用户名: 密码: 验证码:
基于水氮互作的烟草高光谱特性及估测模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水氮是影响作物生长的最主要的限制因子之一。作物的叶片颜色、长势、品质以及其形态结构均会随着水分和氮素的多少发生一系列变化,光谱反射率则会与之相对应的发生变化。因此,可以根据作物的光谱反射特征来实现对作物水分和氮素的实时监控和诊断,从而为作物的大田管理提供一定的参考依据。传统的作物水氮监测手段费时费力,而通过借助遥感技术则可以方便快速的获取作物生长信息。本文通过野外手持光谱仪在地面遥感下研究了水氮互作条件下烟草的高光谱特征以及各种生理生化指标的估测模型,通过对所建立的模型进行检验,实测值与预测值的相关关系达到显著水平,模型的精度和预测能力较好。主要研究结果如下:
     1.同一氮素水平不同水分下的烤烟冠层和叶片光谱反射率变化基本一致,可见光内,烤烟冠层的光谱反射率随着土壤水分含量的增加而呈下降状态。在近红外光区内,烤烟冠层的光谱反射率随着土壤水分含量的增加而随之变高。烤烟不同生育时期其光谱反射率也在不断变化,可见光区内随着烟草的生长发育,其冠层的高光谱反射率基本表现为在伸根期最低,旺长期升高,成熟期降低,近红外光区内冠层的高光谱反射率表现为伸根期至旺长期急剧升高,随后下降。旺长期是烟草生长发育最快的时期,生长中心从地下转移到地上,茎迅速伸长加粗,可见叶数迅速增加,叶片充实,光在叶片复杂的内部组织结构下进行了多次的反射散射致使反射率升高。旺长期到成熟期,由于叶片的成熟和开始采摘导致叶绿素总量减少,叶片内部海绵组织和栅栏组织结构发生变化,影响了光谱的反射率。
     同一水分不同氮素下,在可见光区内,随着施氮量的增加,烤烟冠层和叶片的光谱反射率呈降低趋势,这主要是因为叶片色素含量的增加导致了烤烟叶片对光的强烈吸收。在近红外光区内,随着施氮量的增加,烤烟冠层和叶片的光谱反射率呈增加趋势。在可见光区,随着烟草的生长发育,冠层的高光谱反射率基本上为伸根期最低,旺长期变高,成熟期又降低的趋势。云烟87的反射率在各个时期均比K326高一些,可能是品种差异造成的。
     不同水分和氮素组合条件下,烤烟光谱随土壤水分变化趋势一致。同一水分条件下,高氮处理的烟草冠层光谱反射率在可见光处低于低氮处理,在近红外波段高于低氮处理。
     2.本文通过地面光谱仪在水氮互作下对烤烟的冠层、叶片及烤后叶片进行了高光谱的信息采集,采用相关分析方法分析多种生理生化指标与烟草冠层和鲜叶片的高光谱参数的关系,筛选出与各种生理生化指标关系最为密切的光谱特征变量,采用多元逐步回归方法,建立这些指标的估测模型,最后进行检验样本检验。
     通过分析冠层光谱参数可知叶面积指数、地上鲜生物重、地上干生物重回归方程的第一自变量均为绿峰幅值,且其相关系数均达到极显著水平,以绿峰幅值为第一自变量的逐步回归方程亦达到显著水平,可作为叶面积指数、地上鲜生物重、地上干生物重的特征变量;土壤调整植被指数经分析与叶绿素a、叶绿素b、叶绿素总量、类胡萝卜素相关性最强,与总氮和烟碱相关性最强的特征变量是绿峰幅值,与叶片含水率和淀粉相关性最强的特征变量均是黄边幅值,黄边面积经分析与总糖和还原糖相关性最强;根据与烤烟生理生化指标关系最密切的光谱变量所建立的回归方程能够找出与这些生理生化指标相对应的特征变量。基于高光谱参数所建立的烤烟生理生化指标冠层逐步回归方程的决定系R2均达到了显著的水平,其对应的回归系数相伴概率也都达到了显著水平,通过随机选取一定数量的样本进行检测,发现基于烤烟生理生化指标的冠层逐步回归方程的估测值与实测值的相关系数均达到了显著水平,说明所建立的冠层逐步回归方程估测效果良好。
     通过分析叶片光谱参数可知红边位置与叶绿素a、叶绿素b、叶绿素总量、类胡萝卜素相关性最强,与总糖和淀粉相关性最强的特征变量均是蓝边幅值,与还原糖和总氮相关性最强的特征变量均是绿峰幅值,与叶片含水率相关性最强的特征变量是红边面积与蓝边面积归一化值,与烟碱相关性最强的特征变量是红边面积;根据高光谱参数建立的叶片逐步回归方程,其决定系数R2都达到了显著的水平,通过随机选择一定数量的样本进行检测,发现基于烤烟生理生化指标的叶片逐步回归方程的估测值与实测值的相关系数均达到了极显著水平,说明所建立的叶片逐步回归方程估测效果良好。
     3.化学品质、矿质元素以及中性致香物质都是烟叶质量的重要评价指标,通过分析烤烟的冠层、叶片及烤后烟叶的高光谱参数与这些质量指标的相关关系,建立基于高光谱参数的逐步回归估测模型,通过随机选择一定数量的样本进行检测,表明水氮互作下烟草的各种高光谱参数与烤后叶片的质量指标都具有不同程度的相关性,并且根据所相应的逐步回归模型可以进行相对精确地估测。表明通过高光谱估测模型对烟草这些质量指标进行预测是可行的,从而为烟草生长状况监控和烟田管理提供参考。
     4.关于光谱分析方法的研究与应用已有很多,目前常用的主要是通过根据光谱反射率提取出的植被指数进行建模。植被指数方法在估算烟草各种生理生化指标时虽然也能取得较好的效果,但由于其一般仅利用几个波长的信息,模型预测能力及稳定性难以保证。主成分分析方法能够有效降维且尽量保持原有光谱重要信息,充分挖掘高光谱各波段信息,实现各波段之间信息互补,较好地降低了波段数少而带来的随机干扰,因此主成分分析的可靠性和普适性较好。神经网络具有很强的非线性映射能力,而且不要求数据呈正态分布,神经网络模型具有较强的线性和非线性拟合能力,在数据拟合与模拟中有着无比的优越性,但很难全面解释神经网络作出决策或者产生输出的过程。
Abstract: The levels of water and nitrogen are the most important limiting factors of crop growth. The shortage of water and nitrogen can cause a series of changes, such as leaf color, thickness, moisture content and morphological change, consequently causing the changes in spectral reflectance characteristic. The real-time monitoring and rapid diagnosis of the crop water and nitrogen is possible by remote sensing base on spectral reflectance characteristics to recognize the object. Compared with the traditional means, the more information can be obtained quickly by remote sensing. The remote sensing is indispensable basic technology for variable rate of water and fertilizer in Precision agriculture. The relationships between the physiological and biochemical of flue-cured tobacco canopy, fresh leaf, cured tobacco leaf and their hyperspectral reflectance characteristics were analyzed by remote sensing platform in different levels of water and nitrogen. The predictive models were established by stepwise regression, and the prediction results were good by comparing the measured values and model estimation values. The main results are as follows:
     (1) The spectral reflectance of flue-cured tobacco canopy and leaf was almost consistent in the same levels of nitrogen with different levels of the soil moisture content. In visible light region, the spectral reflectance of flue-cured tobacco was tended to decrease with the soil moisture content increasing, because of the decreasing of chlorophyll content in tobacco due to drought. In the near-infrared light region, the spectral reflectance was tended to increase with the increase of water, the main reason is that the aboveground tobacco growth was effected by the sufficient water, and resulting in the increase of leaf area, enhanced the ability of metabolism and increased the biomass of plant groups. In different growth stage, the spectral reflectance have exhibit the variation, which the lowest in root extension period, increasing in vigorous period, and then decreasing in maturity period in visible light region. The spectral reflectance have exhibit the variation In the near-infrared light region, which the rapid increasing phase from root extension period to vigorous period, and then decreasing in maturity period. This is because the rapid growth of flue-cured tobacco from root extension period to vigorous period and resulting in increase of leaves, increased thickness, and the cell structure of leaf become complicated. Those change will cause the increasing of reflectance rate after several reflections and scattering within the leaf. From the vigorous period to mature period, the spectral reflectance have begun to weak, because of the leaf senescence, less chlorophyll, the changes of leaf internal structure.
     in the same levels of soil moisture content with different levels of nitrogen content, the canopy and leaf of tobacco spectral reflectance were decreased with the amount of nitrogen increases in visible light region, the mainly reason due to the increase content of leaf pigment by increasing nitrogen. In the near-infrared light region, the canopy and leaf of tobacco spectral reflectance were increased with the increasing of nitrogen, which mainly relates to the differences in leaf structure. The reason is that the high content of nitrogen will result in enlarging of the gap of leaf cells, increasing the hydration degree of cell wall. In the visible range, the canopy spectral reflectance have exhibit the variation, which the lowest in root extension period, increasing in vigorous period, and then decreasing in maturity period. However, the trends of change were inconspicuous. The reflectance rate of Yunyan87 was higher than K326 at different stage, which caused by the variety maybe.
     The canopy reflectance has the same trends of change with soil moisture content in different water and nitrogen treatment. In the same soil moisture treatment, the tobacco canopy spectral reflectance of high nitrogen treatment was lower than the low nitrogen treatment’s in visible light region. However, the tobacco canopy spectral reflectance of high nitrogen treatment was higher than the low nitrogen treatment’s in near-infrared light region.
     (2) In this study, the ASD FieldSpec HandHeld spectroradiometer was used to measure the hyperspectral reflectance of canopy and leaf of tobacco. The relationship between several indexes of biophysical and biochemical and hyperspectral parameters of canopy and leaf was analyzed by correlation analysis, the closest relates of hyperspectral parameters with biophysical and biochemical indexes were filtrate and the predictive models of those indexes were established by stepwise regression.
     The first independent variables of regression equations of LAI, AFW, ADW were Rg by analyzing the spectral parameters of canopy without exception, and the correlation coefficient reached a significant level, the regression equations of first independent variable as Rg also were significant. It can be used as characteristic variable for LAI, AFW, ADW. the most relevant characteristic variables of Chlorophyll a, Chlorophyll b, carotenoid, total Chlorophyll content are SAVI; the most relevant characteristic variables of total nitrogen and nicotine are the Rg; the most relevant characteristic variables of Leaf moisture content and starch are the Db; the most relevant characteristic variables of total sugar and reducing sugar are the SDb; There are the direct and effective method for finding the characteristic variable of hyperspectral parameters with indexes of biophysical and biochemical of tobacco by the predictive models. useing 25 spectral parameters as independent variables, multiple stepwise regression analysis was performed. all the estimating models of biophysical and biochemical indexes were obtained the significance level. By randomly selected test samples to test, the relationship between the measured values and estimation values were significant in the indexes of biophysical and biochemical of tobacco canopy, indicating the more accurate and the better effect of estimation.
     By analyzing the spectral parameters of tobacco leaf shows that the most relevant characteristic variables of Chlorophyll a, Chlorophyll b, carotenoid, total Chlorophyll content areλr, the most relevant characteristic variables of total sugar and starch are Db, the most relevant characteristic variables of reducing sugar and total nitrogen are Rg, and the most relevant characteristic variables of leaf moisture content are (SDr-SDb)/(SDr+SDb). the most relevant characteristic variables of nicotine are SDr, The coefficient of determination of estimating models of tobacco biophysical and biochemical indexes were significant. The test show that the good predictive effect can be obtained by the estimating models by the sample randomly selected.
     (3) The relationships between Mineral elements、neutral aroma components、quality indexes of flue-cured tobacco and the hyperspectral parameters of canopy、leaf、cured tobacco leaf were analyzed, and the estimating models of those indexes were established by stepwise regression. The test indicating that the correlation relationship was exist between the hyperspectral parameters of tobacco and the mineral elements、neutral aroma components、quality indexes in different levels of water and nitrogen, and those parameters can be predicted accurately by the stepwise regression model. Consequently, it is feasible to predict the indexes of physiological and biochemical by the hyperspectral estimating models and the results can be used as the reference for monitoring the growth of tobacco and tobacco field management.
     (4) Although, most techniques of spectrum analysis have been studied and applied for precision agriculture. Currently, the models were established through extracting vegetation indexes by the hyperspectral reflectance. Estimation of vegetation index esmethod can achieve good results in predicting a variety of physiological and biochemical indexes of tobacco, but because of its general information using only a few wavelengths, the model predictive ability and stability cannot be guaranteed. The PCA method can effectively reduce dimension, and keeping the original important spectrum information. The information of each wave band can be excavated to achieve complementarities of information between each band, and to reduce the random interference from the little band. Therefore, the PCA method is dependable and universal fit. The neural network method has a strong nonlinear mapping ability, and it does not require normal distribution of data. The neural network model has strong ability of linear and nonlinear fitting, Has the incomparable superiority in the data fitting and simulation,but it is difficult to explain the decision by neural networks and the process of producing output.
引文
[1]Vane, G. et al. Terrestrial Imaging Spectrometry, Current Status, Future Trend[J]. Remote Sensing of Environment, 1993, 44:109-127.
    [2]Bouman, B.A.M. Crop modeling and remote sensing for yield prediction[J]. Netherlands Journal of Agricultural Science, 1995, 43:143-161.
    [3]郑兰芬,童庆禧,王晋年.高光谱分辨率遥感研究进展[M] .科学出版社,1995.
    [4]方宏亮,田庆久.高光谱遥感在植被监测中的研究综述[J].遥感技术与应用,1998, 13(1):62-69.
    [5]Horig B, Kuhn F, Oschutz F, et al. HyMap hyperspectral remote sensing to detect hydrocarbons[J]. International Journal of Remote Sensing, 2001, 22(8):1413-1422.
    [6]邓良基.遥感基础与应用[M].中国农业出版社, 2002.
    [7]薛利红,罗卫红,曹卫星,等.作物水分和氮素光谱诊断研究进展[J].遥感学报, 2003.7(1):73-80.
    [8]Ceccato P,Flasse S,Tarantola S..Detecting vegetation leaf water content using reflectance in the optical domain[J]. Remote Sensing of Environment, 2001, 77:22-33.
    [9]Shen G R, Tian G L. Remote sensing monitoring of drought in Huanghe,Huaihe and Haihe plain based on GIS-The calculation of crop water stress index model[J].Acta Ecologica Sinica, 2000, 20(2):224-228.
    [10]Tian Q J, Tong Q X, Guo X W. Spectroscopic determination of wheat water status using 1650-1850nm spectral absorption features[J]. International Journal of Remote Sensing, 2001, 22(12):2329-2338.
    [11]冯先伟,陈曦,包安明,等.水分胁迫条件下棉花生理变化及其高光谱响应分析[J].干旱区地理, 2004, 34(1):l04-107.
    [12]田庆久,宫鹏,赵春江,等.用光谱反射率诊断小麦水分状况的可行性分析[J].科学通报, 2000, 45(3):2645-2650.
    [13]王纪华,赵春江,郭晓维,等.用光谱反射率诊断小麦叶片水分状况的研究[J].中国农业科学, 2001, 34(1):104-107.
    [14]Sims D A.Gamon J A. Estimation of vegetation water content and photosynthetic tissue area from spectral reflectance: a comparison of indices based on liquid water and chlorophyII absorption features[J]. Remote Sensing of Environment, 84:526-537. 2003.
    [15]孙莉,陈曦,武建军,等.水分胁迫下棉花冠层叶片高光谱数据生物量变化研究[J].科学通报, 2006, 51(1):143-147.
    [16]马亚琴,包安明,王登伟,等.水分胁迫下棉花冠层叶片氮素状况的高光谱估测研究[J].干旱区地理, 2003, 26(4):408-412.
    [17]谷艳芳,丁圣彦,陈海生,等.干旱胁迫下冬小麦高光谱特征和生理生态响应[J].生态学报. 2008, 28(6):2690-2697.
    [18]Gregory A, Carter. Primary and secondary effects of water content on the spectral reflectance of leaves[J]. American Journal of Botany, 1991, 78(7): 916-924.
    [19]Gao B C. Ndwi A. Normalized difference water index for remote sensing of vegetation liquid water from space[J]. Remote Sensing Of Environment, 1996, 58 (3):257-266.
    [20]Penuelas J, Filella I, Sweeano L. Cell wall elastivity and water index (R970 nm / R900 nm) in wheat under different nitrogen availabilities[J]. International Journal of Remote Sensing, 1996,17:373-382.
    [21]Royo C, Aparicio N, Villegas D, et al. Usefulness of spectral reflectance indices as durum wheat yield predictors under contrasting mediterranean conditions[J]. International Journal of Remote Sensing, 2003, 24(22): 4403-4419.
    [22]张佳华,郭文娟,姚凤梅.植被水分遥感监测模型的研究[J].应用基础与工程科学学报, 2007, 15(1):45-53.
    [23]汪耀富,阎栓年,于建军,等.土壤干旱对烤烟生长的影响及机理研究[J].河南农业大学学报, 1994, 28 (3):250-256.
    [24]孙梅霞,陈义红.烤烟不同水分条件下成熟期叶片植物学特性[J].安徽农业科学, 2002, 30 (4):603-604.
    [25]毕庆文,汪健,杨志晓,等.成熟期大田渍水胁迫对烤烟叶片生理特性的影响[J].中国烟草学报, 2009, 15(2):46-49.
    [26]王军,王益奎,李鸿莉,等.水分胁迫对烟草生长发育的影响研究进展[J].广西农业科学, 2004, 35 (6):440-442.
    [27]伍贤进,白宝璋.土壤水分对烤烟生理活动和产量品质的影[J].农业与技术, 1997, 6:43-45.
    [28]刘贯山.干旱胁迫对烤烟早发的影响[J].安徽农业科学,1999, 26(3):274-276.
    [29]韩锦峰.烟草栽培生理[M].中国农业出版社. 1996.
    [30]孙梅霞,汪耀富,张全民,等.烟草生理指标与土壤含水量的关系[J].中国烟草科学, 2000, 2:30-33.
    [31]张华,赵百东,冀浩,等.水分胁迫对烤烟腺毛超微结构的影响[J].中国烟草学报, 2008, 14(5):45-47.
    [32]Holmstrom K O, Mantyla E, Well N B, et al . Drought to lerance in tobacco[J]. Nature, 1996, 379:683 - 684.
    [33]张慧.干旱胁迫对不同基因型烤烟生理特性的影响[D].西北农林科技大学. 2008.
    [34]周冀衡,王勇,毛建华,等.烤烟和白肋烟及香料烟抗旱能力的比较研究[J].湖南农业大学学报, 2005, 31 (1) :15-19.
    [35]汪邓民,吴福如,杨红娟,等.干旱对不同烤烟品种的生理及其烟株生长势的影响[J].烤烟科技, 2001, 10:39-41.
    [36]刘国顺.烟草栽培学[M] .中国农业出版社. 2003.
    [37]韩锦锋,汪耀富,杨素勤.干旱胁迫对烤烟化学成分和香气物质含量的影响[J].中国烤烟,1994(1):35-38.
    [38]颜合洪.水分条件对烤烟主要化学成分的影响研究[J].中国生态农业学报, 2005, 13(1): 101-103.
    [39]蔡寒玉,汪耀富,李进平,等.土壤水分对烤烟形态和耗水特性的影响[J].灌溉排水学报, 2005, 24(3):38-41.
    [40]李鹏飞,周冀衡,张建平,等.烤烟成熟期土壤水分状况对烟叶挥发性香气物质及主要化学成分的影响[J].中国烟草学报,2009, 15(3):44-48.
    [41]李进平,陈振国,李建平.土壤水分条件对白肋烟产、质量的影响研究[J] .灌溉排水学报, 2003, 22 (4):73-78.
    [42]张晓海,苏贤坤,廖德智,等.不同生育期水分调控对烤烟烟叶产质量的影响[J].烟草科技, 2005,6:36-38.
    [43]伍贤进.土壤水分对烤烟产量和品质的影响[J].农业与技术, 1998, 2:3-6.
    [44]Marianne M L, Bo.S, Mitchell C T.Engineering for drought avoidance: expression of maize NADP-malic enzyme in tobacco results in altered stomatal function[J]. Journal of Experimental Botany, 2002, 53(369):699-705.
    [45]刘立军,桑大志,刘翠莲,等.实时实地氮肥管理对水稻产量和氮素利用率的影响[J].中国农业科学, 2003, 36(12):1456-1461.
    [46]江立庚,曹卫星,甘秀芹,等.不同施氮水平对南方早稻氮素吸收利用及其产量和品质的影响[J].中国农业科学, 2004,37(4):490-496.
    [47]崔玉亭,程序,韩纯儒,等.苏南太湖流域水稻经济生态适宜施氮量研究[J].生态学报, 2000, 20(4):659-662.
    [48]牛铮,陈永华,隋洪智,等.叶片化学组分成像光谱遥感探测机理分析[J].遥感学报,2000, 4(2):125-129.
    [49] Lee Tarpley, Raia K Reddy, Gretchen F Sassenrath-Cole. Reflectance Indices with Precision and Accuracy in Predicting Cotton Leaf Nitrogen Concentration [J]. Crop Science, 2000, 40:l8l4-1817.
    [50]姚霞,朱艳,冯伟,等.监测小麦叶片氦积累量的新高光谱特征波段及比值植被指数[J].光谱学与光谱分析,2009, 29(8):2191-2195.
    [51]Osborne S L, Sehepers J S, Francis D D, et a1. Detection of phosphorus and nitrogendeficiencies in corn using spectral radiance measurements[J].Agronomy Journal, 2002, 94(6):l2l5-1221.
    [52]Read J J,Tarpley L, Mckinion J M, et a1. Narrow-wave-band reflectance ratios for remote estimation of nitrogen status in cotton[J]. Journal of Environmental Quality, 2002, 31(5):1442-1452.
    [53]Fridgen J L, Varco J J. Dependency of cotton leaf nitrogen, chlorophyII, and reflectance on nitrogen and potassium availability[J]. Agronomy Journal, 2004, 96(1):63-69.
    [54]张金恒.基于连续统去除法的水稻氮素营养光谱诊断[J].植物生态学报, 2006, 30(1):78-82.
    [55]Boegh E, Soegaard H, Broge N, et a1. Airborne multispectral data for quantifying leaf area index, nitrogen concentration, and photosynthetic efficiency in agriculture[J]. Remote Sensing of Environment, 2002, 179-193.
    [56]Serrano L, Penuelas J, Ustin S L. Remote sensing of nitrogen and lignin in Mediterranean vegetation for AVIRIS data: Decomposing biochemical from structural signals[J]. Remote Sensing of Environment, 2002, 81:355-364.
    [57]Sripada R P, Heiniger R W, White J G, et a1. Aerial color infrared photography for determining late season nitrogen requirements in corn[J]. Agronomy Journal, 2005, 97: 1443-1451.
    [58]孙莉,陈曦,包安明,等.在水分胁迫下棉花冠层叶片全氮含量的高光谱遥感估算模型研究[J].遥感技术与应用, 2005, 20(3):315-320.
    [59]Jongschaap R E E, Booij R. Spectral measurements at different spatial scales in potato:Relating leaf, plant and canopy nitrogen status[J].International Journal of Applied Earth Observation and Geoinformation, 2004, 5:205-218.
    [60]Xue L H, Cao W X, Luo W H, et a1. Monitoring leaf nitrogen status in rice with canopy spectral reflectance[J]. Agronomy Journal, 2004, 96(1):l35-l42.
    [61]Lamb D W, Steyn—Ross M, Schaare P, et a1. Estimating leaf nitrogen concentration in ryegrass(Lolium spp)pasture using the chlorophyII red-edge:Theoretical modeling and experimental observations[J]. International Journal of Remote Sensing, 2002, 23(18):3619-3648.
    [62]卢艳丽,李少昆,白由路,等.冬小麦冠层光谱红边参数的变化及其与氮素含量的相关分析[J].遥感技术与应用, 2007, 22(1):367-372.
    [63]谭昌伟,周清波,齐腊,等.水稻氮素营养高光谱遥感诊断模型[J].应用生态学报, 2008, 19(6):1261-1268.
    [64]谭昌伟,郭文善,朱新开.不同条件下夏玉米冠层反射光谱响应特性的研究[J].农业工程学报, 2008, 24(9):131-135.
    [65]冯伟,朱艳,姚霞,等.小麦氮素积累动态的高光谱监测[J].中国农业科学, 2008, 4l(7):1937-1946.
    [66]冯伟,姚霞,田永超,等.小麦籽粒蛋白质含量高光谱预测模型研究[J].作物学报, 2007, 33(12):1935-1942.
    [67]郭曼,常庆瑞,曹晓瑞,等.不同氮营养水平与夏玉米光谱特性关系初报[J].西北农林科技大学学报, 2008, 36(11):132-136.
    [68]刘国顺,高致明.氮用量对烤烟叶片发育和结构影响的研究[J].河南农业火学学报, 1994(增刊):71-75.
    [69]江力,张荣铣.不同氮钾水平对烤烟光合作用的影响[J].安徽农业大学学报, 2000, 27(4): 328-331.
    [70]韩锦锋,郭培国.氮素用量、形态、种类对烤烟生长发育及产量品质影响的研究[J].河南农业大学学报, 1990, 24(3):275-285.
    [71]郭群召.氮及土壤氮素矿化对烤烟生长及品质的影响[D] .河南农业大学. 2004.
    [72]刘贯山,李章海,姚军,等.不同氮素水平对烤烟生长发育的影响[J].烟草科技, 1997, 2(18):37-39.
    [73]周柳强,黄美福,周兴华,等.不同氮肥用量对田烤烟生长、养分吸收及产质量的影响[J].西南农业学报, 2010, 23(4):1166-1172.
    [74]路永宪.氮素对烤烟生长、养分吸收和分配及品质的影响[D].中国农业大学. 2003.
    [75]岳红宾.不同氮素水平对烟草碳氮代谢关键酶活性的影响[J].中国烟草科学, 2007, 28(1):18-20.
    [76]杨铁钊,林彩丽,丁永乐,等.不同基因型烟草对氮素营养响应的差异研究[J].烟草科技, 2001, 06(13):32-35.
    [77]杨志新,温永琴,罗济,等.不同施氮量对烟叶含钾量的影响[J].烟草科技, 2001(7): 36-38.
    [78]安德艳,舒敏言,楼小华,等.不同施氮量对烤烟产质的影响[J].耕作与栽培,1998(2):47-49.
    [79]苏德成.烟草生长发育过程的氮素.跨世纪烟草农业科技展望和持续发展战略研讨会论文集,国家烟草专卖局科技教育司编,中国商业出版社.1999.
    [80]晁逢春.氮对烤烟生长及烟叶品质的影响[D].中国农业大学.2003.
    [81]左天觉.烟草的生产、生理和生物化学田[M].上海远东出版社, 1993.
    [82]邓云龙,孔光辉,武锦坤,等.氮素营养对烤烟叶片淀粉积累及sps淀粉酶活性的影响[J].烟草科技, 2001 (11):84-37.
    [83]史宏志,韩锦峰,赵鹏,等.不同氮量与氮源下烤烟淀粉酶和转化醉活性动态变化[J].中国烟草学报,1999(3):5-8.
    [84]韩锦锋.烤烟的碳氮代谢与烟叶香吃味品质,跨世纪烟草农业科技展望和持续发展战略研讨会论文集,国家烟草专卖局科技教育司编,中国商业出版社.1999.
    [85]李建伟,郑少清,石俊雄,等.氮素形态对烤烟品质的影响[J].贵州农业科学, 2003,31(6):3-5.
    [86]张延春,陈治锋,龙怀玉,等.不同氮素形态及比例对烤烟长势、产量及部分品质因素的影响[J].植物营养与肥料学报,2005,11(6):787-792.
    [87]冯柱安,彭桂芬.不同氮素形态对烤烟品质影响的研究[J].中国烟草科学,1998,19(40): 11-15.
    [88]介晓磊,黄向东,刘世亮,等.不同氮素供应对烟草品质指标的影响[J].土壤通报, 2007,38(6):1150-1153.
    [89]田永超,曹卫星,姜东,等.不同水氮条件下水稻冠层反射光谱与植株含水率的定量关系[J].植物生态学报, 2005, 29(2):318-323.
    [90]Zhang Z Y, Ma X M, Liu G S, et al. A study on hyperspectral estimating models of tobacco leaf area index[J]. African Journal of Agricultural Research, 2011, 6(2):289-295.
    [91]田永超,朱艳,曹卫星,等.小麦冠层反射光谱与植株水分状况的关系[J].应用生态学报, 2004, 15(11):2072-2076.
    [92]田永超,曹卫星,姜东,等.不同水氮条件下水稻冠层反射光谱与叶片水势关系的研究[J].水土保持学报, 2003, 17(3):55-64.
    [93]李立丹.水氮耦合效应对烤烟叶片产量和品质的影响[D].河南农业大学. 2009.
    [94]陈亚.水氮耦合对植烟土壤理化生物特性及烤烟生长的影响[D].西南大学. 2009.
    [95]刘玉青.烤烟节水灌溉条件下水氮耦合效应研究[D].河海大学. 2007.
    [96]王佩.冬季或移栽前灌水与氮素耦合对烤烟生长和产质量的影响[D].河南农业大学. 2009.
    [97]汪耀富,张福锁.干旱和氮用量对烤烟干物质和矿质养分积累的影响[J].中国烟草学报, 2003, 9(1):19-23.
    [98]袁有波,李继新,苏贤坤,等.节水灌溉条件下水氮耦合对烤烟生长发育及生理性状的影响[J].河海大学学报, 2008, 36(6):781-785.
    [99]熊江波,陈文芳,肖金香.水肥交互作用对烤烟叶绿素含量的影响[J] .江西农业学报, 2007, 19(6):77-79.
    [100]凌寿方.不同施肥方式及水肥调控对烟叶产质量的影响[J].烟草农业科学, 2006, 2(1):82-86.
    [101]崔保伟,陆引罡,张振中,等.水分胁迫下施氮量对烤烟生理特性及化学成分的影响[J].烟草科技,2009, 5:60-64.
    [102]汪耀富,孙德梅,李群平,等.灌水与氮用量互作对烤烟叶片养分含量、产量、品质及氮素利用效率的影响[J].河南农业大学学报, 2006, 37(2):119-123.
    [103]李魁印,韦兴启,钱晓刚.不同水氮配合对烤烟土壤水分及烤烟产量产值的初步研究[J].耕作与栽培, 2008, 2:16-17.
    [104]袁仕豪.水氮互作对烤烟氮素吸收利用及烟叶产量和品质的影响[D].河南农业大学.2008.
    [105]焦雪梅.烤烟水氮耦合效应研究[D].贵州大学.2007.
    [106]李立丹,刘国顺,彭智良,等.水氮耦合对烤烟中性致香物质成分含量的影响[J].中国农学通报, 2009, 25(13):51-57.
    [107]Gong P, Pu R L, Miller J R. Coniferous forest leaf area index estimation along the Oregon transect using compact airborne spectrographic imager data[J]. Photogrammetric Engineering and Remote Sensing. 1995, 61(9): 1107-1117.
    [108]Grossman Y L, Ustin S I, Jacquemoud S, et al. Critique stepwise multiple linear regression for the extraction of leaf biochemistry information from leaf reflectance data[J]. Remote Sensing of Environment, 1996, 56:182-193.
    [109]LaCapra V C, Melack J M, Gastil M, et al. Remote sensing of foliar chemistry of inundated rice with imaging spectrometry[J]. Remote Sensing of Environment.,1996, 55: 50-58.
    [110]Yoder B J, Pettigrew-Crosby R E. Predicting nitrogen and chlorophyll content and concentration from reflectance spectra (400-2500nm) at leaf and canopy scales[J]. Remote Sensing of Environment, 1995, 53:199-211.
    [111]刘伟东,项月琴,郑兰芬.等.高光谱数据与水稻叶面积指数及叶绿素密度的相关性分析[J].遥感学报, 2000, 4(4):279-283.
    [112]Haboudanea D, Miller J R, Pattey E, et al. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture[J]. Remote Sensing of Environment, 2004, 90:337-352.
    [113]Casanova D, Epema G. F, Goudriaan J. Monitoring rice reflectance at field level for estimating biomass and LAI[J]. Field Crops Research, 1998, 55:83-92.
    [114]唐延林,黄敬峰,王秀珍,等.水稻、玉米、棉花的高光谱及其红边特征比较[J].中国农业科学, 2004, 37(1):29-35.
    [115]陈兵,李少昆,王克如,等.棉花黄萎病病叶光谱特征与病情严重度的估测[J].中国农业科学, 2007, 40(12):2709-2715.
    [116]张良培,郑兰芬,童庆禧.利用高光谱对生物变量进行估计[J].遥感学报, 1997, 1(2):111-114.
    [117]刘焕军,张柏,赵军,等.黑土有机质含量高光谱模型研究[J].土壤学报, 2007,44(1):27-32.
    [118]黄春燕,王登伟,陈冠文,等.基于高光谱植被指数的棉花干物质积累估算模型研究[J].棉花学报, 2006, 18(2):115-119.
    [119]Qi J, Cabot F, Moran M S, et al. Biophysical parameter estimations using multidirectional spectral measurements[J]. Remote Sensing of Environment, 1995, 54:71-83.
    [120]Myneni R B, Nemani R R, Running S W. Estimation of global leaf area index and absorbed PAR using radiative transfer model[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35:1380-1397.
    [121]Wythers K R, Reich P B, Turner D P. Predicting leaf area index from scaling principles: corroboration and consequences[J]. Tree Physiology, 2003, 23:1171-1179.
    [122]Broge N H and Mortensen J V. Deriving green crop area index and canopy chlorophyll density of winter wheat from spectral reflectance data[J]. Remote Sensing of Environment, 2002,81:45-57.
    [123]李向阳.烟草高光谱特性与农艺、生理、品质指标关系和估测模型研究[D].河南农业大学. 2007.
    [124]颜春燕,刘强,牛铮,等.植被生化组分的遥感反演方法研究[J].遥感学报, 2004, 8(4):300-308.
    [125]Ceccato P, Gobmn N, Flasse S, et a1.Designing spectral index to estimate vegetation water content from remote sensing data:Part l:Theoretical approach[J].Remote Sensing of Environment, 2002, 82:188-197.
    [126]Zarco-Tejada PJ, Rueda C A, Ustin S L.Water content estimation in vegetation with MODIS reflectance data and model inversion methods, Remote Sensing of Environment, 2003, 85:109-124.
    [127]Kokaly R F, Clark R N. Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression[J]. Remote Sensing of Environment, 1999, 67:267-287.
    [128]Curran P J, Dungan J L, Peterson D L. PetersonEstimating the foliar biochemical concentration of leaves with reflectance spectrometry: Testing the Kokaly and Clark methodologies[J]. Remote Sensing of Environment, 2001, 76:349-359.
    [129]Bacour C, Baret F, Beal D, et al. Neural network estimation of LAI, fAPAR, fCover and LAI×Cab, from top of canopy MERIS reflectance data: Principles and validation[J]. Remote Sensing of Environment, 2006, 105:313-325.
    [130]宋开山,张柏,王宗明,张源智,刘焕军.基于人工神经网络的大豆叶面积高光谱反演研究[J].中国农业科学, 2006, 39(6):1138-1145.
    [131]王大成,王纪华,靳宁,等.用神经网络和高光谱植被指数估算小麦生物量[J].农业工程学报, 2008, 24(增刊2):196-201.
    [132]朱继文,刘丹丹.基于高光谱数据的土壤含盐量BP神经网络模型研究[J].东北农业大学学报, 2009, 40(10):115-118.
    [133]张柏,宋开山,张渊智,等.大豆叶面积的高光谱模型[J].沈阳农业大学学报, 2005, 36(4):396-400.
    [134]杨飞,张柏,宋开山,等.大豆叶面积指数的高光谱估算方法比较[J].光谱学与光谱分析, 2008, 28(12):2951-2955.
    [135]田野,赵春晖,季亚新.主成分分析在高光谱遥感图像降维中的应用[J].哈尔滨师范大学自然科学学报, 2007, 23(5):58-60.
    [136]陈云浩,蒋金豹,黄文江,等.主成分分析法与植被指数经验方法估测冬小麦条锈病严重度的对比研究[J].光谱学与光谱分析, 2009, 29(8):2161-2165.
    [137]杨飞,张柏,刘志明,等.玉米冠层FPAR的高光谱遥感估算研究—基于PCA方法及近、短波红外波段[J].国土资源遥感, 2008, 4:9-13.
    [138]Thomas J R, Gausman H W. Leaf reflectance vs.leaf chlorophyll and carotenoid concentrations for eight crops[J]. Agronomy Journal, 1977, 60(7):99-802.
    [139]李向阳,刘国顺,杨永锋,等.烤烟叶片高光谱参数与多种生理生化指标关系研究[J].中国农业科学, 2007, 40(5):987-994.
    [140]李向阳,于建军,刘国顺,等.利用光谱反射率预测烤烟叶片烟碱含量[J].农业工程学报, 2008, 24(8):169-173.
    [141]李向阳,刘国顺,史舟,等.利用室内光谱红边参数估测烤烟叶片成熟度[J].遥感学报, 2007,11(2):269-275.
    [142]刘大双,刘国顺,李向阳,等. TMV侵染后烤烟叶片色素含量高光谱估算模型研究[J].中国烟草学报, 2009, 15(2):60-65.
    [143]刘国顺,李向阳,刘大双,等.利用冠层光谱估测烟草叶面积指数和地上生物量[J].生态学报, 2007, 27(5):1763-1771.
    [144]李佛琳,赵春江,王纪华,等.一种基于反射光谱的烤烟鲜烟叶成熟度测定方法[J].西南大学学报, 2008, 30(10):51-55.
    [145]王建伟,薛超群,张艳玲,等.烤烟叶面积系数与冠层反射光谱指数的定量关系[J].烟草科技, 2008, 49(4):49-52.
    [146]Chaurasia S, Bhattacharya B K, Dadhwal V K, et al. Field-scale leaf area index estimation using IRS-ID LISS-III data[J]. International Journal of Remote Sensing, 2006,27(4): 637-644.
    [147]贾方方,乔红波,熊淑萍,等.不同水分处理对烤烟冠层高光谱参数和生理生化指标的影响[J].河南农业大学学报, 2010, 44(2):130-136.
    [148]张志良,瞿伟菁.植物生理学实验指导[M].高等教育出版社.2003.
    [149]江锡瑜,肖吉中,黄立栋,等.试论烟碱在烟株体内的分布及与栽培因素的关系[J].中国烤烟, 1988, 1:37-41.
    [150]闫克玉.烤烟化学[M].郑州大学出版社.2002.
    [151]王瑞新.烤烟化学品质分析方法[M].河南科学技术出版社.1990.
    [152]王瑞新.烟草化学[M].中国农业出版社.2003.
    [153]Tsai F, Philpot W. Derivative analysis of hyperspectral data[J]. Remote Sensing of Environment, 1998, 66:41-51.
    [154]李小文.遥感原理与应用[M].科学出版社.2008.
    [156]朱小鸽.多重主成分分析及在地质构造信息提取中的应用[J].遥感学报, 2000, 4(4): 299-303.
    [156]Jolliffe, I.T. Principal Component Analysis [M].Springer-Verlag.1986.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700