内的属含量最高的3个属依次是Bacillaceae. Paenibacillaceae和Clostridiaceae。BIO AB和OF中Bacillaceae的含量分别达37.82%和43.55%,而对照样品中Bacillaceae的含量则仅有20.51%。在属水平上,有机肥和生物有机肥中Bacillus、Methylocystaceae、Paenibacillus、Actinomadura和Actinoalloteichus属为优势菌,而对照土壤样品中的优势菌则为Bacillus, Asticcacaulis, Haliangium和Clostridium。BIO AB和OF中第一优势菌Bacillus的含量分别为35.24%、41.21%,对照中Bacillus的含量仅为13.06%。对全样品基于种群结构相似度指数Thetayc和种群重叠指数Jclass分别作的树状图。两种方法统计的结果表明,对照(CK)与有机肥(OF)、生物有机肥(BIO AB)处理的样品细菌群落有显著差异,而后两者之间的群落组成无差异。
Vascular wilt of cucumber, caused by Fusarium oxysporum f. sp. cucumerinum J. H. Owen (FOC) is an economically important disease throughout the world. The wilt incidence rate can reach 50% in field, leading to important losses of cucumber and limits production in many areas of the world. Chemical control of Fusarim wilt relies to a large extent on the use of fumigant methyl bromide and other fungicides. However, environmental pollution caused by the residues of these fungicides limited their use in many countries. Environmental-friendly biological control represents an alternative for protection of plants against Fusarium wilts. The introduction of antagonistic microorganisms into soil has been proposed for the biocontrol of soi-borne diseases. Currently, it is believed that a combination of antagonists with suitable mature compost may be more efficient in inhibiting disease than using single antagonistic microbes or compost alone. In this study, we screened a new biocontrol agent SQR 9 from cucumber rhizosphere soil. In order to exploit the mechanisms of Fusarim wilt control, we isolated and purified and the antifungal componds produced by SQR 9 and its rhizosphere colonization. The soil bacterial community responses and induced systemic resistance triggered by application of bio-organic fertilizers were also studied.
     The morphology, biochemical and physiological properties and the sequence of 16S rDNA indicated that SQR 9 was a Bacillus subtilis strain. The strain showed significantly depressed mycelium growth of Fusarium oxysporum f. sp. cucumerinum on PDA by the dual culture technique. A total of 11 gene fragments of the expected size correlated with antibiotic biosynthesis, including surfactin, fengycin, iturin, bacillomycin, subtilosin, subtilisin were efficiently amplified from B. subtilis SQR 9. The methanol-extracts from the culture broth supernant inhibited Fusarium oxysporum growth in in vitro assays. The mycelic growth inhibition rate was 54.9% when 2-fold diluted crude extract was used in PDA. When compared with the control, the spore germination rates were decreased by 70.1% and 83.6% by adding 1-fold diluted and original crude extract into the water-agar medium. The crude extact showed significant inhibitory activities against several soilborne pathogens in cylinder-plate assays. HPLC-ESI-MS analysis suggested that SQR 9 produced two groups of ion peaks with mass difference of 14 Da at m/z (M+H)+1063.6,1017.5, 1031.6,1045.6,1059.6 and 1506.0,1435.0,1449.9,1463.9,1492.9,1477.9. Concerning the literatures and our results, the two compounds might be bacillomycin and fengycin with structural analogs with different side chain length (-CH2-), respectively.
     The shuttle plasmid pHAPⅡwas used to introduce plasmid-borne gfp genes into SQR 9 by electroporation methods. The gyp-transformant SQR 9-gfp could be easily distinguished by their fluorescence when visualized by fluorescence microscopy. The SQR 9-gfp strain could be colonized on cucumber rhizosphere soil by root-dip inoculation. The strain colonized on cucumber root surfaces most (106-107CFU·g-1 root), followed by rhizosphere soil and internal roots, and the bulk soil. SQR 9-gfp strain was mainly distributed on elongation zone, the root hair zone of cucumber primer roots and the lateral root junctions. Very few cells were found in the root tips.
     Greenhouse experiments were carried out to evaluate the effect of organic fertilizer inoculated and solid-fermented with Bacillus subtilis SQR 9 and Trichoderma harzium SQR T-037 alone or in combination, hereby defined as bio-organic fertilizers BIO A, BIO B and BIO AB, on the control cucumber Fusarium wilt. The bioorganic fertilizer products were applied into soil during the nursery phase of cucumber seedlings followed by a second application to Fusarium-infested soil when cucumber seedlings were transplanted. Compared with the control treatment, the shoot and root biomass of bio-organic fertilizer-treated plants were promoted by 1.9 to 2.3-fold and 2.1-fold, respectively. Plant height was increased by 72.7%. The organic fertlizer also had a positive effect on plant growth, but the effect was less signifcantly than bio-organic fertilizers. The control treatment had the highest wilt disease incidence rate (73%) 60 d after transplantation. Biocontrol was also achieved by applying bioorganic fertilizers to Fusarium-infested soil. The best biocontrol was obtained by application of BIO AB, which significantly decreased the desease incidence (only 15%). And application of organic fertilizer also reduced the disease incidence (43.2%).
     Plate counting and Real-time PCR were used to detect the rhizosphere colonization by the pathogen and the two biological agents. Populations of FOC in BOF treated soil declined to 103 CFU·g-1 root after 60 days of inoculation, while those in control treatment remained high (2.48×10S CFU·g-1 root). Application of organic fertilizer alone reduced the FOC population by 84.6%, compared with the control. The treatment BIO AB had the lowest number of FOC (1.2×103 CFU·g-1 root). Real-time PCR analysis with SCAR primer FocF3 (F)/FocR7 (R) earlier designed to be F. oxysporum f. sp. cucumerinum specific was carried out to determine copy number of the target DNA present in cucumber rhizosphere. The DNA copy number varied from 3.4×105 to1.32x107 copy·g-1 root. In agreement with the plate counting, application of bio-organic fertilizers produced a suppressive effect on DNA copy number. The counts of FOC in BIO AB treatment were two orders of magnitude lower than the control. The level of rhizosphere colonization by B. subtilis SQR 9 was monitored in all treatments. Using B. subtilis-selective medium, No background Bacillus-like colonies were found on the non-inoculated plants (CK,OF and BIO B) roots, while the BIO A and BIO AB-treated roots were colonized by 6.03x104 and 1.62x104 CFU·g-1 fresh root B.subtilis 60 d after pathogen challenge.
     SQR-T037 ITS regions were amplified using primers and probe specific for Trichoderma harzium in Real-time Taqman PCR assay. The non-inoculated treatments had a backgroud growth of T. harzium of 102-103 copy·g-1 root, while in BIO B and BIO AB treatment, the number of T-037 reached 4.9-5.0 log copy·g-1 root, indicating that B. subtilis SQR 9 and T. harzianum SQR-T037 was successfully colonized in cucumber rhizosphere and thus effectively protected the plants from being attacked by pathogens.
     Before the outbreak of Fusarium wilt, the leaf MDA contents in organic fertilizer and bio-organic fertilizer treated cucumber plants were significantly lower than control 30d after transplantation. The activities of catalase (CAT), peroxidase (POD), superoxidase (SOD) and phenylalanine ammonia-lyase (PAL) were increased by 35.4-59.0%,46.1-86.8%, 33.3% and 71.2-109.3% by bio-organic fertilizer application, respectively, when compared with the control. The activities ofβ-1,3-glucanase and chitinase were also promoted by 58.5-86.5% and 52.1-71.4%, respectively.
     In order to study the bacterial community responses to application of organic fertilizer and bio-organic fertilizer, we analysed the bacterial richnesses, diversities and community compositons of soil samples in bio-organic fertilizer (BIO AB), organic fertilizer (OF) and the control (CK) treaments using 454-sequencing. The observed OTUs were distributed across three bacterial phyla, Firmicutes, Proteobacteria and Actinobacteria in all samples, suggesting the three samples may have similar bacterial composition. However, the number of OTUs of some groups within one phyla among each sample varied. In BIO AB and OF samples, Bacillaceae, Paenibacillaceae and Planococcaceae were the highest in OTUs in Bacilli class, while Bacillaceae, Paenibacillaceae and Clostridiaceae more abundant in CK treatment. The Bacillaceae accounted for 37.82% and 43.55% of OTUs in BIO AB and OF samples, while only 20.51% of OTUs in the control were assigned as Bacillaceae. On the genus level, Bacillus, Methylocystaceae, Paenibacillus, Actinomadura and Actinoalloteichus were the five most abundant genuses in BIO AB and OF soil samples, while Bacillus, Asticcacaulis, Haliangium and Clostridium were most abundant in the control. It is also noteworthy that Bacillus accounted for 35.24% and 41.21% in BIO AB and OF, respectively, while it only taken up for 13.06% in the control treatment. Moreover, the bacterial diversity of control was significantly different from BIO AB and OF treated soil. Analysis on Thetayc (community structure similarity) and Jclass (community overlap) estimators suggested that there were significant difference in bacterial community structure between BIO AB, OF and the control, while no significant difference was observed between the treatments of BIO AB and OF.
引文
1. Asaka O, Shoda M. Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus sub tills RB14 [J]. Applied and Environmental Microbiology,1996,62 (11):4081-4085.
    2. Azcon A C, Barea J M. In; Allen M J, eds,1992. Mycorrhizal Functioning, an Integrative Plant fungal Process[M]. Routledge, New York:Chapman and Hall Inc.,163-198.
    3. Balestrini R, Romela C, Puigdomenech P. Location of a cell wall hydroxyproline rich glycoprotein cellulose and β-1.3 glucans in apical and differentiated regions of maize mycorrhizal roots [J]. Planta,1994,195:201-209.
    4. Bastos A E R, Cassidy M B. Introduction of green fluorescent protein gene into phenol-degrading Alcaligenes faecalis cells and their monitoring in phenol-contaminated soil[J]. Applied Microbiology and Biotechnology,2001,56:255-260.
    5. Bloemberg G V, OTooe G A, Ben J J L. Green fluorescence protein as a marker for Pseudomonas spp. [J]. Applied Environmental Microbiology,1997,63:4543-4551.
    6. Boer B, Bom P, Kindt F, et al. Control of Fusarium wilt of radish by combining pseudomonas putida strains that have different disease suppressive mechanisms [J]. Phytopathology,2003,93 626-632.
    7. Bruggen V, Semenov C, Diepeningen V, et al. Relation between soil health, wave-like fluctuations in microbial populations, and soil-borne plant disease management J]. EuropeanJournal of Soil Biology,2006,115:105-122.
    8. Cao L X, Qiu Z Q, You J L, et al. Isolation and characterization of endophytic streptomycete antagonists of Fusarium wilt pathogen from surface sterilized banana roots[J]. FEMS Microbiology letters,2005,247 (2):147-152.
    9. Chabot, R, Antoun H, Kloepper J W, et al. Root colonization of maize and lettuce by bioluminescent Rhizobium leguminosarum biovar phaseoli[J]. Applied and Environmental Microbiology,1996,62:2767-2772.
    10. Chang L K, Chen C L, Chang Y S, et al. Construction of Tn917acl, a transposon useful for mutagenesis and cloning of Bacillus subtilis genes[J]. Gene,1994(150):129-134.
    11. Bacon C W, Yates I E, Hinton D M, et al. Biological control of Fusarium moniliforme in maize[J]. Environmental Health Perspectives,2001,109(52):325-332.
    12. Chen C L, Chang L K, Chang Y S, et al. Transposon mutagenesis and cloning of the genes encoding the enzymes, enzymes of fengycin biosynthesis in Bacillus subtilis[J]. Molecular and General Genetics,1995(248):121-125.
    13. Craft C M, Nelson E B. Microbial properties of composts that suppress Pythium dampingOoff and root rot of creeping bentgrass caused by Pythium graminicola[J]. Applied and environmental microbiology,1996,62:1550-1557.
    14. Darranp R. Model of the rhizosohere [J]. Plant and Soil,1991,138:147-158.
    15. Djonovic S, Pozo M J, Kenerley C M. Tvbgn3, β-1,6-Glucanase from the Biocontrol Fungus Trichoderma virens, Is Involved in Mycoparasitism and Control of Pythium ultimum[J]. Applied and environmental microbiology,2006,7661-7670.
    16. Drahos D J, Hemming B C, McPherson S. Tracking recombinant organisms in the environment: Bgatac to sidase as a selectable nonantibiotic marker for fluorescent pseudomonads [J]. Biotechnology,1986,4:439-44.
    17. Eberl L, Schulze R. Use of green fluorescent protein as a marker for ecological studies actived sludge communities[J], FEMS Microbiological Letters,1997,149:77-83.
    18. Elory A C B. The rhizosphere[M]. Berlin:Spring-Verlag,1986,510-523.
    19. Fuchs J G, Moenne-Loccoz Y, Defago G. Nonpathogenic Fusarium oxysporum strain Fo47 induces resistance to Fusarium wilt in tomato[J]. Plant Disease,1997,81:492-496
    20. Glandorf D C M, Brand I, Bakker P A H M, et al. Stability of rifampicin resistance as a marker for root colonization studies of Pseudomonas putida in the field [J]. Plant and Soil,1992,147: 135-142.
    21. Green H, Jensen D F. A tool for monitoring Trichoderma harzianum:Ⅱ. The use of a GUS transformant for ecological studies in the rhizosphere[J]. Phytopathology,1995,85:1436-1440.
    22. Hanier L A, Watson C A. The potential role of arbuseular myeorrhizal (AM) fungi in the bio-Protection of Plants against soil borne Pathogens in organic and/or other sustainable farming systems[J]. Pest Management Science,2004,60(2):149-157.
    23. Harman G E, Howell C R, Viterbo A, et al, Trichoderm a species opportunistic, avirulent plant symbionts[J], Nature,2004,2:43-56.
    24. Harsh P B, Ray F, Jorge M V. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production[J]. Plant Physiology,2004,134:307-319.
    25. Heim R, Prasher D, Tsien R. Wavelength mutations and posttranslational autoxidation of green fluorescent protein[J]. Proceedings of National Academic Sciences of USA,1994,91, 12501-12504.
    26. Hu J L, Lin X G, Wang J H, et al. Arbuscular myeorrhizal fungal inoculation enhances suppression of cucumber Fusarium wilt in greenhouse soils[J]. Pedosphere,2010,20(5):586-593.
    27. Joi J S, Fenny D E. Use of Bioluminescence for Dection of Genetically Engineered Microorganisms Released into the Environment[J]. Applied and Environmental Microbiology,1992,267-273.
    28. Kilian U, Steiner B, Krebs, et al. FZB24 (r) Bacillus subtilis mode of action of a microbial agent enhancing plant vitality[J]. Pflanzenschutz Nachrichten Bayer 1/00,1:72-93.
    29. Larkin R P, Fravel D R. Mechanisms of action and dose response relationships governing biological control of Fusarium wilt of tomato by nonpat hogenic Fusarium spp. [J] Phytopathology,1999,89:1152-1161.
    30. Linderman R G, Marlow J L, Davis E A. Comparison of the antagonistic potential of rhizobacteria from mycorrhizosphere and rhizosphere soils against soil born fungal pathogens[J]. International Conference On Mycorrhiza ICOM, Adelaide,2001.
    31. Lubeck M, Knuderson I M B, Jesen B, et al. GUS and GFP transformation of the biocontrol strain Cloanstachys rosea IK.726 and the use of these marker genes in ecological studies[J]. Mycological Research,2002,106(7):815-826.
    32. Marinari S, Masciandaro G, Ceccanti B, et al. Evolution ofsoil organic matter changes using pyrolysis and metabolic indices:A comparison between organic and mineral fertilization[J]. Bioresource Technology,2007,98:2495-2502.
    33. Marschner H. Mineral nutrition of higher plants.London[M]:Academic Press,1995.333-347.
    34. Michel V, Dutheil A, Ancay A, et al. The use of compost and green manure to control soil borne diseases of strawberry [J]. Bulletin OILB/SROP,2006,25(9):59-66.
    35. Modafar C E, Tantaoui A, Boustani E E. Changes in Cell Wall-bound Phenolic Compounds and Lignin in Roots of Date Palm Cultivars Differing in Susceptibility to Fusarium oxysporum f. sp. albedinis[J]. Journal of Phytopathology,2000,148:405-411.
    36. Nielsen T H, Thrane C, Christophersen C, et al. Viscosinamide, a new cyclic dep sipeptide with surfactant and antifungal properties produced by Pseudomonas fluorescens DR54[J]. Journal of Applied Microbiology,2000,89:992-1001.
    37. Olivain C, Alabouvette C. Process of tomato root colonization by a pat hogenic st rain of Fusarium oxy porum f. sp. lycopersici discussed in comparaison to a non-pat hogenic st rain[J]. New Phytologist,1999,141:497-510.
    38. Ormo M, Andrew B C, Karen K, et al. Crystal structure of the Aequorea victoria Green Fluorescent Protein [J]. Science,1996,273(6):1392-1395.
    39. Perez-Vicente L, Batlle A, Fonseca J, et al. Fusarium oxysporum f. sp. cubense in Cuba:reaction of cultivars and biocontrol method [C].2nd International symposium on Fusarium Wilt on Banana, 2003,9:22-26.
    40. Postma J, Luttikhol T. Colonization of carnation stems by a nonpat hogenic isolate of Fusarium ox ysporum and its effect on Fusarium oxysporum f. sp. dianthi[J]. Canadian Journal of Botany,1996, 74:1841-1851.
    41. Prapagdee B, Kuekulvong C, Mongkolsuk S. Antifungal Potential of Extracellular Metabolites Produced by Streptomyces hygroscopicus against Phytopathogenic Fungi[J].International Journal of Biological Sciences,2008,4(5):330-337.
    42. Rijn E V. Disease suppression and phytosanitary aspects of compost [D]. Wageningen: Wageningen Universiteit (Wageningen University),2007.
    43. Ryder M H. Monitoring of biocontrol agents and genetically engineered micro organisms in the environment[A]. Singh, R P Singh. Molecular Methods in PlantPatholgy [C]. BOCARA TON, U. S.:CRC lans publishers,1995.475-492.
    44. Schuβler A. Molecular phylogeny, taxonomy, and evolution of Geosiphon pyriformis and arbuscular mycorrhizal fungi[J]. Plant and Soil,2002,244,75-83.
    45. Shaw J J, Fenny D, Dorothy G, et al. Use of Bioluminescence for Detection of Genetically Engineered Microorganisms Released into the Environment[J]. Applied and Environmental Microbiology,1992,58(1):267-273.
    46. Shoda M. Bacterial control of plant diseases[J]. Journal of bioscience and bioengineeing,2000, 89 (6):515-521.
    47. Silveira E B D, Mariano R, Michereff S J. Antagonism of Bacillus spp. against Pseudomonas solanacearum and effect on tomato seedling growth[J]. Fitopat-ologia Brasileira,1995,20(4): 605-612.
    48. Singh P K, Singh M, Vyas D. Biocontrol of Fusarium Wilt of Chickpea using Arbuscular Mycorrhizal Fungi and Rhizobium leguminosorum Biovar[J]. Cologia,2010,63(4):349-353.
    49. Stein T. Bacillus subtilis antibiotics:structures, syntheses and specific functions[J]. Molecular Microbiology,2005,56 (4):845-857.
    50. Thangavelu R, Palaniswami A, Velazhahan R. Mass production of Trichoderma harz ianum for managing Fusarium wilt of banana [J]. Agriculture, Ecosystems and Environment,2004,103 (1): 259-263.
    51. Thimon L. Interactions of bioactive lipopeptides, iturin A and surfatin from Bacillus subtilis [J], Biotechnology and Applied Biochemistry,1992,16:144-151.
    52. van Elsas J D, Trevors J T, Jain D, et al. Survival of, and root colonization by, alginate encapsulated Pseudomonas fluorescens cells follow ing introduction into soil [J]. Biology and Fertility of Soils. 1992,14:14-22.
    53. van Vuurde J W L. Immunofluo rescent colony staining(IFC) and immuno fluorescent cell staining as tools for the study of rhizosphere bacteria [J].IOBC/WPRS Bulletin ⅩⅣ,1991,8:215-222.
    54. Vanittanakom N, Loeffer W, Koch U, et al. Fengycin-a novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29-3[J]. Journal of Antibiotics (Tokyo),1986(39):888-901.
    55. Weindling, R. Trichoderma lignorum as a parasite of other soil fungi[J]. Phytopathology,1932, 22:837-845.
    56. Welke S. The effect of compost extract on the yield of strawberries and the severity of Botrytis cinerea[J]. Journal of Sustainable Agriculture,2004,25(1):57-68.
    57. Worknih F, van Bruggern A H. Suppresion of corky rot of to tomatoes in soils from organic farms associated with soil microbial activity and nitrogen status of soil and tomato tissue [J]. Phytopathology,1995 (84):688-694.
    58. Yang X, Chen L, Yong X, et al. Formulations can affect rhizosphere colonization and biocontrol efficiency of Trichoderma harzianum SQR-T037 against Fusarium wilt of cucumbers[J]. Biology and Fertility of Soils, DOI 10.1007/s00374-010-0527-z.
    59. Yates I E, Bacon C W, Hinton D M. Effects of endophytic infection by Fusarium moniliforme on corn growth and cellular morphology[J]. Plant Disease,1997,81:723-728.
    60. Ye S F, Zhou Y H, Sun Y, et al. Cinnamic acid causes oxidative stress in cucumber roots, and promotes incidence of Fusarium wilt [J]. Environmental and Experimental Botany,2006,56: 255-262.
    61. Yu J Q, Matsui Y. Phytotoxic substanees in root exudates of cucumber (Cucumis sativus L) [J]. Journal of Chemical Ecology,1994,20:21-31.
    62. Zhou X G, Everts K. L. Suppression of Fusarium Wilt of watermelon enhanced by hairy vetch green manure and partial cultivar resistance[J]. Plant health progress,2006(4):113-121.
    63.别小妹,吕凤霞,陆兆新,等Bacillus subtilis fmbJ脂肽类抗菌物质的分离和鉴定[J].生物工程学报,2006,22(4):644-649.
    64.蔡学清,何红,胡方.双抗标记法测定枯草芽孢杆菌BS-2和IBS-1在辣椒体内的定殖动态[J].福建农林大学学报(自然科学版),2003,32(1):41-45.
    65.蔡燕飞,廖宗文,章家恩,等.生态有机肥对番茄青枯病及土壤微生物多样性的影响[J].应用生态学报,2003,14(3):349-353.
    66.曹光球,林思祖,王爱萍,等.马尾松根化感物质的生物活性评价与物质鉴定[J].应用与环境生物学报,2005,11(6):686-689.
    67.曹理想,田新莉,周世宁.香蕉内生真菌、放线菌类群分析[J].中山大学学报,2003,42(2): 70-73.
    68.陈华,袁成凌,蔡克周,等.枯草芽孢杆菌JA产生的脂肽类抗生素-iturin A的纯化及电喷雾质谱鉴定[J].微生物学报,2008,48(1):116-120.
    69.陈志谊,许志刚,陆凡,等.拮抗细菌B-916对水稻植株的抗性诱导作用[J].西南农业学报,2001,14(1);4448.
    70.程洪斌,刘晓桥,陈红漫.枯草芽孢杆菌防治植物真菌病害研究进展[J].上海农业学报,2006,22(1):109-112.
    71.董金皋,黄梧芳.植物的形态结构与抗病性,植物病理学报,1995;25(1):1-3
    72.董立尧,王鸣华,武淑文,等.小麦对直播稻田千金子的化感作用及化感物质分离鉴定[J].中国水稻科学,2005,19(6):551-555.
    73.高芬,马利平,乔雄梧,等.蜡质芽孢杆菌BC98-发酵液与抑菌粗提物对黄瓜枯萎病菌的抑菌特性研究[J].中国生态农业学报,2006,14(1):190-192.
    74.顾真荣,吴畏,高新华,等.枯草芽抱杆菌菌株G3的抗菌物质及其特性[J].植物病理学报,2004.34(2):166-172.
    75.韩剑,张静文,徐文修,等.新疆连作、轮作棉田可培养的土壤微生物区系及活性分析[J].棉花学报,2011,23(1):69-74.
    76.郝晓娟,刘波,谢关林,等.短短芽孢杆菌JK22菌株对番茄枯萎病的抑菌作用及其小区防效[J].中国生物防治,2007,23(3):233-236.
    77.郝永娟,刘春艳,王勇,等.利用有机质防治黄瓜枯萎病[J].中国蔬菜,2007,6:26-28.
    78.何琳燕,黄为一.发光酶基因luxAB标记硅酸盐细菌NBT菌株的研究[J].应用生态学报,2004,15(7):1241-1244.
    79.何欣,郝文雅,杨兴明,等.黄启为生物有机肥对香蕉植株生长和香蕉枯萎病防治的研究[J].植物营养与肥料学报,2010,16(4):978-985.
    80.贺忠群,李焕秀,汤浩茹.丛枝菌根真菌对黄瓜立枯病的影响[J].四川农业大学学报,2010,28(2):200-204.
    81.侯永伙,周宝利,吴晓玲,等.辣椒秸秆腐解物化感作用的研究[J].应用生态学报,2006,17(4):699-702.
    82.候学文.转基因植物的一个新型标记基因[J].生命的化学,1997,7(2):36.
    83.胡艳霞,孙振钧,程文玲.蚯蚓养殖及蚯蚓粪对植物土传病害抑制作用的研究进展[J].应用生态学报,2003,14(2):296-300.
    84.黄俊丽.有机改良剂对棉花黄萎病的防治效果及其防病机制研究[D].郑州:河南农业大学硕十学位论文,2000.
    85.黄曦,许兰兰,黄荣韶,等.枯草芽孢杆菌在抑制植物病原菌中的研究进展[J].生物技术通 报,2010,1:24-29.
    86.黄振文.利用土壤添加物防治作物土壤传播性病害[J].植保会刊,1991,33:113-123.
    87.贾新民,姜述君,殷奎德,等.重迎茬条件下大豆根系分泌物对根腐病病原菌的影响[J].黑龙江八一农垦大学学报,1997,9(3):12-15.
    88.简桂良,宋建军,马存.儿种有机肥对棉花枯萎病抑菌土的影响[J].棉花学报,1996,8(6):30-36.
    89.姜钰,董怀玉,徐秀德,等.放线菌在植病生防中的研究进展[J].杂粮作物,2005,25(5):329-331.
    90.金慧,吴景贵,李江楠施用有机肥对作物生长性状影响的研究进展[J].现代农业科技,2010,12:261
    91.蓝江林,刘波,肖荣凤,等.温度对儿种作物尖孢镰刀菌菌株生长的影响[J].厦门大学学报,2004,43:67-70.
    92.黎起秦,叶云峰,王涛,等.内生枯草芽孢杆菌B4菌株入侵番茄的途径及其定殖部位[J].中国生物防治,2008,24(2):133-137.
    93.李光,付海鹏,杜胜利.我国黄瓜新品种应用和良种生产现状[J].长江蔬菜,2007,1:30-32.
    94.李洪连.棉花抗黄萎病生化机制研究[J].化学生态学,1998,2:177-180.
    95.李洪连,黄俊丽,袁红霞.有机改良剂在防治植物土传病害中的应用[J].植物病理学报,2002,32(4):289-295.
    96.李怀智.我国黄瓜栽培的现状及其发展趋势[J].蔬菜,2003,8:3-4.
    97.李世贵.防治黄瓜枯萎、青椒疫病木霉菌的研究[D].中国农业科学院,2005,中国优秀硕士学位论文.
    98.李艳宾,张琴,万传星,等.棉秆腐解物的化感作用及其主要化学成分分析[J].棉花学报,2009,21(6):497-502.
    99.梁春启,甄文超,张承胤,等.玉米秸秆腐解液中酚酸的检测及对小麦土传病原菌的化感作用[J].中国农学通报,2009,25(2):210-213.
    100.梁银丽,陈志杰,徐福利,等.黄十高原设施农业中的土壤连作障碍[J].水土保持学报,2004,18(4):134-136.
    101.凌宁,王秋君,杨兴明,等.根际施用微生物有机肥防治连作西瓜枯萎病研究[J].植物营养与肥料学报,2009,15(5):1136-1141.
    102.刘蔼民,易琼华,师素云.用豆饼防治棉花枯萎病的作用机制研究[J].植物病理学报,1993,23(3):267-268.
    103.刘恩科,赵秉强,李秀英,等.不同施肥制度土壤微生物量碳氮变化及细菌群落16S rDNA V3片段PCR产物的DGGE分析[J].生态学报,2007,27(3):1079-1085.
    104.刘焕利,张学君,潘小玫,等.抗菌蛋白产生菌株的筛选[J].南京农业大学学报(增刊),1994,17:76-78.
    105.刘健,李俊,姜昕,等.巨大芽胞杆菌lu xAB标记菌株的根际定殖研究[J].微生物学通报,2001,28(6):1-4.
    106.刘润进,沈崇尧,裘维蕃.AM真菌与黄萎病菌存在侵染中的竞争作用[J].十壤学报,1994,31(增刊):224-229.
    107.刘喜梅,何晨阳,许艳丽.非致病性尖孢镰刀菌及其在生物防治中的应用[J].植物保护,2006,32(5):5-8.
    108.刘颖,徐庆,陈章良.抗真菌肽LP21的分离纯化及特性分析[J].微生物学报,1999,39(5):441-447.
    109.吕卫光,杨广超,沈其荣,等.有机肥对连作西瓜生长和土壤微生物区系的影响[J].上海农业学报,2006,22(4):96-98.
    110.罗安程,孙羲,章永松.有机肥对大麦生长的影响及其可能机制[J].土壤通报,1994,25(5):219-221.
    111.马利平,高芬,乔雄梧.家畜沤肥浸渍液对黄瓜枯萎病的防治及作用机理探析[J].植物病理学报,1999,29(3):270-274.
    112.马利平,高芬,武英鹏,等.沤肥浸渍液对黄瓜霜霉病的抑制作用及其机理[J].植物保护学报,1996,23(1):56-59
    113.李红丽,郭夏丽,李清飞,等.抑制烟草青枯病生物有机肥的研制及其生防效果研究,土壤学报,2010,47(4):798-801.
    114.马云华,王秀峰,魏珉,等.黄瓜连作土壤酚酸类物质积累对土壤微生物和酶活性的影响[J].应用生态学报,2005,16(11):2149-2153.
    115.马艳,常志州,黄红英,等.堆肥防治植物病害的研究[J].土壤肥料,2005(2):3-6.
    116.莫才清.标记基因在植物病害发生和流行规律中的应用[J].植物保护,1997,4:33-35.
    117.潘争艳,刘伟成,裘季燕,等.放线菌Ⅲ261和A221对蔬菜枯萎病和灰霉病的控制作用[J].华北农学报,2005,20(4):92-97.
    118.曲再红.土壤改良剂与土壤微生物、番茄早疫病及白粉虱相互关系研究[D].北京:中国农业大学硕十学位论文,2004.
    119.孙光忠,彭超美.微生物杀菌剂及其混配剂防治水稻纹枯病的田间药效试验[J].农药科学与管理,2008,29(11):33-35.
    120.孙建波,王宇光,赵平娟,等.拮抗菌XB16在香蕉体内的定殖及对抗病相关酶活性的影响[J].热带作物学报,2010,31(2):212-216.
    121.孙哲.基于检测报告基因的药物筛选方法研究进展[J].中国药学杂志,2000;35(8):507-510.
    122.陶晶,李晖.芽孢杆菌组合BCL28的筛选及其促生抗病效果[J].植物保护学报,2009,36(2):123-128.
    123.唐龙翔,李文庆.有机肥对植物土传病害控制的研究[J].北方园艺,2009(7):132-136.
    124.唐雪尔,李亚尔,吴林,等.黑土施用有机物料和硫磺粉对越桔生长的影响[J].吉林农业大学学报,2003,25(2):179-182,186.
    125.王拱辰,陈辉珍.促进镰刀菌产孢的培养基[J].植物病理学报,1994,24(2):165-166.
    126.王平,李阜隶.细菌发光的分子生物学[J].生物技术通报,1993,4:1-5.
    127.王平,王勤,冯新梅.华癸根瘤菌在非豆科植物根围定殖能力的研究[J].华中农业大学学报,1999,18(3):238-241.
    128.王平.发光酶标记基因在微生物分子生态学研究中的应用[J].生态学,1996;15(3):26-34.
    129.王树起,韩丽梅,杨振明,等.大豆根茬腐解液和营养液残茬对大豆生长发育的自感效应[J].中国油料作物学报,2000,22(3):43-47.
    130.魏海雷,王烨,张力群,等.生防菌株2P24与CPF-10的鉴定及其生防相关性状的初步分析[J].植物病理学报,2004,34(1):80-85.
    131.吴凤芝.大棚番茄土壤微生物区系研究[J].北方园艺,1999,3:1-3.
    132.吴凤芝,赵凤艳,刘元英.设施蔬菜连作障碍原因综合分析与防治措施[J].东北农业大学学报,2000,31(3):241-247.
    133.吴建峰,林先贵.我国微生物肥研究现状及发展趋势[J].土壤,2002,34(2):68-72.
    134.肖荣凤,朱育菁,蓝江林,等.黄瓜尖孢镰刀菌的营养特性[J].中国农学通报,2008,24(5):299-303.
    135.徐国高,周立祥,常志州,等.基质对番茄和黄瓜苗期生长及病害发生的影响[J].江苏农业科学,2006,(1):69-72.
    136.徐美娜,王光华,靳学慧.土传病害生物防治研究进展[J].吉林农业科学,2005,30(2):39-41.
    137.闫霜,吴洪生,周晓冬,等.黄瓜枯萎病生物防治研究进展[J].山东农业科学,2011,1:86-92
    138.杨合同,唐文华,宋家华,等.绿色木霉菌LTR2对小麦纹枯病菌的作用机制[A].植物病害研究与防治研究,中国植物病理学会第六届代表大会暨学术年会论文选编[C],北京:中国农业科技出版社,1998,504-507.
    139.杨建霞.日光温室黄瓜连作障碍研究及防治对策[J].甘肃农业,2005,11:209-210.
    140.叶素芬.黄瓜根系自毒物质对其根系病害的助长作用及其缓解机制研究[D].浙江大学优秀博土学位论文,2004.
    141.伊东正.野菜栽培技术[M].1987,诚文堂新光社.
    142.袁飞,彭宇,张春兰,等.有机物料减轻设施连作黄瓜苗期病害的微生物效应[J].应用生态学报,2004,15(5):867-870.
    143.岳尔霞,张要武,陈融,等.荧光假单胞菌工程菌株的构建及对黄瓜枯萎病的防治效果[J].华北农学报,2008,23(6):101-104.
    144.张璐,杜秉海,魏珉,等.黄瓜枯萎病拮抗菌的生防效果及其对植株生长代谢的影响[J].山尔农业科学,2007,4:89-92.
    145.张伟琼,聂明,肖明.荧光假单胞菌生防机理的研究进展[J].生物学杂志,2007,24(3):9-12.
    146.张显.西瓜枯萎病抗病机制的研究[J].西北农业大学学报,1989,17(14):29-34.
    147.张新春,刘菲菲,蒋盛军,等.生防菌绿色木霉对儿种枯萎病菌的抑制作用,中国瓜菜,2010(1):11-13.
    148.张树生,杨兴民,黄启为,等.施用氨基酸肥料对连作条件下黄瓜的生物效应及土壤生物学性状的影响[J].土壤学报,2007,44(4):689-694.
    149.甄文超,王晓燕,孔俊英,等.草莓根系分泌物和腐解物中的酚酸类物质及其化感作用[J].河北农业大学学报,2004,27(4):74-78.
    150.朱红惠,姚青,李浩华,等.AM真菌对青枯菌的抑制和对酚类物质的影响[J].微生物学通报,2004,31(1):1-5.
    151.朱廷恒,邢小平,孙顺娣.木霉菌株对儿种植物病原真菌的拮抗作用机制和温室防治试验植物保护学报[J].2004,31(2):139-144.
    152.朱育菁,周涵韬,刘波,等.通气量对西瓜枯萎病病原尖孢镰刀菌生长的影响[J].厦门大学学报,2004,43,80-83.
    153.PaиллoюAИ(拉依洛)著,(王云章等译).镰刀菌.北京:科学出版社,1958:324.
    1. Akpa E, Jacques P, Wathelet B, et al. Influence of culture conditions on lipopeptide production by Bacillus subtilis[J]. Applied Biochemistry and Biotechnology,2001,91:551-561.
    2. Alexandra K, Chen X H, Henne A, et al. Structural and Functional characterization of gene clusters directing nonribosomal synthes is of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens s trains FZB42 [J]. Jouranal of Bacteriology,2004,186 (4):1084-1096.
    3. Barker H A. Bacterial Fementation. John Wiley Inc., New York,1956,28-55.
    4. Berg G, Kurze S, Buchner A, et al. Successful strategy for the selection of new straw berryassociated rhizobacteria antagonistic to verticillium wilt [J]. Canadian Journal of Microbiology, 2000,46(12):1128-1137.
    5. Bloemberg G V, OTooe G A, Lugtenberg B J J, et al. Green fluorescent protein as a marker for Pseudomonas spp[J]. Applied and Environmental Microbiology,1997,63(11):4543-4551.
    6. Bo N, Niels B H, Ole N. Green Fluorescent Protein-Marked Pseudomonas fluorescens: Localization, Viability, and Activity in the Natural Barley Rhizosphere[J]. Applied and Environmental Microbiology,1999,65(10):4646-4651.
    7. Burlage R S, Yang Z K, Mehlhorn T. A transposon for green fluorescent protein transcriptional fusions:application for bacterial transport experiments [J]. Gene,1996,173:53-58.
    8. Chalfie M, Yuan T,Ghia E. Green Fluorescent Protein as a Marker for Gene Expression [J]. Science, 1994,263:802-804.
    9. Compant S, Duffy B, Nowak J, et al. Use of Plant Growth-Promoting Bacteria for Biocontrol of Plant Diseases:Principles, Mechanisms of Action, and Future Prospects[J]. Applied and Environmental Microbiology,2005,71:4951-4959
    10. Cook R J. Making greater use of introduced microorganisms for biological control of plant pathogens[J]. Annual Review of Phytopathology,1993,31:53-80.
    11. Cotxarrera L, Trillas-Gay M I, Steinberg C, et al. Use of sewage sludge compost and Trichoderma asperellum isolates to suppress Fusarium wilt of tomato[J]. Soil Biology and Biochemistry,2002, 34:467-476.
    12. Daniel J G, Tanya B, Sharon R L. Use of Green Fluorescent Protein To Visualize the Early Events of Symbiosis between Rhizobium meliloti and Alfalfa (Medicago sativa) [J]. Journal of Bacteriology,1996,178(24):7159-7166.
    13. Debosz K, Rasmussen P H, Pedersen A R. Temporal variations in microbial biomass C and cellulolytic enzyme activity in arable soils:effects of organic matter input [J]. Applied Soil Ecology,1999,13(3):209-2181.
    14. Deleu M, Paquot M, Nylander T. Fengycin interaction with lipid monolayers at the air-aqueous interface implications for the effect of fengycin on biological membranes[J]. Journal of colloid and interfaces science,2005,283(2):358-365.
    15. Distefano G, Malfa S, Vitale A, et al. Defence related gene expression in transgenic lemon plants producing an antmiicrobial Trichoderma harzianum endochitinase during fungal infection[J]. Transgenic Research,2008,17(5):873-879.
    16. Drahos D J. Field testing of genetically engineered microorganisms[J]. Biotechnology Advancement,1991,9:157-171.
    17. Errampalli D, Leung K, Cassidy M B, et al. Applications of the green fluorescent protein as a molecular marker in environmental microorganisms [J]. Journal of Microbiological Methods,1999, 35:187-199.
    18. Felix M, Mauch-Mani B, Boller T. Antifungal hydrolases in pea tissue II. Inhibition of fungal growth by combinations of chitinase and β-1,3-glucanase[J]. Plant Physiology,1988,88:936-942.
    19. Fiddaman P J, Rossall S. Effect of substrate on the production of antifungal volatiles from Bacillus subtilis[J]. Journal of Applied Bacteriology,1994,76:395-405.
    20. Frank L, Torsten H S, Barbel K, et al. Structure of ituinA, a peptidolipid antibiotic from Bacillus subtilis [J]. Biochemistry,1978,17 (19):3992-3996.
    21. Gamalero E, Lingua G, Capr F G, et al. Colonization pattern of primary tomato roots by Pseudomonas fluorescens A6RI characterized by dilution plating, flow cytometry, fluorescence, confocal and scanning electron microscopy [J]. FEMS Microbiol Ecology,2004,48:79-87.
    22. Gao X, Jackson TA, Lambert K N, et al. Detection and quantification of Fusarium solani f. sp. glycines in soybean roots with real-time quantitative polymerase chain reaction [J]. Plant Disease, 2004,88:1372-1380.
    23. Heerklotz H, Seelig J. Detergent-like action of the antibiotic peptide surfactin on lipid membranes[J]. Biophysical Journal,2001,81(3):1547-1554.
    24. Hermansson A, Backman J S K, Svensson B H,et al. Quantification of ammonia-oxidising bacteria in limed and non-limed acidic coniferous forest soil using real-time PCR[J]. Soil Biology and Biochemistry,2004,36:1935-194.
    25. Hosada A, Sakai M. Isolation of Asticcacaulis sp. SA7, a novel agar-degrading alphaproteobacterium[J]. Bioscience Biotechnology and Biochemistry,2006,70(3):722-725.
    26. Ibekwe A M, Kennedy A C. Phospholipid fatty acid profiles and carbon utilization patterns for analysis of microbial community structure under field and greenhouse conditions [J]. FEMS Microbiology Ecology,1998,26 (2):151-1631.
    27. Jφrgensen C, Leser T D. Estimating amplification efficiency improves multiplex real-time PCR quantification of Bacillus licheniformis and Bacillus subtilis spores in animal feed[J]. Journal of Microbiological Methods,2007,68:588-595.
    28. Joseph S, David W R. Molecular cloning:a laboratory manual [M],3nd. New York:Cold Spring Harbor Laboratory Press,2002.93-96.
    29. Joshi, R, Gardener, B B M. Identification and characterization of novel genetic markers associated withbiological control activities in Bacillus subtilis[J]. Phytopathology,2006,96:145-154.
    30. Kenji T, Takashi A, Shoda M. Isolation of a gene essential for biosynthesis of the lipopep tide antibiotics plipastatin B1 and surfactin in Bacillus subtilis YB 8 [J]. Archive of Microbiology,1996, 165:243-251.
    31. Kim H S, Yoon B D, Lee C H, et al. Production and properties of a lipopeptide biosurfactant from Bacillus subtilis C9 [J]. Journal of Fermentation and Bioengineering,1997,84:41-46.
    32. Kim P I, Bai H, Bais D, et al. Purification and characterization of a lipopeptide produced by Bacillus thuringiensis CMB26[J]. Journal of Applied Microbiology,2004,97:942-949.
    33. Kinsella K, Schulthess C P, Morris T F, et al. Rapid quantification of Bacillus subtilis antibiotics in the rhizosphere[J]. Soil Biology and Biochemistry,2009,41:374-379.
    34. Kloepper J W. A review of issues related to measuring colonization of plant roots by bacteria [J]. Canadian Journal of Microbiolology,1992,38 (6):667-672.
    35. Komada H. Development of a selective medium for qualitative isolation of Fusarium oxysporum from natural soil[J]. Review Plant Protection Research,1975,8:114-125.
    36. Koumoutsi A, Chen X H, Henne A. et al. Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42[J]. Journal of Bacteriology,2004,186:1084-1096.
    37. Kowall M, Vater J, Kluge B, et al. Separation and characterization of surfactin isoforms produced by Bacillus subtilis OKB[J]. Journal of colloid and interfaces science,1998,204:1-8.
    38. Krieg N R, Holt J G. Bergey's manual of systemaicbacteriology, vol 1 [M].1984, Williams and Wilkins, Baltimore.
    39. Lievens B, Claes L, Vakalounakis D J, et al. A robust identification and detection assay to discriminate the cucumber pathogens Fusarium oxysporum f. sp. cucumerinum and f. sp. radicis-cucumerinum[J]. Environmental Microbiology,2007,9:2145-2161.
    40. Lin T P, Chen C L, Chang L K, et al. Functional and transcriptional analysis of a fengycin synthetase gene, fenC, from Bacillus subtilis [J]. Journal of Bacterialogy,1999,181(11): 13294-13299.
    41. Lin Y H, Chang J Y, Liu E T, et al.Development of a molecular marker for specific detection of Fusarium oxysporum f. sp. cubense race 4[J]. European Journal of Plant Pathology,2009, 123:353-365.
    42. Liu X, Zhao H, Chen S. Colonization of Maize and Rice Plants by Strain Bacillus megaterium C4[J]. Current Microbiology,2006,52:186-190.
    43. Liu Z P, Wang B J, Liu S J, et al. Asticcacaulis taihuensis sp. nov., a novel stalked bacterium isolated from Taihu Lake, China[J]. International Journal of Systematic and Evolutionary Microbiology,2005,55:1239-1242.
    44. Magali D, Michel P. Effect of fengycin, a lipopeptide produced by Bacillus subtilis, on model biomembranes [J]. Biophysical Journal,2008,94:2667-2679.
    45. Margulies M, Egholm M, Altman W E, et al. Genome sequencing in micro fabricated high-density picolitre reactors[J]. Nature,2005,437(7057):376-80.
    46. McCartney H A, Foster S J, Fraaije B A, et al. Molecular diagnostics for fungal plant pathogens[J]. Pest Management Science,2003,59(2):129-142.
    47. Miller S A, Dykes D D, Polesky H F. A simple salting out procedure for extracting DNA from human nucleated cells [J]. Nucleic Acids Research,1988,16:1215.
    48. Moyne A L, Shelby R, Cleveland T E, et al. Bacillomycin D:an iturin with antifungal activity against Aspergillus favus[J]. Journal of Applied Microbiology,2001,90,622-629.
    49. Muaaz M A, Muhammad A S. Production of surfactin from Bacillus subtilis M Z-7 grown on pharmamedia commercial medium [J]. Microbial Cell Factories,2007,6:17.
    50. Muyzer G, de Waal E.C. Uitterlinden A G Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA[J]. Applied and Environmental Microbiology,1993,59(3):695-700.
    51. Nakano M M, Corbell N, Besson J, et al. Isolation and characterization of sfp:a gene tha t functions in the production of the lipopeptide biosurfactant surfactin in Bacillus subtilis [J]. Molecular Genetics,1992,232 (2):313-321.
    52. Nakano M M, Zuber P. Molecular biology of antibiotic production in Bacillus[J]. Cretical Reviews in Biotechnology,1990,10(3):223-240.
    53. Normander B, Hendriksen N B, Nybroe O. Green Fluorescent Protein-Marked Pseudomonas fluorescens:Localization, Viability, and Activity in the Natural Barley Rhizosphere[J]. Applied and Environmental Microbiology,1999,65:4646-4651.
    54. Ohno A, Aao T, Shoda M. Effect of temperature on production of lipopeptide antibiotics, turin A and surfactin by a dual producer, Bacillus subtilis RB14, in Solid-State fermentation[J]. Journal of Fermentation and Bioengineering,1995,80:517-519.
    55. Orie A, Makoto S. Biocontrol of Rhizoctonia solani damping off of tomato with Bacillus subtilis RB14 [J]. Applied and Environmental Microbiology,1996,62:4081-4085.
    56. Perez C, Dill Macky R, Kinkel L. Management of soilmicrobial communities to enhance populations of fusarium graminearum antagonists in soil[J]. Plant and Soil,2008,302:53-69.
    57. Peypoux F, Pommier M, Das B C, et al. Structure of bacillomycin D and bacillomycin L peptidolipid antibiotics from Bacillus subtilis[J]. Journal of antibiotics,1984,12:1600-1604.
    58. Peypoux F, Bonmatin J M, Wallach J. Recent trends in the biochemistry of surfactin[J]. Applied Microbiology and Biotechnogy,1999,51(5):553-563.
    59. Poonguzhali S, Madhaiyanm M, Yim W, et al. Colonization pattern of plant root and leaf surfaces visualized by use of green-fluorescent-marked strain of Methylobacterium suomiense and its persistence in rhizosphere[J]. Applied Microbiology and Biotechnology,2008,78:1033-1043.
    60. Puhl A A, Selinger L B, McAllister T A, et al. Actinomadura kerainilytica sp. Nov., a keratin-degrading actinobacerium isolated from bovine manure compost[J]. International Journal of Systematic and Evolutionary Microbiology,2009,59 (4):828-834.
    61. Ren L X., Shi M S, Xing M Y, et al. Intercropping with aerobic rice supp ressed fusarium wilt in watermelon[J]. Soil Biology and Biochemistry,2008,40:834-844.
    62. Rengpipat S, Wongtangprasert N, Palaga T. The use of green fluorescent protein as a marker for monitoring a probiotic Bacillus S11 in the black tiger shrimp Penaeus monodon[J].Aquaculture Nutrition,2009,15:297-305.
    63. Romero D, de Vicente A, Rakotoaly R H et al. The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca[J]. MPMI,2007,20:(4) 430-440.
    64. Rosado A, Duarte G, Seldin L. Optimization of electroporation procedure to transform B. polymyxa SCE2 and other nitrogen-fixing Bacillus[J]. Journal of Microbiological Methods,1994,19:1-11.
    65. Ruben L M, Anabel A, Stefan R,et al. Quantification of the biocontrol agent Trichoderma harzianum with real-time TaqMan PCR and its potential extrapolation to the hyphal biomass[J]. Bioresource Technology,2010,101:2888-2891.
    66. Ryosuke F, Takashi I, Seiichi S, et al. Haliangicin, a Novel Antifungal Metabolite Produced by a Marine Myxobacterium[J]. The Journal of Antibiotics,2001,54(2):153-156.
    67. Sambrook J, Fitsch E F, Maniatis T. Molecular cloning:a laboratory manual[M]. Cold Spring Harbor Laboratory,1989.
    68. Schena L, Nigro F, Ippolito A, et a.l Realtime quantitative PCR:A new technology to detect and study phytopathogenic and antagonistic fungi[J]. European Journal of Plant Pathology,2004, 110(9):893-908.
    69. Schottner S, Pfitzner B, Grunke S, et al. Drivers of bacterial diversity dynamics in permeable carbonate and silicate coral reef sands from Red Sea[J]. Environmental Microbiology,2011, doi:10.1111/j.1462-2920.2011.02494.x
    70. Sogin M L. Microbial diversity in the deep sea and the underexplored"rare biosphere" [J]. Proceedings of National Academic Sciences of USA,2006,103(32):12115-12120.
    71. Thangavelu R, Palaniswami A, Velazhahan R. Mass production of Trichoderma harzianum for managing fusarium wilt of banana[J]. Agriculture, Ecosystems and Environment,2004,103, 259-263.
    72. Timmusk S, Grantcharova N, Gerhart H, et al. Paenibacillus polymyxa Invades Plant Roots and Forms Biofilms[J]. Applied and Environmental Microbiology,2005,71 (11):7292-730.
    73. Timmusk S. Mechanism of action of the plant growth promoting bacterium Paenibacillus polymyxa [D]. Sweden:PhD dissertation, Uppsala University,2003.
    74. Torm M. Application of the green fluorescent protein in cell biology and biotechnology[J]. Nature Biotechnology,1997,15:961-963.
    75. Trillas M I, Casanova E, Corxarrera L, et al. Composts from agricultural waste and the Trichoderma asperellum strain T-34 suppress Rhizoctonia solani in cucumber seedlings[J]. Biological Control,2006,39:32-38.
    76. Tuija S, Tapani Y, Marika J, et al. Real-time PCR for quantification of toxigenic Fusarium species in barley and malt[J].European Journal of Plant Pathology,2006,114:371-380.
    77. Turnbaugh P J, Ley R E, Mahowald M A, et al. An obesity-associated gut microbiome with increased capacity for energy harvest[J]. Nature,2006,444(7122):1027-1031.
    78. Uppal A K, Hadrami A E I, Adam L R, et al. Pathogenic variability of Verticillium dahliae isolates from potato fields in Manitoba and screen ing of bacteria for their biocontrol [J]. Canadian Journal of Plant Pathology,2007,29 (2):141-152.
    79. Urich T, Lanzen A, Qi J, et al. Simultaneous assessment of soil microbial community structure and function through analysis of the meta-transcriptome[J]. PLoS ONE,2008,3(6):e2527. doi:10.1371/journal. pone.0002527.
    80. Vasilyeva L V, Omelchenko M V, Berestovskaya Y Y, et al. Asticcacaulis benevestitus sp. nov., a psychrotolerant, dimorphic, prosthecate bacterium from tundra wetland soil[J]. International Journal of Systematic and Evolutionary Microbiology,2006,56,2083-2088.
    81. Vater J, Kablitz B, Wilde C, et al. Matrix-assisted laser desorption ionization-time of flight mass spectrometry of lipopeptide biosurfactants in whole cells and culture filtrates of Bacillus subtilis C-1 isolated from petroleum sludge[J]. Applied and Environmental Microbiology,2002,68 (12): 6210-6219.
    82. Volpin H, Phillips D A, Okon Y, et al. Suppression of an isoflavonoid phytoalexin defense response in mycorrhizal alfalfa roots[J]. Plant Physiology,1995,108(4):1449-1454.
    83. von der Weid I, Artursson V, Seldin L, et al., Antifungal and root surface colonization properties of GFP-tagged Paenibacillus brasilensis PB177[J]. World Journal of Microbiology and Biotechnology, 2005,12:1591-1597.
    84. Wang J, Liu J, Wang X, et al. Application of electrospray ionization mass spectrometry in rapid typing of fengycin homologues produced by Bacillus subtilis[J]. Letters in Applied Microbiology, 2004,39,98-102.
    85. Waseem R, Yang X M, Wu H S, et al. Isolation and characterisation of fusaricidin-typecompound-producing strain of Paenibacillus polymyxa SQR-21 active against Fusarium oxysporum f.sp. nevium[J]. European Journal of pathology,2009,125:471-483.
    86. Wells C L, Wilkins T D. Botulism and Clostridium botulinum in:Baron's Medical Microbiology (Baron S et al., eds.) (4th ed.). Univ of Texas Medical Branch. ISBN 0-9631172-1-1. http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=mmed.section.1108.1996.
    87. Wells C L, Wilkins T D. Other Pathogenic Clostridia Food Poisoning and Clostridium perfringens in:Baron's Medical Microbiology (Baron S et al., eds.) (4th ed.). Univ of Texas Medical Branch. ISBN 0963117211.1996. http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=mmed.section.1131.
    88. Wells C L, Wilkins T D. Tetanus and Clostribium tetani in:Baron's Medical Microbiology (Baron S et al., eds.) (4th ed.). Univ of Texas Medical Branch. ISBN 0-9631172-1-1,1996. http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=mmed.section.1099.
    89. Whelan J A, Russell N B, Whelan M A. A method for the absolute quantification of cDNA using real-time PCR[J]. Journal of Immunological Methods,2003,278,261-269.
    90. Yang X, Chen L, Yong X, et al. Formulations can affect rhizosphere colonization and biocontrol efficiency of Trichoderma harzianum SQR-T037 against Fusarium wilt of cucumbers [J]. Biology and Fertility of Soils, DOI 10.1007/s00374-010-0527-z.
    91. Yedidia I, Benhamou N, Chet I. Induction of Defense Responses in Cucumber Plants(Cucumis sativus L.) by the Biocontrol Agent Trichoderma harzianum[J]. Applied and Environmental Microbiology,1999,65(3):1061-1070.
    92. Yu GY, Sinclair J B, Hartman G L, et al. Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani[J]. Soil Biology and Biochemistry,2002,34:955-963.
    93.蔡燕飞,廖宗文,章家恩,等.生态有机肥对番茄青枯病及土壤微生物多样性的影响[J].应用生态学报,2003,14(3):349-353.
    94.曹奎荣.草莓根腐病病原菌鉴定及生物学特性的研究[D].2006,甘肃农业大学优秀硕士学位论文.
    95.曹玉桃,姚革,文成敬,等.木霉拮抗黄瓜枯萎病菌菌株的筛选[J].西南农业学报,2007,20(3):408-411.
    96.朝井勇宜.细菌利用工业[M].北京:轻工业出版社,1966,19-30.
    97.陈承利,廖敏,曾路生.污染土壤微生物群落结构多样性及功能多样性测定方法[J].生态学报,2006,26(10):3404-34121.
    98.陈华,郑之明,余增亮.枯草芽孢杆菌JA脂肽类及挥发性物质抑菌效应的研究[J].微生物学通报,2008,35(1):1-4.
    99.陈雪丽,王光华,金剑,等.多粘类芽孢杆菌BRF.1和枯草芽孢杆菌BRF.2对黄瓜和番茄枯萎病的防治效果[J].中国生态农业学报,2008,16(2):446-450.
    100.陈中义,张杰,黄大昉.生防芽孢杆菌抗病机制研究进展[J].植物病理学报,2003,33(2):97-10.
    101.谌晓曦,陈卫良,李德葆,等.357细菌及其拮抗物质对植物病原真菌的抑制[J].微生物学报,2003,30(3):67-71.
    102.程洪斌,刘晓桥,陈红漫.枯草芽孢杆菌防治植物真菌病害研究进展[J].上海农业学报,2006,22(1):109-112.
    103.程智慧,宋莉,孟焕文.大蒜鳞茎粗提物对黄瓜枯萎病的抑菌作用和防病效果[J].西北农林科技大学学报,2008,36(5):113-118.
    104.邓建良,刘红彦,王鹏涛,等.生防芽孢杆菌脂肽抗生素研究进展[J].植物保护,2010,36(3):20-25.
    105.东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京:科学出版社,2001.176-182.
    106.樊晓刚,金轲,李兆君,等.不同施肥和耕作制度下土壤微生物多样性研究进展[J].植物营养与肥料学报,2010,16(3):744-751.
    107.范秀容,李广武,沈萍.微生物学实验[M].北京:高等教育出版社,1988.75-78.
    108.方中达.植物病研究方法[M].北京:中国农业出版社,2005.
    109.冯永君,宋未.水稻内生优势成团泛菌GFP标记菌株的性质与标记丢失动力学[J].中国生物化学与分子生物学报,2002,18(1):85-91.
    110.高崇洋,赵阳国,王爱国,等.耕作和施肥对不同深度黑土中细菌群落结构的影响[J].微生物学报,2010,50(1):67-75.
    111.高伟,田黎,张久明.海洋芽孢杆菌B9987菌株对番茄灰霉病和早疫病的作用机制初探[J].植物保护,2010,36(1):55-59.
    112.高学文,姚仕义,Pham H,等.枯草芽孢杆菌B2菌株产生的表面活性素变异体的纯化和鉴定[J].微生物学报,2003,43(5):647-652.
    113.高学文,姚仕义,Huong P,等.基因工程菌枯草芽孢杆菌GEB3产生的脂肽类抗生素及其生物活性研究[J].中国农业科学,2003,36(12):1496-1501.
    114.韩剑,张静文,徐文修,等.新疆连作、轮作棉田可培养的土壤微生物区系及活性分析[J].棉花学报,2011,23(1):69-74.
    115.郝晓娟.作物枯萎病生防细菌的研究[D].浙江大学博十学位论文,2006.
    116.何红,蔡学清,关雄,等.内生菌BS22菌株的抗菌蛋白及其防病作用[J].植物病理学报,2003,33(4):373-378.
    117.何青芳,陈卫良,马志超,等.枯草芽孢杆菌A30菌株产生的拮抗肽的分离纯化与理化性质研究[J].中国水稻科学,2002,16(4):361-365.
    118.何欣,郝文雅,杨兴明,等.生物有机肥对香蕉植株生长和香蕉枯萎病防治的研究[J].植物营养与肥料学报,2010,16(4):978-985.
    119.胡亚林,汪思龙,颜绍馗.影响土壤微生物活性与群落结构因素研究进展[J].土壤通报,2006,37(1):170-1761.
    120.胡元森,刘亚峰,吴坤,等.黄瓜连作土壤微生物区系变化研究[J].土壤通报,2006,37(1):126-129.
    121.胡元森,吴坤,李翠香,等.黄瓜连作对土壤微生物区系影响Ⅱ——基DGGE方法对微生物种群的变化分析[J].中国农业科学,2007,40(10):2267-2273.
    122.胡元森.黄瓜连作障碍因子分析及其生物修复措施探讨[D].南京农业大学博士学位论文,2005.
    123.华蔚颖.应用454测序技术分析菌群结构的方法学研究[D].2010,上海交通大学硕士学位论文.
    124.黄家权,晏立英,叶小文,等.青枯菌定量检测方法的建立及其在花生中的应用[J].中国农业科学,2011,44(1):58-66.
    125.黄曦,许兰兰,黄荣韶,等.枯草芽孢杆菌在抑制植物病原菌中的研究进展[J].生物技术通报,2010,(1)24-29.
    126.焦振泉,刘秀梅.细菌分类和鉴定的新热点:16S-23S rDN区间[J].微生物学通报,2001,28(1):85-89.
    127.孔建,赵白鸽,王文夕,等.枯草芽抱杆菌抗菌物质对镰刀菌抑制机理的镜下研究[J].植物病理学报,1998,28(4):337-340.
    128.李宝庆,鹿秀云,郭庆港,等.枯草芽孢杆菌BAB-1产脂肽类及挥发性物质的分离和鉴定[J].中国农业科学,2010,43(17):3547-3554.
    129.李阜棣,喻子牛,何绍江.农业微生物学实验技术[M].北京:中国农业出版社,1996,178-181.
    130.李冠,欧阳光察.植物诱导抗病性[J].植物生理学通讯,1990,6:1-5.
    131.李合生主编,植物生理生化实验原理和技术[M].2000,北京,高等教育出版社.
    132.李洪连,王守正,王金生,等.黄瓜对炭疽病诱导抗性的初步研究Ⅱ.诱导抗病性机制的研究[J].植物病理学报,1993,23(4):327-330.
    133.李晶,杨谦,张淑梅,等.枯草芽孢杆菌B29菌株防治黄瓜枯萎病的田间效果及安全性评价初报[J].中国蔬菜,2009(2):30-33.
    134.李俊华,蔡和森,尚杰,等.生物有机肥对新疆棉花黄萎病防治的生物效应[J].南京农业大学学报,2010,33(6):50-54.
    135.李敏慧,习平根,姜子德,等.广东香蕉枯萎病菌生理小种的鉴定[J].华南农业大学报,2007,28(2):92-95.
    136.李世贵,吕天晓,顾金刚,等.绿色荧光蛋白在微生物根际定殖研究中的应用[J].生物技术通报,2009,2:34-37.
    137.李湘民,许志刚,Mew T W稻株上拮抗细菌的定殖及其对土著细菌的影响[J].生态学报,2008,28(8):3868-3874.
    138.李永刚,宋兴舜,赵雪莹,等.生防枯草芽孢杆菌L1特性的初步研究[J].植物保护,2008,34(1):57-61.
    139.李宇飞,王惠英,张益民,等.土壤中破伤凤杆菌的调查报告[J].中国卫生检验杂志,1995,5(3):193-194.
    140.梁元存,刘爱新.激发子诱导植物抗性的作用机制[J].植物生理学通讯,2001,37(5):442-446.
    141.林灵,谭亿,陈菲菲,等.大连渤海老虎滩海域沉积物可培养放线菌的多样性[J].微生物学报,2011,51(2):262-269.
    142.凌宁,王秋君,杨兴明,等.根际施用微生物有机肥防治连作西瓜枯萎病研究[J].植物营养与肥料学报,2009,15(5):1136-1141.
    143.刘时轮,李勇,傅俊范,等.绿色木霉Tv04-2菌株固体发酵物人参防御酶活性的影响[J].中国农学通报,2009,25(3):63-65.
    144.刘颖.徐庆.陈章良.抗真菌肽LP-1的分离纯化及特性分析[J].微生物学报,1999,39(5):441-447.
    145.罗佳.微生物有机肥防治棉花黄萎病的作用机制[D].南京农业大学博士学位论文,2010.
    146.马国斌,林德佩,王叶筠,等.培养条件对西瓜枯萎病菌镰刀菌酸产生的影响[J].植物病理学报,1996,26(2):187-191.
    147.穆常青,刘雪,陆庆光,等.枯草芽孢杆菌B-332菌株对稻瘟病的防治效果及定殖作用[J].植物保护学报,2007,34(2):123-128.
    148.裴雪霞.典型种植制度下长期施肥对十壤微生物群落多样性的影响[D].中国农业科学院博十学位论文,2010。
    149.丘安经,宁洁珍.植物学试验指导[M].华南农业大学生物技术学院植物教研室编,1996.
    150.邱德文.我国植物病害生物防治的现状及发展策略[J].植物保护,2010,36(4):15-18.
    151.冉雪松,王振华,潘康成.丁酸梭状芽孢杆菌的研究进展[J].安徽农学通报,2007,13(4):37-39.
    152.中卫收,林先贵,张华勇,等.不同栽培条件下蔬菜塑料大棚土壤尖孢镰刀菌数量的变化[J].土壤学报,2008,45(1):137-142.
    153.史益敏.中国科学院上海植物生理研究所.现代植物生理学实验指南[M].北京:科学出版社,2004.
    154.孙冬梅,林志伟,迟丽,等.黄绿木霉菌及其混剂对大豆菌核病的诱导抗性初探[J].大豆科学,2010,29(1):88-91.
    155.孙红炜,路兴波,杨崇良,等.不同抗性玉米品种接种甘蔗花叶病毒(SCM V)后4种防御酶活性变化研究[J].植物病理学报,2006,36(2):181-184.
    156.孙建波,王宇光,赵平娟,等.拮抗菌XB16在香蕉体内的定殖及对抗病相关酶活性的影响[J].热带作物学报,2010,31(2):212-216.
    157.孙力军,陆兆新,别小妹,等.培养基对解淀粉芽孢杆菌ES-2菌株产抗菌脂肽的影响[J].中国农业科学,2008,41(10):3389-3398.
    158.田连生,王伟华,石万龙,等.木霉对尖镰孢菌的拮抗机制及生防效果研究[J].植物保护,2001,27(4):74.
    159.田涛,亓雪晨,王琦,等.芽孢杆菌绿色荧光蛋白标记及其在小麦体表定殖的初探[J].植物病理学报,2004,34(4):346-351.
    160.田涛,王琦.绿色荧光蛋白作为分子标记物在微生物学中的应用[J].微生物学杂志,2005,25(1):68-731.
    161.汪茜,胡春锦,黄思良,等.真菌病害拮抗菌的筛选及其对多种植物病原真菌的拮抗活性测定[J].广西农业科学,2010,41(7):13-15.
    162.王光华,Raaijmakers J M生防细菌产生的拮抗物质及其在生物防治中的作用[J].应用生态学报,2004,15(6):1100-1104.
    163.王平,李阜隶.细菌发光的分子生物学[J].生物技术通报,1993,4:1-5.
    164.王平.发光酶标记基因在微生物分子生态学研究中的应用[J].生态学,1996,15(3):26-34.
    165.王震,郭爱玲,冯莉.绿色荧光蛋白基因在植病研究中的应用[J].中国农学通报,2007,23(6): 493-496.
    166.魏国强,朱祝军,李娟,等.硅和白粉菌诱导接种对黄瓜幼苗白粉病抗性影响的研究[J].应用生态学报,2004,15(11):2147-2151.。
    167.温博海.立克次体16S rRNA基因序列分析[J].中国人兽共患病杂志,1999,15(6):9-10.
    168.吴凤芝,王伟,栾非时.十壤灭菌对大棚连作黄瓜生长发育影响[J].北方园艺,1999(4):300.
    169.吴凤芝,赵凤艳,刘元英.设施蔬菜连作障碍原因综合分析与防治措施[J].尔北农业大学学报,2000,31(3):241-247.
    170.吴根福,陈佩华.己酸菌的自然选育及其生物学特性的初步研究[J].杭州大学学报,1996,23(7):269-274.
    171.吴洪生,尹晓明,刘尔阳,等.镰刀菌酸毒素对西瓜幼苗根细胞跨膜电位及叶细胞有关抗逆酶的抑制[J].中国农业科学2008,41(9):2641-2650.
    172.吴琳,黄华平,杨腊英.拮抗香蕉枯萎病镰刀菌木霉菌株的分离筛选[J].热带作物学报,2010,31(1):106-110.
    173.吴茂森,何晨阳.小麦赤霉病穗组织中黄色镰刀菌和DON毒素的定量分析[J].植物保护学报,2008.35(1):33-36.
    174.吴秀红,张新中,周永灿,等.关于芽孢杆菌(Bacillus)应用概述[J].现代渔业信息,2007,22(7):16-18.
    175.谢栋,彭憬,王津红,等.枯草芽抱杆菌抗菌蛋白X98Ⅲ的纯化与性质[J].微生物学报,1998,38(1):13-19.
    176.辛雅芬,商金杰,高克祥.拮抗木霉菌的生防机制研究进展[J].东北林业大学学报,2005(4):88-91.
    177.徐韶,庄敬华,高增贵,等.内生细菌与木霉复合处理诱导甜瓜对枯萎病的抗性[J].中国生物防治,2005,21(4)254-259.
    178.闫章才.溶纤维素粘细菌的分离纯化、分类、及降解纤维素机理的研究[D].山尔大学博十学位论文,2003.
    179.杨海君,肖启明,刘安元.土壤微生物多样性及其作用研究进展[J].南华大学学报(自然科学版),2005,19(4):21-261.
    180.杨文鸽,孙翠玲,潘云娣,等.水产品中致病微生物的快速检测方法[J].中国食品学报,2006,6(1):402-406.
    181.杨兴明,徐阳春,黄启为,等.有机(类)肥料与农业可持续发展和生态环境保护[J].土壤学报,2008,45(5):926-932.
    182.杨秀荣,王雪莲,王敏,等.生防细菌B579对土传病害的防治效果及促长作用[J].中国生物防治,2008,24:59-61.
    183.姚震声,陈中义,陈志谊,等.绿色荧光蛋白基因标记野生型生防枯草芽孢杆菌的研究[J].生物工程学报,2003,19(5):551-556.
    184.易龙,严占勇,肖崇刚.拮抗疫病芽孢杆菌对辣椒的控病及诱导抗性[J].西南大学学报,2009,31(8):48-51.
    185.殷幼平,袁训娥,李强,等.生防菌枯草芽孢杆菌CQBS03的绿色荧光蛋白基因标记及其在柑橘叶片上的定殖[J].中国农业科学,2010,43(17):3555-3563.
    186.尹敬芳,张文华,李健强,等.辣椒疫病生防菌的筛选及其抑菌机制初探[J].植物病理学报,2007,37(1):88-94.
    187.游春平,刘任,肖爱萍,等.拮抗细菌bio-d5在香蕉根部定殖力的测定[J].华中农业大学学报,2008,27(3):363-366.
    188.余文英,郑宏,张绍升.温室黄瓜枯萎病根际微生物动态变化研究[J].中国农学通报,2009,25(7):235-238.
    189.喻景权,杜尧舜.蔬菜设施栽培可持续发展中的连作障碍问题[J].沈阳农业大学学报,2000,31(1):124-126.
    190.张炳欣,张平,陈晓斌.影响引入微生物根部定殖的因素[J].应用生态学报,2000,11(6):951-953.
    191.张春兰,吕卫光,袁飞,等.生物有机肥减轻设施栽培黄瓜连作障碍的效果[J].中国农学通报,1999,15(6):67-69.
    192.张慧,杨兴明,冉炜,等.土传棉花黄萎病拮抗菌的筛选及其生物效应[J].土壤学报,2008(45):1095-1101.
    193.张慧.防治棉花黄萎病微生物有机肥的研制及其生物效应[D].南京农业大学硕士学位论文,2008.
    194.张树生.微生物有机肥缓解黄瓜枯萎病的生物学效应及其作用机制[D].南京农业大学博士学位论文,2008.
    195.张元恩.植物诱导抗性研究进展[J].生物防治通报,1987,3(2):88-90.
    196.赵蕾.木霉菌的生物防治作用及其应用[J].生态农业研究,1999,7(1):66-68.
    197.赵爽,罗佳,凌宁,等.基因宏阵列和荧光定量PCR方法对西瓜枯萎病害土壤中尖孢镰刀菌的快速检测和定量[J].土壤学报,2010,47(4):703-708.
    198.赵妍,邵兴锋,屠康,等.枯草芽孢杆B10对采后草莓果实病害的抑制效果[J].果树学报,2007,24(3):339-343.
    199.郑聚锋.长期不同施肥下南方代表性水稻土有机碳矿化与C02、CH4产生研究[D].南京农业大学博士学位论文,2006.
    200.郑莉,梁建根,施跃峰.生防菌ZJH210对黄瓜灰霉病诱导抗性的研究[J].中国农学通报, 2009,25(3):197-201.
    201.周叶锋,廖晓兰.影响甲烷排放量的两种细菌——产甲烷细菌和甲烷氧化菌的研究进展[J].农业环境科学学报,2007,26(增刊):340-346.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700