用户名: 密码: 验证码:
湘杂棉2号杂种优势的遗传机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湘杂棉2号是我国上世纪90年代选育的棉花杂交种,在棉花产量方面具有较高的杂种优势。亲本CRI12是高产、优质、抗病的棉花品种,J8891是高产棉花品系。本研究利用以湘杂棉2号构建的重组自交系群体以及重组自交系间两两杂交构建的永久性F2群体,分别进行了主要农艺性状和纤维品质性状的QTL定位;通过杂种优势QTL的定位分析,探讨了该杂交种杂种优势形成的遗传机理;用cDNA-AFLP技术构建了叶片转录图谱,进一步进行了性状的QTL定位和候选基因分析。主要结果如下:
     1、在前人工作的基础上,用重组自交系群体构建了一张以SSR标记为主的分子标记遗传图谱。该图谱总长度941.2cM,含22条染色体和1个连锁群,标记位点总数为181个,大约覆盖棉花基因组的20.20%。标记位点间平均遗传距离6.67cM,最大间距26.18cM。标记的分布不很均匀,有些标记在染色体上成簇存在。
     2、以重组自交系3年共8个环境下的资料,通过复合区间作图法对产量和产量因子等7个农艺性状进行了QTL定位,共定位了42个加性效应显著的QTL,其中18个在A亚组、24个在D亚组染色体上。对11个主要的纤维品质性状进行了QTL定位,共检测到59个加性效应显著的QTL,其中22个分布在A亚组、36个分布在D亚组染色体上。对株高、果枝数等7个形态性状共检测到16个QTL,1个在A亚组、其余均在D亚组染色体上。这些QTL在染色体上大多数成簇分布,其中染色体D2、D6、D9、A5和A11上QTL非常集中,存在多个QTL热点区域。
     3、利用永久性F2群体3年共6个环境的数据以复合区间作图法(CIM)、多区间作图法(MIM)和多标记联合分析法对9个主要农艺性状进行了QTL定位。通过CIM检测到的104个QTL中,有37个QTL可在两个以上的环境下检测到,70个可由MIM同时检测到,43个由多标记联合分析法同时检测到。许多在不同环境中检测到的QTL具有共同的邻近标记。用三种方法同时检测到的相对稳定的QTL达28个,其中单株籽棉1个;单株皮棉1个;单株铃数3个;铃重5个;衣分6个;籽指3个;衣指3个;株高2个;果枝数3个。有26个QTL与以前的报道位置相同或相近。
     利用MIM对农艺性状进行了位点间上位性QTL分析,共检测到47个上位性QTL位点对,其中参与加性与加性(AA)、加性与显性(AD)、显性与加性(DA)和显性与显性(DD)互作的位点对分别为26、9、12和19个。因此互作类型以AA和DD居多,有些双位点间具有两种以上的显著性互作。一些位点与其它多个位点间有互作,说明在基因组中存在参与互作的热点区域。利用多标记联合分析法对农艺性状进行了位点与环境的上位性互作分析。共检测到28个环境上位性QTL,其中10个在A亚组、18个在D亚组染色体上。有15个环境上位性QTL在复合区间作图中检测到,表明在以前研究中用复合区间作图法定位的QTL至少有一部分实际上是环境上位性QTL。位点间上位性和位点与环境间上位性QTL的大量存在,表明上位性在湘杂棉2号杂种优势表现中发挥了重要作用。
     4、利用多标记联合分析法以永久性F2群体四环境中亲优势数据进行了农艺性状杂种优势的QTL分析。共检测到60个杂种优势位点,其中19个表现加性效应,31个表现显性和部分显性效应,10个表现超显性效应。43个杂种优势位点与相应性状的QTL位置相同,表明这些位点可能通过控制性状的表达来影响杂种优势表现。同数量性状的QTL一样,性状杂种优势的QTL也具有多效性,研究发现在杂种优势的QTL中,有16个QTL同时控制多个性状的杂种优势表现。检测到农艺性状杂种优势的环境上位性QTL75个以及杂种优势上位性互作位点对75对。在加性、显性、超显性和上位性QTL中,上位性QTL解释的杂种优势变异最大,说明上位性效应包括基因间互作和基因与环境的互作效应是湘杂棉2号杂种优势的主要遗传基础。基因位点内的加性、显性和超显性对杂种优势的产生也发挥了一定的作用。
     5、以现蕾期叶片为材料,用cDNA-AFLP技术构建了一张湘杂棉2号永久性F2群体的转录图谱。该图谱含26个连锁群,总长度2747.O1cM,包含302个cDNA-AFLP标记,连锁群平均长度95.27cM。平均标记间距8.23cM。所有标记均匀分布在不同的连锁群上。以该图谱以及永久性F2群体的四环境数据,用复合区间作图法定位了单株籽棉产量等9个主要农艺性状的76个QTL和9个纤维品质性状的61个QTL。QTL也具有成簇分布现象。大部分QTL表现为显性和超显性效应。
     对与QTL共分离的大部分长度在200bp以上的cDNA-AFLP片段(TDFs)进行了回收、克隆和测序。通过同源性序列搜索,对61个TDFs进行了候选基因的蛋白质功能预测和分析。这些基因大多在转录和翻译调控、信号转导、运输、纤维素合成、光合作用、碳水化合物及脂肪代谢、合成代谢等方面起作用,是具有重要生物学功能的基因。通过共分离TDFs的表达与产量等农艺性状的相关分析,鉴定出多个与产量及产量杂种优势相关的候选基因。可通过RACE技术或图位克隆技术,将这些功能基因进行克隆,或者将与QTL共分离的cDNA-AFLP标记转化为CAPS标记应用于分子标记辅助育种。
XZM2 is a hybrid cotton variety with high yield heterosis. The parent CRI12 is an elite variety of high yield, good fiber quality and disease resistance and J8891 is a germplasm line with high yield potential. A recombinant inbred lines (RILs) population constructed from XZM2 and an immortalized F2 (IF2) population derived from crosses between the RILs were used to map QTL for agronomic and fiber quality traits; the genetic bases of heterosis were dissected by mapping of heterotic loci; and a transcriptome map of the IF2 population was constructed by cDNA-AFLP techniques, followed by QTL and candidate gene analyses for agronomic and fiber quality traits. The results are as follows:
     1. A genetic map mainly consisting of SSR markers was constructed using the RILs population, which was 941.2cM in recombined length, including 22 chromosomes and 1 linkage group, and covered 20.20% of cotton genome. The average interval between two markers was 6.67cM. Some of the markers were clustered on certain chromosomes.
     2. Based on data of RILs population in 8 environments in 3 years, QTL analysis was conducted using Composite Interval Mapping (CIM) procedure of Windows QTL cartographer 2.5. Totally 42 additively significant QTL for 7 yield and yield components were identified,18 and 24 of which were mapped on A and D subgenome respectively; Fifty nine QTL for 11 fiber quality traits were detected, with 22 distributed on A and 36 on D subgenome. Sixteen QTL for 7 morphological traits were mapped, with 1 on A and 15 on D subgenome. Some of these QTL were clustered on chromosome D2, D6, D9, A5 and A11, implying the existence of hot QTL region on the cotton genome.
     3. Utilizing the IF2 data in 6 environments in 3 years, QTL for 9 agronomic traits were analyzed by CIM and multiple interval mapping (MIM) of Cartographer 2.5 and multi-marker joint analysis methods respectively. Of the total 104 QTL detected by CIM, 37 can be detected in more than 2 environments,70 were also identified by MIM, and 43 were detected simultaneously by multi-marker joint analysis. Many of the QTL detected in different environments shared common makers. There were 28 relatively stable QTL concurrently detected by three methods, including 1 for seed-cotton yield; 1 for lint yield; 3 for bolls per plant; 5 for boll weight; 6 for lint percentage; 3 for seed index; 3 for lint index; 2 for plant height and 3 for fruit branch number respectively. About 26 QTL were at the same or close to the position of previously reported QTL of corresponding traits.
     Forty seven digenic epistatic QTL pairs were detected by MIM procedure. The number of QTL pairs involving in additive by additive (AA), additive by dominance (AD), dominance by additive (DA) and dominance by dominance (DD) interaction was 26,9,12 and 19 respectively, therefore the interaction modes between two loci were predominantly AA and DD, and some of the QTL pairs involved in more than two kinds of significant interaction. Some loci frequently interacted with other multiple loci, indicating there are hot regions of interaction in the cotton genome. Interaction between loci and environment for agronomic traits were analyzed using multi-marker joint analysis method. Totally 28 QE eptistatic QTL were identified including 10 on A and 18 on D subgenome. The results clearly demonstrated that the more susceptible to environment variations the traits, the more QE epistatic QTL were detected. Among these epistatic QTL,15 were also detected by CIM, suggesting that at least some of the QTL generally detected by CIM in previous researches were indeed QE epistatic QTL. Many digenic epistatic QTL pairs and QE epistatic QTL detected in this research implies the significance of epistasis in the constitution of heterosis in the hybrid cotton XZM2.
     4. QTL for mid-parent heterosis of the 9 agronomic traits were analyzed by multi-marker analysis method based on the data of IF2 in 4 environments. Totally 60 heterotic loci were detected, of which 19 were additive,31 were partial to complete dominant, and 10 were over-dominant. Forty three of these heterotic loci were found to be the QTL position of the corresponding traits, indicating these loci might indirectly affect the performance of heterosis by controlling the expression of traits. Sixteen pleiotropic QTL were found for heterosis of different traits, each simultaneously controlling heterosis of multiple traits. Seventy five QE epistatic heterotic QTL and 75 digenic epistatic QTL pairs were also detected by multi-marker analysis. That the heterosis variation explained by epistatic QTL was the largest among different gene action modes for all trait heterosis demonstrated that epistasis including digenic as well as QE interaction was the main genetic foundation of heterosis in XZM2. Additive, dominance and overdominance also played a role in heterosis.
     5. A transcriptome map of the IF2 was constructed via cDNA-AFLP techniques, using the top fully opened leaves during budding stage to extract RNA. The map was 2747.01cM in length, with 302 cDNA-AFLP markers distributed among 26 linkage groups. The average length of linkage groups was 95.27 cM, and the average interval between two markers was 8.23 cM. All markers distributed uniformly among linkage groups. Seventy six and 61 QTL were identified by CIM for 9 agronomic traits and 9 fiber quality traits respectively, using the transcriptome map and the 4-environment data. Some of the QTL were clustered on certain linkage groups. The majority of the QTL detected by this map were dominant and over-dormant.
     Most of the closely collocated or co-segregated candidate TDFs over 200bp in length were excised from the gels, successfully re-amplified and sequenced. Through homology searches, altogether 61 TDFs collocated with QTL of agronomic and fiber quality traits were detected with potential gene products or biological function. The putative gene products of these TDFs involved in controlling of transcription and translation, signal transduction, transport, cellulose synthesis, photosynthesis, metabolism of carbohydrate as well as lipid, and constitution components of cell structure. Several candidate genes for yield and yield heterosis were identified through correlation analysis between differential expression of TDFs and yield related traits. In the future, these functional candidate genes can be cloned by RACE or map based cloning, and the QTL associated TDFs can be converted into CAPS markers for the purpose of marker assisted selection (MAS).
引文
1. 鲍文硅.机会与风险—40年育种研究的思考.植物杂志[J],1990,4:4-5
    2. 程宁辉,高燕萍,杨金水,等.水稻杂种一代与亲本基因表达差异的分析[J].植物学报,1997,39(4):379-382.
    3. 程宁辉,杨金水,高燕萍,等.玉米杂种一代与亲本基因表达差异的初步研究[J].科学通报,1996,41(5):451-454.
    4. 崔瑞敏,闫芳教,王兆晓,等.转Bt基因杂交棉主要性状优势率分布研究[J].棉花学报,2002,14(3):162-165
    5. 范淑英,乐建刚,成广杰,等.用cDNA-AFLP技术构建白菜转录图谱[J].中国农业科学,2008,41(6):1735-1741
    6. 高用明,朱军.植物QTL定位方法的研究进展[J].遗传,2000,22(3):175-179
    7. 郭平仲,张金栋,甘为牛,等.距离分析方法与杂种优势[J].遗传学报,1989,16(2):97-104
    8. 胡建广,杨金水,陈金婷.作物杂种优势的遗传学基础[J].遗传,1999,21(2):47-50
    9. 胡文静,张晓阳,张天真,等.陆地棉优质纤维QTL的分子标记筛选与优质来源分析[J].作物学报,2008,34(4):578-586
    10.蒋建雄,张天真.利用CTAB酸酚法提取棉花组织总RNA[J].棉花学报,2003,15(3):166-167
    11.李博.毛白杨与毛新杨转录组图谱构建及若干性状的遗传学联合分析[D],北京林业大学,2009
    12.刘纪麟,郑用琏,张祖新,等.三峡地区玉米地方品种杂种优势群的初报[J],作物杂志,1998(67):6-12
    13.柳李旺,朱协飞,郭旺珍,等.分子标记辅助选择聚合棉花Rfl育性恢复基因和抗虫Bt基因[J].分子植物育种,2003,1(1):48-52
    14.马育华编.植物育种的数量遗传学基础[M].南京:江苏科学技术出版社,1982,158-198
    15.闵留芳,张天真,潘家驹.有关棉花黄萎病抗性遗传研究的几个问题[J].棉花学报,1995,(4):197-201
    16.倪中福.小麦RAPD分子标记遗传差异及杂交种与亲本间基因差异表达研究[D].北京:中国农业大学,1999.
    17.倪中福,孙其信,吴利民,等.小麦种间与品种间杂交种及其亲本之间基因差异表达比较研究[J].农业生物技术学报,2001,9(4):366-370
    18.秦永生,刘任重,梅鸿献,等.陆地棉产量相关性状的QTL定位[J].作物学报,2009,35(10):1812-1821
    19.秦永生,叶文雪,刘任重,等.陆地棉纤维品质相关QTL定位研究[J].中国农业科学,2009,42(12):4145-4154
    20.孙其信.农作物杂种优势机理研究进展.作物杂志[J],1998,4:31
    21.吴为人,李维明,卢浩然.数量性状基因座的动态定位策略[J].生物数学学报,1997, 12(5):400-495
    22.吴为人,李维明,卢浩然.基于最小二乘估计的数量性状基因座的复合区间定位法[J].福建农业大学学报,1996,25(4):394-399
    23.王建康.数量性状基因的完备区间作图方法[J].作物学报,2009,35(2):239-245
    24.王学德,潘家驹.棉花亲本遗传距离与杂种优势间的相关性研究[J].作物学报,1990,16(1):32-38
    25.武耀廷,张天真,朱协飞,等.陆地棉遗传距离与杂种F1、F2产量及杂种优势的相关性分析[J].中国农业科学,2002,35(1):22-28
    26.向道权,黄烈键,戴景瑞.玉米产量QTL和杂种优势遗传基础研究进展[J].中国农业大学学报,1999,4(增刊):1-7
    27.邢朝柱,靖深蓉,郭立平,等.转Bt基因棉杂种优势及性状配合力研究[J].棉花学报.2000,12(1):6-11
    28.邢以华,靖深蓉.棉花杂种优势预测初步研究.中国棉花[J],1984,(4):11-13
    29.熊立仲.基因表达水平上水稻杂种优势的分子生物学基础研究[D]武汉:华中农业大学,1999
    30.杨金水.杂种优势机理探讨.作物雄性不育及杂种优势研究进展[Ⅰ].北京:中国农业出版社,1996:1-12
    31.袁有禄,张天真,郭旺珍,等.陆地棉优异纤维品系的铃重和衣分的遗传即杂种优势分析[J].作物学报,2002,2:196-202
    32.张成岗,贺福初.生物信息学在新基因全长cDNA序列分析及功能预测中的应用[J].生物化学与生物物理进展,2003,30(1):159-163.
    33.张桂寅,刘立峰,马峙英.转Bt基因抗虫棉杂种优势利用研究.棉花学报[J],2001,13(5):264-267
    34.张金发,冯纯大.陆地棉与海岛棉种间杂种产量品质优势的研究.棉花学报,1994,6(3):140-145.
    35.张军,武耀廷,郭旺珍,等.棉花微卫星标记的PAGE/银染快速检测[J].棉花学报,2000,12(5):267-269
    36.张天真,冯义军,潘家驹.我国发现的4个棉花核雄性不育系的遗传分析[J].棉花学报,1992,4(1):1-8
    37.张正圣,李先碧,刘大军,等.陆地棉高强纤维品系和Bt基因抗虫棉的配合力与杂种优势研究[J].中国农业科学,2002,35(12):1450-1455
    38.朱军.运用混合线性模型定位复杂数量性状基因的方法[J].浙江大学学报(工学版).1999,33(3):327-335
    39.朱乾浩.陆地棉品种间杂种优势利用研究进展[J].棉花学报,1995,7(1):8-11
    40.朱新霞,汪保华,郭旺珍,张天真.CRI12配制的2个杂交棉DNA甲基化遗传与传递[J].作物学报,2009,35(12):2150-2158
    41.庄杰云,樊叶杨,吴建利,等.超显性效应对水稻杂种优势的重要作用[J].中国科学(C辑), 2001,31 (2):106-113
    42. Abdalla AM, Reddy OUK, El-Zik KM, et al. Genetic diversity and relationships of diploid and tetraploid cottons revealed using AFLP[J]. Theor Appl Genet,2001,102:222-229
    43. Allard RW. Genetic basis of the evolution of adaptedness in plants[J]. Euphytica,1996,92:1-11
    44. Alba R, Fei Z, Payton P, et al. ESTs, cDNA microarrays, and gene expression profiling:Tools for dissecting plant physiology and development[J]. Plant J,2004,39:697-714
    45. Altschul SF, Madden TL, SchaVer AA, et al. Gapped BLAST and PSI-BLAST:a new generation of protein database search programs[J]. Nucleic Acids Res,1997,25:3389-3402
    46. An CF, Saha S, Jenkins JN, et al. Transcriptome profiling, sequence characterization, and SNP based chromosomal assignment of the EXPANSIN genes in cotton[J]. Mol Genet Genomics,2007, 278:539-553
    47. An CF, Saha S, Jenkins JN, et al. Cotton (Gossypium spp.) R2R3-MYB transcription factors SNP identification, phylogenomic characterization, chromosome localization, and linkage mapping[J]. Theor Appl Genet,2008,116:1015-1026
    48. Arpat A, Waugh M, Sullivan J P, et al. Functional genomics of cell elongation in developing cotton fibers[J]. Plant Mol Biol,2004,54:911-929
    49. Auger DL, Gray AD, Ream T S, et al. Nonadditive gene expression in diploid and triploid hybrids of maize[J]. Genetics,2005,169(1):389-397
    50. Bachem C, van der Hoeven RS, et al. Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP:analysis of gene expression during potato tuber development[J]. Plant J,1996,9:745-753
    51. Bachem C, Oomen R, Visser R Transcript imaging with cDNA-AFLP:a step by step protocol[J]. Plant Mol Biol Rep,1998,16:157-173
    52. Basten CJ, Weir BS, Zeng ZB QTL Cartographer, Version 1.15. Department of Statistics, North Carolina State University, Raleigh, NC,2001
    53. Bao J, Lee S, Chen C, Zhang X, et al. Serial analysis of gene expression study of a hybrid rice strain (LYP9) and its parental cultivars[J]. Plant Physiol,2005,138:1216-12311
    54. Bezawada C, Saha S, Jenkins JN, et al. SSR Marker(s) associated with root knot nematode resistance gene(s) in cotton[J]. J Cotton Sci,2003,7:179-184
    55. Birchler JA, Auger DL, Riddle NC. In search of the molecular basis of heterosis[J]. Plant Cell, 2003,15(10):2236-2239
    56. Bolek Y, El-Zik Km, Pepper AE, et al. Mapping of Verticillium wilt resistance genes in cotton[J]. Plant Sci,2005,168(66):1581-1590
    57. Botstein D, White RL, Skolnick M, et al. Construction of genetic linkage map in man using restriction fragment length polymorphisms[J]. Am J Hum Genet,1980,32:314-331
    58. Boppenmaier J, Melchinger AE, Seitz G, et al. Genetic diversity for RFLPs in European maize inbreds(Ⅲ). Performance of crosses within versus between heterotic groups for grain traits[J]. Plant Breed,1993,111:217-226
    59. Breyne P, Zabeau M. Genome-wide expression of plant cell cycle modulated genes[J]. Curr Opin Plant Biol,2001,4:136-142
    60. Breyne P, Dreesen R, Cannoo B, et al. Quantitative cDNA-AFLP analysis for genome-wide expression studies[J]. Mol Genet Genomics,2003,269:173-179
    61. Brookes AJ. The essence of SNPs[J]. Gene,1999,234:177-186
    62. Brubaker CL, Paterson AH, Wendel JF. Comparative genetic mapping of allotetraploid cotton and its diploid progenitors[J]. Genome,1999,42:184-203
    63. Brubaker CL, Brown AHD. The use of multiple alien chromosome addition aneuploids facilitates genetic linkage mapping of the Gossypium G genome[J]. Genome,2003,46:774-791
    64. Bruce AB. The Mendelian theory of heredity and the augmentation of vigor[J]. Science,1910, 32:627-628
    65. Brugmans B, Fernandez del Carmen A, Bachem CW, et al. A novel method for the construction of genome wide transcriptome maps[J]. Plant J,2002,31(2):211-222
    66. Cerna FJ, Cianzio SR, Rafalski A, et al. Relationship between seed yield heterosis and molecular marker heterozygosity in soybean[J]. Theor Appl Genet,1997,95:460-467
    67. Chaudhry MR. Commercial cotton hybrids[J]. The ICAC Recorder,1997,15(2):3-11.
    68. Chee P, Rong J, Williams-Coplin D, et al. EST derived PCR-based markers for functional gene homologues in cotton[J]. Genome,2004,47:449-462
    69. Chee P, Draye X, Jiang CX, et al. Molecular dissection of interspecific variation between Gossypium hirsutum and Gossypium barbadense (cotton) by a backcross-self approach:Ⅰ. Fiber elongation[J]. Theor Appl Genet,2005,111:757-763
    70. Chee P, Draye X, Jiang CX, et al. Molecular dissection of phenotypic variation between Gossypium hirsutum and Gossypium barbadense (cotton) by a backcross-self approach:Ⅲ. Fiber length[J]. Theor Appl Genet.,2005,111:772-781
    71. Chen H, Qian N, Guo W, et al. Using three overlapped RILs to dissect genetically clustered QTL for fiber strength on Chro.D8 in Upland cotton[J]. Theor Appl Genet,2009,119(4):605-12
    72. Cheverud JM, Rountman EJ. Epistasis and its contribution to genetic variance components[J]. Genetics,1995,139:1455-1461
    73. Churchill GA, Doerge RW. Empirical threshold values for quantitative trait mapping[J]. Genetics, 1994,138:963-971
    74. Close TJ, Wanamaker SI, Caldo RA, et al. A new resource for cereal genomics:22K barley GeneChip comes of age[J]. Plant Physiol,2004,134:960-968
    75. Desai A, Chee PW, Rong J, et al. Chromosome structural changes in diploid and tetraploid A genomes of Gossypium[J]. Genome,2006,49:336-345
    76. Draye X, Chee P, Jiang CX, et al. Molecular dissection of interspecific variation between Gossypium hirsutum and G.barbadense (cotton) by a backcross-self approach:Ⅱ. Fiber fineness[J]. Theor Appl Genet.,2005,111:764-771
    77. East EM. Heterosis. Genetics,1936,21:375-397
    78. Edwards MD, Stuber CW, Wendel JF. Molecular-marker-facilitated investigations of quantitative trait loci in maize. I. Numbers, genomic distribution and types of gene action[J]. Genetics,1987, 27:639-648
    79. Endrizzi JE, Turcotte EL, Kohel RJ. Genetics, cytology, and evolution of Gossypium[J]. Adv Genet, 1985,23:271-375
    80. Endrizzi JE, Turcotte EL, Kohel RJ. Quantitative genetics, cytology and cytogenetics[M]. In:Kohel RJ, Lewis DF (eds) Agronomy, vol 24:Cotton. American Society of Agronomy, Madison, Wis., 1984:59-80
    81. Ewing RM, Kahla AB, Poirot O, et al. Large-scale statistical analyses of rice ESTs reveal correlated patterns of gene expression[J]. Genome Res,1999,9:950-959
    82. Fernandez-del-Carmen A, Celis-Gamboa C, Visser RG, et al. Targeted transcript mapping for agronomic traits in potato[J]. J Exp Bot,2007,58:2761-2774
    83. Frary A, Nesbitt TC, Frary A, et al. fw2.2:a quantitative trait locus key to the evolution of tomato fruit size[J]. Science,2000,289:85-88
    84. Frelichowski JE, Palmer M, Main D, et al. Genetic mapping of microsatellites derived from BAC-end sequences of Gossypium hirsutum Acala 'Maxxa'[J]. Mol Genet Genom,2006, 275(5):479-491
    85. Fulton TM, Van der Hoeven R, Eannetta NT, et al. Identification, analysis, and utilization of conserved ortholog set markers for comparative genomics in higher plants[J]. Plant Cell,2002, 14:1457-1467
    86. Guo M, Rupe MA, Zinselmeier C, et al. Allelic variation of gene expression in maize hybrids[J]. The Plant Cell,2004,16:1707-1716
    87. Guo M, Yang S, Rupe M, Hu B, et al. Genome-wide allele-specific expression analysis using Massively Parallel Signature Sequencing (MPSSTM) reveals cis-and trans-effects on gene expression in maize hybrid meristem tissue[J]. Plant Mol Biol,2008,66:551-563
    88. Guo WZ, Cai CP, Wang CB, et al. A microsatellite-based, gene-rich linkage map reveals genome structure, function and evolution in Gossypium[J]. Genetics,2007,176:527-541
    89. Guo W, Cai C, Wang C, et al. A preliminary analysis of genome structure and composition in Gossypium hirsutum[J]. BMC Genomics,2008,9:314
    90. Guo WZ, Ma GJ, Zhu YC, et al. Molecular tagging and mapping of quantitative trait loci for lint percentage and morphological marker genes in Upland cotton[J]. Journal of Integrative Plant Biology,2006,48 (3):320-326
    91. Guo W, Zhang T, Xinlian S, et al. Development of a SCAR marker linked to a major QTL for high fiber strength and its usage in molecular-marker assisted selection in Upland cotton[J]. Crop Sci, 2003,43:2252-2256
    92. Guo Y, McCarty JrJC, Jenkins JN, et al. QTLs for node of first fruiting branch in a cross of an upland cotton, Gossypium hirsutum L., cultivar with primitive accession Texas 701 [J]. Euphytica, 2008,163:113-122
    93. Gutierrez OA, Basu S, Saha S, et al. Genetic distance among selected cotton genotypes and its relationship with F2 performance[J]. Crop Sci,2002,42:1841-1847
    94. Grover CE, Kim HR, Wing RA, et al. Incongruent patterns of local and global genome size evolution in cotton[J]. Genome Res,2004,14:1474-1482
    95. Han ZG, Wang CB, Song XL, et al. Characteristics, development and mapping of Gossypium hirsutum derived-ESSR in allotetraploid cotton[J]. Theor Appl Genet,2006,112:430-439
    96. Han ZG, Guo WZ, Song XL, et al. Genetic mapping of EST-derived microsatellites from the diploid Gossypium arboreum in allotetraploid cotton[J]. Mol. Genet. Genomics,2004,272:308-327
    97. Han Z, Wang C, Song X, et al. Characteristics, development and mapping of Gossypium hirsutun derived EST-SSR in allotetraploid cotton[J]. Theor Appl Genet,2006,112:430-439
    98. He DH, Zhong XL, Zhang XL, et al. Mapping QTLs of traits contributing to yield and analysis of genetic effects in tetraploid cotton[J]. Euphytica,2005,144:141-149
    99. He DH, Lin ZX, Zhang XL, et al. QTL mapping for economic traits based on a dense genetic map of cotton with PCR-based markers using the interspecific cross of Gossypium hirsutum×Gossypium barbadense[J].Euphytica,2007,153:181-197
    100. Hovav R, Udall JA, Hovav E, et al. A majority of cotton genes are expressed in single-celled fiber[J]. Planta,2008,227:319-329
    101. Hu J, Vick BA. Target Region Amplification Polymorphism:A novel marker technique for plant genotyping[J]. Plant Mol Bio Rep,2003,21:289-294
    102. Hua JP, Xing YZ, Wu WR, et al. Single-locus heterotic effects and dominance-by-dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid[J]. Proc Natl Acad Sci, USA,2003,100(5):2574-2579
    103. Hua JP, Xing YZ, Xu CG, et al. Genetic dissection of an elite rice hybrid revealed that heterozygotes are not always advantageous for performance[J]. Genetics,2002,162:1885-1895
    104. Huang XQ, Coster H, Ganal MW, et al. Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.)[J].Theor Appl Genet,2003,106:1379-1389
    105. Huang Y, Zhang L, Zhang J, et al. Heterosis and polymorphisms of gene expression in an elite rice hybrid as revealed by a microarray analysis of 9198 unique ESTs. Plant Mol Biol,2006, 62:579-591
    106. Hughes A, Friedman R. Expression patterns of duplicate genes in the developing root in Arabidopsis thaliana[J]. J. Mol. Evol.2004,60:247-256
    107. Iqbal MJ, Reddy OUK, El-Zik KM, et al. A genetic bottleneck in the'evolution under domestication' of upland cotton Gossypium hirsutum L. examined using DNA fingerprinting[J]. Theor Appl Genet,2001,103:547-554
    108. Jiang CX, Writght RJ, EL-Zik KM, et al. Polyploid formation created unique avenues for response to selection in Gossypium (cotton)[J]. Proc Natl Acad Sci USA,1998,95:4419-4424
    109. Jiang F, Zhao J, Zhou L, et al. Molecular mapping of Verticillium wilt resistance QTL clustered on chromosomes D7 and D9 in upland cotton[J]. Science in China Series C:Life Sciences,2009, 52(9):872-884
    110. Jiang CX, Wright RJ, Woo SS, et al. QTL analysis of leaf morphology in tetraploid Gossypium (cotton)[J]. Thero Appl Genet,2000,100:409-418
    111. Jones DF. Dominance of linked factors as a means of accounting for heterosis[J]. Genetics,1917, 2:466-479
    112. Kawasaki S, Borchert C, Deyholos M, et al. Gene expression profiles during the initial phase of salt stress in rice[J]. Plant Cell,2001,13:889-906
    113. Kao CH, Zeng ZB, Teasdale RD. Multiple interval mapping for quantitative trait loci[J]. Genetics, 1999,152:1203-1216
    114. Khan MA, Myers GO, Stewart JM, et al. Addition of new markers to the trispecific cotton map[C]. Beltwide cotton conf,1999:1331
    115. Kohel RJ, Yu J, Park Y-H, Lazo GR. Molecular mapping and characterization of traits controlling fiber quality in cotton[J]. Euphytica,2001,121:163-172
    116. Konieczny A, Ausubel FM. A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers[J]. Plant J,1993,4:403-410
    117. Kosambi DD. The estimation of map distances from recombination values[J]. Ann Eugen,1944, 12:172-175
    118. Lacape JM, Nguyen TB, Thibivilliers S, et al. A combined RFLP-SSR-AFLP map of tetraploid cotton based on a Gossypium hirsutum×Gossypium barbadense backcross population[J]. Genome, 2003,46:612-626
    119. Lacape JM, Nguyen TB, Brigitte C, et al. QTL Analysis of Cotton Quqlity Using Multiple Gossypium hirsutum×Gossypium barbadense Backcross Generations[J]. Crop Science,2005, 45:123-140.
    120. Lander ES, Bostein S. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps[J]. Genetics,1989,121:185-199
    121. Lander ES, Green P, Abrahamson J, et al. MAPMAKER:An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations[J]. Genomics, 1987,1:174-181
    122. Laurent V, Risterucci AM, Lanaud C. Variability of nuclear ribosomal genes within Theobroma cacao[J]. Heredity,1993,71(1):96-103
    123. Li G, Quiros CF. Sequence--related amplified polymorphism (SRAP), A new marker system based on a simple PCR reaction:its application to mapping and gene tagging in Brassica[J]. Theor Appl Genet,2003,107(1):168-180
    124. Li ZK, Luo LJ, Mei HW, et al. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. I biomass and grain yield[J]. Genetics,2001, 158:1737-1753
    125. Li ZK, Pinson SRM, Park WD, et al. Epistasis for three grain yield components in rice[J].Genetics, 1997,145:453-465
    126. Lin ZX, He DH, Zhang XL, et al. Linkage map construction and mapping QTL for cotton fibre quality using SRAP, SSR and RAPD[J]. Plant Breeding,2005,124:180-187
    127. Lin ZX, Zhang YX, Zhang XL, et al. A high-density integrative linkage map for Gossypium hirsutum[J]. Euphytica,2009,166:35-45
    128. Liu HW, Wang XF, Pan YX, et al. Mining cotton fiber strength candidate genes based on transcriptome mapping[J]. Chin Sci Bull,2009,54:4651-4657
    129. Liu LW, Guo WZ, Zhu XF, et al. Inheritance and fine mapping of fertility restoration for cytoplasmic male sterility in Gossypium hirsutum L[J]. Theor Appl Genet,2003,106:461-469
    130. Luan M, Guo X, Zhang Y, et al. QTL mapping for agronomic and fibre traits using two interspecific chromosome substitution lines of Upland cotton. Plant Breeding,2009, 128(6):671-679
    131. Luo LJ, Li ZK, Mei HW, et al. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice Ⅱ.Grain yield components[J]. Genetics,2001, 58:1755-1771.
    132. Lyon. DNA markers and molecular breeding of cotton[J]. The Australian cotton grower,1999,20 (5):80-83.
    133. McCouch SR, Cho YG, Yano PE, et al. Report on QTL nomenclature[J]. Rice Genet. Newslett, 1997,14:11-13
    134. McKenie KS, Rutger JN. Genetic analysis of amylase content, alkali spreading score and grain dimensions in rice[J]. Crop Sci.,1983,23:306-311
    135. Mei M, Syed NH, Gao W, Thaxton PM, et al. Genetic mapping and QTL analysis of fiber related traits in cotton (Gossypium)[J]. Theor Appl Genet,2004,108:280-291
    136. Mei HW, Luo LJ, Ying CS, et al. Gene actions of QTLs affecting several agronomic traits resolved in a recombinant inbred rice population and two testcross populations[J]. Theor Appl Genet,2003, 107:89-101
    137. Mei HW, Li ZK, Shu QY, et al. Gene actions of QTLs affecting several agronomic traits resolved in a recombinant inbred rice population and two backcross populations[J]. Theor Appl Genet,2005, 110:649-659
    138. Melchinger AE. Genetic diversity and Heterosis. The Genetics and Exploitation of Heterosis in Crops. ASA-CSSA-SSSA. Madiso,1999,99-118.
    139. Melchinger AE. Genetic diversity for restriction fragment length polymorphism:relation to estimated genetic effects in maize inbreds[J].Crop Sci,1990,30:1033-1040
    140. Meredith WR Jr. Heterosis and gene action in cotton, Gossypium hirsutum L[J]. Crop Sci.,1972, 12:304-310
    141. Meredith WR Jr. Yield and fiber quality potential for second-generation cotton hybrids[J]. Crop Sci, 1990,30:1045-1048
    142. Meredith WR Jr. Yield and fiber quality potential for F2 hybrids. Proc[C].Belt Cotton Prod. Res. Conf.,1990, p69
    143. Michalek W, Weschke W, Pleissner KP, et al. EST analysis in barley defines a unigene set comprising 4,000 genes[J]. Theor Appl Genet,2002,104:97-103
    144. Monna L, Kojima S, Sasaki T, et al. Genetic dissection of a genomic region for a quantitative trait locus,Hd3,into two loci,Hd3a an d Hd3b controlling heading date in rice[J]. Theor Appl Genet, 2002,104:772-778
    145. Muravenko OV, Fedotov AR, Punina EO, et al. Comparison of chromosome Brdu-Hoechst-Giemsa banding patterns of the A(1) and (AD)(2)genomes of cotton[J]. Genome,1998,41:616-625
    146. Nguyen TB, Giband M, Brottier P, et al. Wide coverage of the tetraploid cotton genome using newly developed microsatellite markers[J]. Theor Appl Genet,2004,109:167-175
    147. Olson MV, Hood L, Cantor C, et al. A common language for physical mapping of the human genome[J]. Science,1989,245:1434
    148. Olvey J M. Performance and potential of F1 hybrids. Proc[C]. Belt Cotton Prod. Res. Conf.,1986, p101-102
    149. Pan YX, MA J, Zhang GY, et al. cDNA-AFLP profiling for the fiber development stage of secondary cell wall synthesis and transcriptome mapping in cotton[J]. Chin Sci Bull,2007, 52:2358-2364
    150. Park Y-H, Alabady MS, Sickler B, et al. Genetic mapping of new cotton fiber loci using EST-derived microsatellites in an interspecific recombinant inbred line (RIL) cotton population[J]. Mol Genet Genom,2005,274:428-441
    151. Paterson AH, Brubaker CL, Wendel JF. A rapid method for extraction of cotton(Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis[J]. Plant Molecular Biology Report,1993, 11(2):122-127
    152. Paterson AH, Saranga Y, Menz M, et al. QTL analysis of genotypexenvironment interaction affecting cotton fiber quality[J]. Theor Appl Genet,2003,6:384-396.
    153. Qin HD, Guo WZ, Zhang YM, et al. QTL mapping of agronomic and fiber traits based on a four-way cross population in Gossypium hirsutum L[J]. Theor Appl Genet,2008,117:883-894
    154. Ranik M, Creux NM, Myburg AA. Within-tree transcriptome profiling in wood-forming tissues of a fast-growing Eucalyptus tree[J]. Tree Physiol,2006,26:365-375
    155. Reddy OUK, Pepper AE, Saha S, et al. New dinucleotide and trinucleotide microsatellite marker resources for cotton genome research[J]. J Cot Sci,2001,5:103-113
    156. Reinisch AJ, Dong JM, Brubaker CL, et al. A detailed RFLP map of cotton, Gossypium hirsutum×Gossypium barbadense:chromosome organization and evolution in disomic polyploidy genome[J]. Genetics,1994,138:829-847
    157. Ren LH, Guo WZ, Zhang TZ. Identification of quantitative trait loci (QTLs) affecting yield and fiber properties in chromosome 16 in cotton using substitution line[J]. Acta Botanica Sinica,2002, 44 (7):815-820
    158. Rieseberg LH, Sinervo B, Linder CR, et al. Role of gene interactions in hybrid speciation:evidence from ancient and experimental hybrids[J]. Science,1996,272:741-745.
    159. Ritter E, Ruiz de Galarreta JI, van Eck HJ, et al. Construction of a potato transcriptome map based on the cDNA-AFLP technique[J]. Theor Appl Genet,2008,116:1003-1013
    160. Riungu TC, Mcvetty PBE. Comparison of the effect of mar and nap cytoplasms on the performance of intercultivar summer rape hybrids[J]. Canadian Journal of Plant Science,2004,84(3):731-738
    161. Romagnoli S, Maddaloni CM, Livini C, et al. Relationship between gene expression and hybrid vigor in primary root tips of young maize (Zea may L.) plantlets[J]. Theor Appl. Genet,1990, 80:767-775
    162. Romano GB, Sacks EJ, Stetina SR, et al. Identification and genomic location of a reniform nematode (Rotylenchulus reniformis) resistance locus (Renari) introgressed from Gossypium aridum into upland cotton (G. hirsutum)[J].Theor Appl Genet,2009,120:139-150
    163. Rong JK, Abbey C, Bowers JE, et al. A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium)[J]. Genetics,2004,166:389-417
    164. Rong J, Pierce GJ, Waghmare VN, et al. Genetic mapping and comparative analysis of seven mutants related to seed fiber development in cotton[J]. Theor Appl Genet,2005,111:1137-1146
    165. Rungis D, Llewellyn D, Dennis ES, et al. Investigation of the chromosomal location of the bacterial blight resistance gene present in an Australian cotton(Gossypium hirsutum L.) cultivar[J]. Aust J Agric Res,2002,53:551-560
    166. Ronning CM, Stegalkina SS, Ascenzi RA, et al. Comparative analyses of potato expressed sequence tag libraries[J]. Plant Physiol,2003,131:419-429
    167. Saha S, Jenkins JN, Wu J, et al. Effects of chromosome specific introgression in upland cotton on fiber and agronomic traits[J]. Genetics,2006,172(3):1927-1938
    168. Sambrook J, Fritsch EF, Maniatis T. Molecular cloning. A laboratory manual[M]. Cold Spring Harbor Laboratory Press, New York,1989
    169. Samuelian S, Kleine M, Ruyter-Spira CP, et al. Cloning and functional analyses of a gene from sugar beet up-regulated upon cyst nematode infection[J]. Plant Mol Biol,2004,54:147-156
    170. Saranga Y, Menz M, Jiang C, et al. Genomic Dissection of genotype×environment interactions conferring adaptation of cotton to arid conditions[J]. Genome Res,2001,11:1988-1995
    171. Saranga Y, Jiang CX, Wright RJ, et al. Genetic dissection of cotton physiological responses to arid conditions and their inter-relationships with productivity[J]. Plant, Cell and Environment. 2004,27:263-277
    172. Schlueter JA, Dixon P, Granger C, et al. Mining EST databases to resolve evolutionary events in major crop species[J]. Genome,2004,47:868-876
    173. Semel Y, J Nissenbaum, N Menda, et al. Overdominant quantitative trait loci for yield and fitness in tomato[J]. PNAS,2006,103(35):12981-12986
    174. Sen S, Churchill GA. A statistical framework for quantitative trait mapping. Genetics[J],2001, 159:371-387
    175. Shappley ZW, Jenkins JN, Meredith WR, et al. An RFLP linkage map of upland cotton (Gossypium hirsutum L.)[J]. Theor Appl Genet,1998,97:756-761
    176. Shen XL, Guo WZ, Lu QX, et al. Genetic mapping of quantitative trait loci for fiber quality and yield trait by RIL approach in Upland cotton[J]. Euphytica,2007,155:371-380
    177. Shen XL, Guo WZ, Zhu XF, et al. Molecular mapping of QTLs for fiber qualities in three diverse lines in Upland cotton using SSR markers[J]. Molecular Breed,2005,15:169-181
    178. Shen XL, Zhang TZ, Guo WZ, et al. Mapping fiber and yield QTLs with main, epistatic, and QTL×Environment interaction effects in recombinant inbred lines of Upland cotton[J]. Crop Sci, 2006,46:61-66
    179. Shen XL, Becelaere GV, Kumar P, et al. QTL mapping for resistance to root-knot nematodes in the M-120 RNR Upland cotton line(Gossypium hirsutum L.) of the Auburn 623 RNR source[J], Theor Appl Genet,2006,113:1539-1549
    180. Shen Y. Polymorphism of mitochondrial DNA from cytoplasmic male sterile and fertile lines in rice[J]. J Zhejiang of Agricultural University,1996,22(5):441-447
    181.Shull GH. The composition of a field of maize[J]. Rep Amer Breed Ass,1908,4:296-301.
    182. Smith OS, Smith JSC, Bowen SL, et al. Similarities among a group of elite maize inbreds as measured by pedigree, F1 grain yield, grain yield, heterosis, and RFLPs[J]. Theor Appl Genet,1990, 80:833-840
    183. Song XL, Wang K, Guo WZ, et al. A comparison of genetic maps constructed from haploid and BC1 mapping populations from the same crossing between Gossypium hirsutum L.×G. barbadense L.[J]. Genome,2005,48:378-390
    184. Srivastava HK. Intergenomic interaction, heterosis, and improvement of crop yield[J]. Adv Agron, 1981,34:117-195
    185. Song R, Messing J. Gene expression of a gene family in maize based on noncollinear haplotypes[J]. Proc Natl Acad Sci USA,2003,100:9055-9060.
    186. Sprague GF,Tatum LA. General vs. specific combining ability in single crosses of corn[J]. J Amer Soc Agron,1942,34:923-932
    187. Springer NM, Stupar RM. Allelic variation and heterosis in maize:how do two halves make more than a whole?[J]. Genome Res,2007,17:264-275
    188. Springer NM, Stupar RM. Allele-specific expression patterns reveal biases and embryo-specific parent-of-origin effects in hybrid maize[J]. Plant Cell,2007,19:2391-2402
    189. Stelly DM. Interfacing cytogenetics with the cotton genome mapping effort[C]. In:Proc Beltwide Cotton Conf, New Orleans, LA,10-14 Jan 1993, Natl Cotton Council, Memphis, TN, USA, pp1545-1550
    190. Stuber CW, Edwards MD, Wendel JF. Molecular marker-facilitated investigations of quantitative trait loci in maize. Ⅱ. Factors influencing yield and its component traits[J]. Crop Sci,1987, 27:639-648
    191. Stuber CW, Wendel JF, Goodman MM, et al. Techniques and scoring procedures for starch gel electrophoresis for maize (Zea mays L.)[J]. Tech Bull,1988,286.
    192. Stuber CW, Lincln SE, Wolff DW, et al. Identification of genetic factors contributing to heterosis from two elite maize inbred lines using molecular markers[J].Genetics,1992,132:823-839
    193. Sun QX, Ni ZF, Liu ZY. Differential gene expression between wheat hybrids and their parental inbreds in seedling leaves[J]. Euphytica,1999,106(2):117-123
    194. Swanson-Wagner RA, Y Jia, R DeCook, et al. All possible modes of gene action are observed in a global comparison of gene expression in a maize F1 hybrid and its inbred parents[J]. PNAS,2006, 103(18):6805-6810
    195. Syed NH, Chen ZJ. Molecular marker genotypes, heterozygosity and genetic interactions explain heterosis in Arabidopsis thaliana[J]. Heredity,2005,94:295-304
    196. Takahashi Y, Shomura A, Sasaki T, et al. Hd6, a rice quantitative trait locus involved inphotope riod sensitivity, encodes the alpha subunit of protein kinase CK2[J]. Proc Natl Acad Sci USA,2001, 98:7922-7927
    197. Tang B, Jenkins JN, McCarty JC, et al. F2 hybrids of host plant germplasm and cotton cultivars:I Heterosis and combining ability for lint yield and yield components[J]. Crop Sci,1993,33:700-705
    198. Tanksley SD, McCouch SR. Seed Banks and Molecular Maps:Unlocking Genetic Potential from the Wild[J]. Science,1997,277 (22):1063-1066
    199. Thinker NA, Mather DE. MQTL:software for simplified composite interval mapping of QTL in multiple environments. J Quant Loci ftp://gnome.agrenv.mcgill.ca/software/MQTL,1995
    200. Tsaftaris AS, Kafka M. Mechanism of heterosis in crop plant[J]. Journal of Crop Production,1998, 1:95-111
    201. Tsaftaris A, Polidoros A, Tani E. Gene regulation and its role in hybrid vigor and stability of performance [J]. Genetika,2000,32:189-202
    202. Tsaftaris AS, Kafka M, Polidoros A, et al. Epigenetic changes in maize DNA and heterosis[C]. In: CIMMYT. Book of abstracts. The genetics and exploitation of heterosis in crops; An international. symposium. DF, Mexico,1997,112-113
    203. Ulloa M, Meredith JW, Shappley ZW. RFLP genetic linkage maps from four F2:3 populations and joinmap of Gossypium hirsutum L.[J]. Theor Appl Genet,2002,104:200-208
    204. Ulloa M, Saha S, Jenkin N, et al. Chromosomal assignment of RFLP linkage groups harboring important QTL on an intraspecific cotton(Gossypium hirsutum L.) joinmap[J]. J Hered,2005, 96:132-144
    205. Ulloa M, Meredith WR. Genetic linkage map and QTL analysis of agronomic and fiberquality traits in an intraspecific population[J]. J Cotton Sci,2000,4:161-170
    206. Ulloa M, Cantrell RG, Percy R, et al. QTL Analysis of stomatal conductance and relationship to lint yield in an interspecific cotton[J]. J Cotton Sci,2000,4:10-18
    207. Van Ooijen JW, Voorrips RE. JoinMapR Version 3.0:software for the calculation of genetic linkage maps[P]. CPRO-DLO, Wageningen,2001
    208. Voorrips RE. MapChart 2.2:Software for the graphical presentation of linkage maps and QTLs, Plant Research International, Wageningen, the Netherlands,2006
    209. Vos P, Hogers R, Bleeker M, et al. AFLP:a new technique for DNA fingerprinting[J]. Nucleic Acids Res,1995,23:4407-4414
    210. Vroh Bi I, Maquet A, Baudoin JP, et al. Breeding for "low-gossypol seed and high-gossypol plants" in Upland cotton. Analysis of trispecies hybrids and backcross progenies using AFLPs and mapped RFLPs[J]. Theor Appl Genet,1999,99:1233-1244
    211. Vuylsteke M, Eeuwijk FV, Hummelen PV, et al. Genetic Analysis of Variation in Gene Expression in Arabidopsis thaliana. Genetics,2005,171,1267-1275
    212. Waghmare VN, Rong J, Rogers CJ, et al. Genetic mapping of a cross between Gossypium hirsutum (cotton) and the Hawaiian endemic Gossypium tomentosum[J], Theor Appl Genet,2005, 111:665-676
    213. Wagner DB, Dong J, Carlson MR, et al. Paternal leakage of mitochondrial DNA in Pinus[J]. Theor Appl Genet,1991,82:510-514
    214. Wallace TP, Bowman D, Campbell BT, et al. Status of the USA cotton germplasm collection and crop vulnerability[J]. Genetic Resources and Crop Evolution,2009,56:507-532
    215. Wang BH, Guo WZ, Zhu XF, et al. QTL mapping of fiber quality in an elite hybrid derived-RIL population of Upland cotton[J]. Euphytica,2006,152:367-378
    216. Wang BH, Guo WZ, Zhu XF, et al. QTL Mapping of Yield and Yield Components for Elite Hybrid Derived-RILs in Upland Cotton[J]. Genetics and Genomics,2007,34:35-45
    217. Wang BH, Wu YT, Guo WZ, et al. Genetic dissection of heterosis for fiber qualities in an elite cotton hybrid grown in second-generation[J]. Crop Sci,2007,47:1384-1392
    218. Wang BH, Wu YT, Huang NT, et al. QTL Analysis of Epistatic Effects on Yield and Yield Component Traits for Elite Hybrid Derived-RILs in Upland Cotton[J]. Acta Agronomica Sinica, 2007,33(11):1755-1762
    219. Wang DG. Fan JB, Siao CJ, et al. Large-Scale identification. mapping, and Genotyping of single nucleotide polymorphisms in the human genome[J]. Science,1998,280:1077-1082
    220. Wang HM, Lin ZX, Zhang XL, et al. Mapping and quantitative trait loci analysis of verticillium wilt resistance genes in cotton[J]. Journal of Integrative Plant Biol,2008,50(2),174-182
    221. Wang P, Su L, Qin L, et al. Identification and molecular mapping of a Fusarium wilt resistant gene in upland cotton[J]. Theor Appl Genet,2009,119(4):733-739
    222. Wang K, Song XL, Han ZG, et al. Complete assignment of the chromosomes of Gossypium hirsutum L. by translocation and fluorescence in situ hybridization mapping[J]. Theor Appl Genet, 2006,113:73-80
    223. Weaver JB. Agronomic properties of F1 hybrids and openpollinated F2's among twelve cultivars of cotton[C]. Beltwide Cotton Prod. Res. Conf. National Council of American 1984,103-104. Memphis, USA
    224. Wendel JF, Brubaker CL, Percival AE. Genetic diversity in Gossypium hirsutum and the origin of Upland cotton[J]. American Journal of Botany,1992,79(1):1291-1310
    225. Wenzel G. Molecular plant breeding:achievements in green biotechnology and future perspectives[J]. Appl Microbiol Biotechnol,2006,70:642-650
    226. Wisman E, Ohlrogge J. Arabidopsis microarray service facilities[J]. Plant Physiol,2000, 124:1468-1471
    227. Wright RJ, Thaxton PM, El-Zik KM. D-Subgenome bias of Xcm resistance genes in tetraploid Gossypium (Cotton) suggests that polyploid formation has created novel avenues for evolution[J]. Genetics,1998,149:1987-1996
    228. Wright RJ, Thaxton PM, Peterson AH, et al. Molecular mapping of genes affecting pubescence of cotton[J]. J Hered,1999,90:215-219
    229. Wright S. Evalutions and genetics of populations[M]. Univ. of Chicago Press,1968:23-28
    230. Wu J, Gutierrez OA, Jenkins JN, et al. Quantitative analysis and QTL mapping for agronomic and fiber traits in an RI population of Upland cotton[J]. Euphytica,2009,165:231-245
    231. Wu LM, Ni ZF, Meng FR, et al. Cloning and characterization of leaf cDNAs that are differentially expressed between wheat hybrids and their parents[J]. Mol Gen Genomics,2003,270:281-286
    232. Wu MQ, Zhang XL, Nie YC, et al. Localization of QTLs for yield and fiber quality traits of tetraploid cotton cultivar[J]. Acta Genet Sin,2003,30:443-452.
    233. Wu YT, Yin JM, Guo WZ, et al. Heterosis performance of yield and fiber quality in F1 and F2 hybrids in upland cotton[J]. Plant Breeding,2004,123:285-289
    234. Xiao JH, Li JM, Yuan LP, et al. Dominance is the major genetic basis of heterosis in rice as revealed by QTL analysis using molecular markers[J]. Genetics,1995,140:745-754
    235. Xie X, Jin F, Song MH, et al. Fine mapping of a yield-enhancing QTL cluster associated with transgressive variation in an Oryza sativa×O. rufipogon cross[J]. Theor Appl Genet,2008, 116:613-622
    236. Xiong LZ, Xu CG, Saghai MA, et al. Patterns of cytosine methylation in an elite rice hybrid and its parental lines, detected by a methylation-sensitive amplication polymorphism technique[J]. Mol Gen Genet,1999,261:439-446
    237. Xiong LZ, Yang GP, Xu CG, et al. Relationships of differential gene expression in leaves with heterosis and heterozygosity in a rice diallel cross[J]. Molecular Breed,1998,4:129-136
    238. Yano M, Katayose Y, Ashikari M, et al. Hdl, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene[J]. Plant Cell,2001,12:2473-2484
    239. Yin JM, Guo WZ, Zhang TZ. Construction and identification of bacterial artificial chromosome library for 0-613-2R in upland cotton[J]. Journal of Integrative Plant Biology,2006,48(2):219-222,
    240. Ynturi P, Jenkins JN, McCarty Jr.JC, et al. Association of root-knot nematode resistance genes with simple sequence repeat markers on two chromosomes in cotton[J]. Crop Science,2006, 46(6):2670-2674
    241. Yu CY, Wan JM, Zhai HQ, et al. Study on heterosis of intersubspecies between indica and japonica rice (Oryza sativa L.) using chromosome segment substitution lines[J]. Chin Sci Bull,2005, 50(2):131-136
    242. Yu SB, Li JX, Tan YF, et al. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid[J]. Proc Natl Acad Sci. USA,1997,94(17):9226-9231
    243.Zabeau M, Vos P. Selective restriction fragment amplication:a general method for DNA fingerprinting [P]. European Patent Application no.92402629, Publication No. Ep0534858A1, 1993.
    244. Zeng L, Meredith WR, Gutierrez OA, et al. Identification of associations between SSR markers and fiber traits in an exotic germplasm derived from multiple crosses among Gossypium tetraploid species[J]. Theor Appl Genet,2009,119:93-103
    245. Zeng ZB. Theoretical basis for seperation of multiple linked gene effects in mapping of quantitative trait loci[J]. Proc Natl Acad Sci,1993,90:10972-10976.
    246. Zeng ZB. Precision mapping of quantitative trait loci[J]. Genetics,1994,136:1457-1468
    247. Zeng ZB, Kao CH, Basten CJ. Estimating genetic architecture of quantitative traits[J]. Gent Res, 1999,74:279-289.
    248. Zhang J, Guo WZ, Zhang TZ. Molecular linkage map of allotetraploid cotton (Gossypium hirsutum L.×Gossypium barbadense L.) with a haploid population[J]. Theor Appl Genet,2002, 105:1166-1174
    249. Zhang MR, Yan HY, Liu B, et al. Endosperm-specific hypomethylation, and meiotic inheritance and variation of DNA methylation level and pattern in sorghum (Sorghum bicolor L.) inter-strain hybrids[J]. Theor Appl Genet,2007,115:195-207
    250. Zhang QF, Gao YJ, Saghai MA, et al. Molecular divergence and hybrid performance in rice[J]. Molecular Breeding,1995,1:133-142
    251. Zhang QF, Gao YJ, Yang SH, et al. A diallel analysis of heterosis in elite hybrid rice based on RFLPs and microsatellites[J]. Theor Appl Genet,1994,89:185-192
    252. Zhang TZ, Pan JJ. Hybrid seed production in cotton. In AS Basra ed.:Heterosis and hybrid seed production in agronomic crops[M]. Food Products Press, an Imprint of the Haworth Press, Inc, New York,1999, p149-184
    253. Zhang TZ, Yuan YL, Yu J, et al. Molecular tagging of a major QTL for fiber strength in Upland cotton and its marker-assisted selection[J]. Theor Appl Genet,2003,106:262-268
    254. Zhang YM, Xu S. Mapping quantitative trait loci in F2 incorporating phenotypes of F3 progeny[J]. Genetics,2004,166:1981-1993
    255. Zhang YM, Xu S. Advanced statistical methods for detecting multiple quantitative trait loci[J]. Recent Res Dev Genet Breed,2005,2:1-23
    256. Zhang YM. Advances on methods for mapping QTL in plant[J]. Chin Sci Bull,2006, 51(23):2809-2818
    257. Zhang ZS, Xiao YH, Luo M, et al. Construction of a genetic linkage map and QTL analysis of fiber-related traits in upland cotton (Gossypium hirsutum L.)[J]. Euphytica,2005,144:91-99.
    258. Zhao XX, Cai Y, Liu B. Epigenetic inheritance and variation of DNA methylation level and pattern in maize intra-specific hybrids[J]. Plant sci,2007,172:930-938
    259. Zhao Y, Yu S, Xing C, et al. Analysis of DNA methylation in cotton hybrids and their parents[J]. Mol. Bio (MOSK), Russian,2008,42(2):195-205
    260. Zou F, Gelfond AL, Airey DC, et al. Quantitative trait locus analysis using recombinant inbred intercrosses:Theoretical and empirical considerations[J]. Genetics,2005,170:1299-1311

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700