用户名: 密码: 验证码:
基于电子鼻技术检测番茄种子发芽率和种苗病害的可行性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物种子会产生挥发物,这种挥发物与种子活性相关。植物体在受到损伤和病虫的危害后会产生特异性挥发物,使用电子鼻技术可以检测这种挥发物的变化情况,进而对损伤情况、病害情况进行诊断。本研究采用电子鼻技术对不同发芽率的番茄种子、不同损伤处理和不同病害处理的番茄苗样本进行了检测,应用数据特征选择与提取、模式识别等方法对检测的数据进行分析,研究不同发芽率的番茄种子、不同损伤番茄苗和不同病害番茄苗的挥发物与电子鼻响应信号的关系,建立了各种模型,验证了使用电子鼻技术对不同发芽率的番茄种子、不同损伤番茄苗和不同病害番茄苗检测的可行性。得到的主要结果如下:
     (1)番茄种子发芽率的检测研究
     利用电子鼻系统对不同发芽率(发芽率分别为0%、50%、60%、70、80和90%)的番茄种子进行检测,通过主成分分析、线性判别分析对六种不同发芽率的番茄种子进行研究,表明采用PCA分析、LDA分析可快速的区分出番茄种子发芽率为0%、70%、80%和90%的四种情况;当番茄种子发芽率为50%、60%和70%时,其图形信息部分重叠,表明利用电子鼻较难将这三种情况区分开。采用BP神经网络时训练集和预测集准确率分别为93.6%、65.2%;采用支持向量机时训练集和预测集准确率分别为97.44%、74.73%。对比BP神经网络和支持向量机分析结果,支持向量机的预测结果要好一些。
     (2)番茄苗机械损伤的检测研究
     番茄苗受到机械损伤会引起电子鼻传感器信号的变化,说明番茄苗受到机械损伤后其释放出的挥发物发生了改变。利用电子鼻对不同处理(对照组、30针、60针和90针)的机械损伤番茄苗进行检测,采用主成分分析、线性判别分析对四种不同处理机械损伤的番茄苗进行研究,结果表明主成分分析各处理样本间均有重叠,区分效果不理想,线性判别分析各处理样本基本可以分开,表明使用线性判别分析的效果比主成分分析效果要好。用逐步判别分析和BP神经网络分析对四种不同处理样本进行模式识别,结果表明,采用逐步判别分析和BP神经网络分析时的测试集的准确率分别为84.4%和90%,BP神经网络模型相对于逐步判别分析的预测结果更好。
     (3)番茄苗早疫病和灰霉病病害的检测研究
     对35d苗龄的番茄苗进行早疫病、灰霉病病菌接种,按每株接种1叶片、2叶片、4叶片和对照四个处理进行,然后在高温、高湿环境中培养,使病菌快速入侵叶片。将培养后的番茄苗利用电子鼻和顶空采样装置对感染病害的番茄苗进行了检测。利用主成分分析方法可以观察出番茄苗受害程度变化的规律,但是样本之间有很多重叠现象;线性判别分析法可以区分出受到病害与没有受到病害的番茄苗样本,不同受害程度的样本只有个别重叠;表明使用线性判别分析的效果比主成分分析效果要好。将四组不同受害程度的番茄苗每组随机抽取10个样本作为训练集(共40个样本),用于对番茄苗病害程度的训练,剩余每组6个样本(共24个样本)作为预测集。使用逐步判别分析对番茄苗早疫病病害程度进行识别,番茄苗受到早疫病病害24h后的训练集交叉验证的正确率为100%,预测的平均正确率为50%。番茄苗受到早疫病病害48h后的训练集交叉验证的正确率为97.5%,预测的平均正确率为66.7%。使用BP神经网络分析对早疫病病害程度进行识别,番茄苗受到早疫病病害24h后的训练集交叉验证的正确率为95%,预测的平均正确率为87.5%。番茄苗受到病害48h后的训练集交叉验证的正确率为92.5%,预测的平均正确率为79.2%。使用逐步判别分析番茄苗灰霉病病害程度进行识别,番茄苗受到灰霉病病害24h后的训练集交叉验证的正确率为97.5%,预测的平均正确率为70.8%。番茄苗受到病害48h后的训练集交叉验证的正确率为82.5%,预测的平均正确率为62.5%。使用BP神经网络分析对灰霉病病病害程度进行识别,番茄苗受到灰霉病病害24h后的训练集交叉验证的正确率为92.5%,预测的平均正确率为87.5%。番茄苗受到病害48h后的训练集交叉验证的正确率为82.5%,预测的平均正确率为66.7%。
     (4)不同特征值对番茄苗病害识别效果的研究
     采用不同特征值(最大值、全段数据平均值、相应曲线的全段积分值和响应曲线最大曲率)作为电子鼻对感染早疫病和灰霉病病害24h和48h的番茄苗样本的响应信号进行PCA和LDA分析,并采用遗传神经网络与BP神经网络模型进行识别分析。对比不同特征选择方法的预测结果,全段数据平均值(Mean)和响应曲线的全段积分值(IV)的训练集和预测集的正确率较好,其次为最大值(Max)方法,预测结果最差的是响应曲线最大曲率(Kmax)方法。将不同病害、不同病害时间的番茄苗分别每组随机抽取10个样本作为训练集(共40个样本),用于对番茄苗病害程度的训练,剩余每组6个样本(共24个样本)作为预测集。对比BP神经网络和GABP神经网络两种模型结果,GABP神经网络分析的决定系数均要高于BP神经网络,说明经过遗传算法优化后的BP神经网络模型的预测结果要好于BP神经网络。
     (5)不同种类损伤番茄苗的检测研究
     通过电子鼻响应信号的对比图,机械损伤、早疫病病害、灰霉病病害和对照组四个不同处理的番茄苗样本电子鼻的响应信号是不同的。采用主成分分析和线性判别分析法对各处理番茄苗样本的电子鼻数据进行特征提取和降维分析,三维主成分图和线性判别分析图可以区分不同处理的番茄苗样本。采用聚类分析方法得到与PCA相类似的结果,不同处理番茄苗样本可以用聚类分析方法进行区分。选择40个番茄苗样本作为训练(每组10个样本),24个样本作为测试组(每组6个样本)。采用BP神经网络和支持向量机模型对各番茄苗处理样本进行预测,两种模型都取得了较好的预测结果,预测平均正确率均为83.3%。说明电子鼻技术可以用于对番茄苗样本的实际检测。
     综上所述,我们可以得到如下结论:
     (1)利用电子鼻技术能对不同发芽率的番茄种子进行区分;
     (2)利用电子鼻技术能识别感染不同病害和不同程度的番茄苗;
     (3)利用电子鼻能区分不同种类损伤的番茄苗;
Plants alter their profiles of emitted volatiles in response to damage or herbivore attack. This study investigated the potential of the electronic nose technology to monitor such changes, with the aim to diagnose plant health. In this study, electronic nose (E-nose) was used to analyse different treatment of tomato seeds and tomato plant samples. Several statistical methods such as feature extraction and pattern recognition were used for analyzing the experimental data. We have studied the relations between E-nose response signals and disease-induced volatiles, and developed the pattern recognition models. The results demonstrated that it is plausible to use E-nose technology as a method for monitoring damage in tomato cultivation practices. The main conclusions were as follows:
     (1) Research on detecting tomato seeds with different germination
     An investigation was made to evaluate the capacity of an electronic nose to classify the tomato seeds with different germination. The data were processed by Principal Component Analysis (PCA) and Linear Discrimination Analysis (LDA). The result shows that the electronic nose can distinguish the tomato seeds with germination percentage of 90%,80%,70%-50% and un-germination seeds. However, samples with germination percentage of 50%,60% and 70% were overlapped. The e-nose can distinguish the different time tomato seeds which blended each at different proportion by using BPNN and SVM. A better predicted rate was obtained by SVM than BPNN.
     (2) Research on detecting mechanical-damage
     The value of E-nose response signals differed with different levels mechanical (Opricks,30pricks,60pricks and 90pricks) damaged tomato plants, indicating that the emission of volatiles by tomato plants changes in response to different degrees of damage. Stepwise discriminant analysis (SDA) and back-propagation neural network (BPNN) were applied to evaluate the data. The average correction ratios of testing set of SDA and BPNN were 84.4% and 90%. The results obtained indicate that it is possible to classify different degrees of damaged rice plants using e-nose signals.
     (3) Research on detecting Early blight disease and Gray mold disease infestation An E-nose equipped with a headspace sampling unit was used to discriminate tomato plants infested Early blight disease at different times. PCA resulted in an even distribution of the 4 different treatments with different disease densities. LDA was able to distinguish between all treatments. The discrimination rates were over 100% for training data sets and 50% for the testing sets, as determined using SDA in 24h later. The discrimination rates were over 97.5% for training data sets and 66.7% for the testing sets, as determined using SDA in 48h later. The discrimination rates were over 95% for training data sets and 87.5% for the testing sets, as determined using BPNN in 24h later. The discrimination rates were over 92.5% for training data sets and 79.2% for the testing sets, as determined using BPNN in 48h later. The results indicated that it is possible to predict the different diease densities in tomato plant using the E-nose.The discrimination rates were over 97.5% for training data sets and 70.8% for the testing sets, as determined using SDA in 24h later. The discrimination rates were over 82.5% for training data sets and 62.5% for the testing sets, as determined using SDA in 48h later. The discrimination rates were over 92.5% for training data sets and 87.5% for the testing sets, as determined using BPNN in 24h later. The discrimination rates were over 82.5% for training data sets and 66.7% for the testing sets, as determined using BPNN in 48h later. The results indicated that it is possible to predict the different disease densities in tomato plant using the E-nose.
     (4) Different characteristic value using for BPNN and GABP
     Four kinds of characteristic value (Mean,Kmax,IV and Max) were used to analyse the different infestation treatments of tomato paint. Back-propagation neural network (BPNN) and genetic algorithms back propagation network (GABP) were developed for pattern recognition models. When the models were used to predict infestation degrees using different feature selection methods. The highest coefficient of determination between predicted and real numbers of the disease using the IV method. Compare BP results with GABP results, the coefficient of determinations of the GABP were higher than the BP. The results demonstrated that after optimized the BP neural network with genetic algorithm better results were obtained.
     (5) Research on detecting different types of damage
     From the chart, the E-nose sensor response changed for tomato plants by 4 types of treatments(ZP, HP, CP and MP). The results of PC A and LDA showed that clusters of data were divided into 3 groups (ZP, HP, and CP/MP). Samples from groups CP and MP overlapped partially. Similar results could be obtained when using CA. The results of the CA showed obvious differentiation between the tomato plant samples with different types of damage. Back-propagation neural network (BPNN) and support vector machine (SVM) network were used to evaluate the E-nose data. Good discrimination results were obtained using SVM and BPNN. The results demonstrate that it is plausible to use E-nose technology as a method for monitoring damage in tomato plant.
引文
Abbey, L., Joyce, D.C., Aked, J., Smith, B. Electronic nose-based discrimination among spring onions grown on two different soils at three water-deficit stress levels [J]. Proceedings of the 8th International Controlled Atmosphere Research Conference,2003, (600):479-484
    Abramson, D., Hulasare, R., York, R.K., White, N.D.G., Jayas, D.S. Mycotoxins, ergosterol, and odor volatiles in durum wheat during granary storage at 16% and 20% moisture content [J]. Journal of Stored Products Research,2005,41(1):67-76.
    Alborn, H.T., Rose, U.S.R., McAuslane, H.J. Systemic induction of feeding deterrents in cotton plants by feeding of Spodoptera spp Larvae [J]. Journal of Chemical Ecology, 1996,22(5):919-932.
    Arimura, G., Ozawa, R., Horiuchi, J., Nishioka, T., Takabayashi, J. Plant-plant interactions mediated by volatiles emitted from plants infested by spider mites [J]. Biochemical Systematics and Ecology,2001,29(10):1049-1061.
    Balasubramanian, S., Panigrahi, S., Logue, C.M., Gu, H., Marchello, M. Neural networks-integrated metal oxide-based artificial olfactory system for meat spoilage identification [J]. Journal of Food Engineering,2009,91(1):91-98.
    Bakdwin I.T.,Hakutscgje R.,Paschold A., et al., Volatilesignaling in plant-plant interactions:talking tress in the genomics era[J]. Science,2006,311:812-815.
    Baratto, C., Faglia, G., Pardo, M., Vezzoli, M., Boarino, L., Maffei, M., et al. Monitoring plants health in greenhouse for space missions [J]. Sensors and Actuators B-Chemical, 2005,108(1-2):278-284.
    Bastos, A.C., Magan, N. Potential of a an electronic nose for the early detection and differentiation between Streptomyces in potable water [J]. Sensors and Actuators B-Chemical,2006.116(1-2):151-155.
    Berdague, J.L., Monteil, P., Montel, M.C., Talon, R. Effects of Starter Cultures on the Formation of Flavor Compounds in Dry Sausage [J]. Meat Science,1993,35(3):275-287.
    Berdague, J.L., Talou, T. Examples of Semiconductor Gas Sensors Applied to Meat-Products [J]. Sciences Des Aliments,1993,13(1):141-148.
    Blasioli. S., Biondi. E., Braschi. I., Mazzucchi, U., Bazzi, C., Gessa, C.E. Electronic nose as an innovative tool for the diagnosis of grapevine crown gall [J]. Analytica Chimica Acta, 2010,672(1-2):20-24.
    Boissard, P., Martin, V., Moisan, S. A cognitive vision approach to early pest detection in greenhouse crops [J]. Computers and Electronics in Agriculture,2008,62(2):81-93.
    Boothe, D.D.H., Arnold, J.W. Electronic nose analysis of volatile compounds from poultry meat samples, fresh and after refrigerated storage [J]. Journal of the Science of Food and Agriculture,2002,82(3):315-322.
    Brezmes, J., Llobet, E., Vilanova, X., Saiz, G., Correig, X. Fruit ripeness monitoring using an Electronic Nose [J]. Sensors and Actuators B-Chemical,2000,69(3):223-229.
    Brezmes, J., Llobet, E., Vilanova, X., Orts, J., Saiz, G., Correig, X. Correlation between electronic nose signals and fruit quality indicators on shelf-life measurements with pinklady apples [J]. Sensors and Actuators B-Chemical,2001,80(1):41-50.
    Brezmes, J., Fructuoso, M.L.L., Llobet, E., Vilanova, X., Recasens, I., Orts, J., et al. Evaluation of an electronic nose to assess fruit ripeness [J]. Ieee Sensors Journal,2005,5(1):97-108.
    Butlin, R.K. The Variability of Mating Signals and Preferences in the Brown Planthopper, Nilaparvata-Lugens (Homoptera, Delphacidae) [J]. Journal of Insect Behavior, 1993,6(2):125-140.
    Carter G A,Miller R L.Remote Sensing of Environment,1994,50:295
    Changying Li, Gerard W. Krewer,Pingsheng Ji et al. Gas sensor array for blueberry fruit disease detection and classification [J]. Postharvest Biology and Technology,2010(55):144—149
    Ciosek, P., Brzozka, Z., Wroblewski, W. Classification of beverages using a reduced sensor array [J]. Sensors and Actuators B-Chemical,2004,103(1-2):76-83.
    Claridge, M.F., Denhollander, J., Morgan, J.C. Specificity of Acoustic-Signals and Mate Choice in the Brown Planthopper Nilaparvata-Lugens [J]. Entomologia Experimental is Et Applicata,1984,35(3):221-226.
    Dean, T.J., Drake, V.A. Monitoring insect migration with radar: the ventral-aspect polarization pattern and its potential for target identification [J]. International Journal of Remote Sensing, 2005,26(18):3957-3974.
    Defilippi, B.G., Juan, W.S., Valdes, H., Moya-Leon, M.A., Infante, R., Campos-Vargas, R. The aroma development during storage of Castlebrite apricots as evaluated by gas chromatography, electronic nose, and sensory analysis [J]. Postharvest Biology and Technology,2009,51 (2):212-219.
    Dicke, M., Vanbaarlen, P., Wessels, R., Dijkman, H. Herbivory Induces Systemic Production of Plant Volatiles That Attract Predators of the Herbivore-Extraction of Endogenous Elicitor [J]. Journal of Chemical Ecology,1993,19(3):581-599.
    Dicke, M. Chemical ecology of host-plant selection by herbivorous arthropods:a multitrophic perspective [J]. Biochemical Systematics and Ecology,2000,28(7):601-617.
    Drake, V.A., Wang, H.K., Harman, I.T. Insect monitoring radar: remote and network operation [J]. Computers and Electronics in Agriculture,2002,35(2-3):77-94.
    Ercolini, D., Russo, F., Nasi, A., Ferranti, P., Villani. F. Mesophilic and Psychrotrophic Bacteria from Meat and Their Spoilage Potential In Vitro and in Beef [J]. Applied and Environmental Microbiology,2009,75(7):1990-2001.
    Evans, P., Persaud, K.C., McNeish, A.S., Sneath, R.W., Hobson, N., Magan, N. Evaluation of a radial basis function neural network for the determination of wheat quality from electronic nose data [J]. Sensors and Actuators B-Chemical,2000,69(3):348-358.
    Fanner, E.E., Ryan. C.A. Interplant Communication-Airborne Methyl Jasmonate Induces Synthesis of Proteinase-Inhibitors in Plant-Leaves [J]. Proceedings of the National Academy of Sciences of the United States of America,1990,87(19):7713-7716.
    Foley, W.J., McIlwee. A., Lawler. I., Aragones, L., Woolnough, A.P., Berding, N. Ecological applications of near infrared reflectance spectroscopy a tool for rapid, cost-effective prediction of the composition of plant and animal tissues and aspects of animal performance [J]. Oecologia,1998,116(3):293-305.
    Funazaki, N., Hemmi, A., Ito, S., Asano, Y., Yano, Y., Miura, N., et al. Application of Semiconductor Gas Sensor to Quality-Control of Meat Freshness in Food-Industry [J]. Sensors and Actuators B-Chemical,1995,25(1-3):797-800.
    Gardner, J.W., Bartlett, P.N. A Brief-History of Electronic Noses [J]. [J]. Sensors and Actuators B-Chemical,1994,18(1-3):211-220.
    Geervliet. J.B.F., Vet, L.E.M., Dicke. M. Volatiles from Damaged Plants as Major Cues in Long-Range Host-Searching by the Specialist Parasitoid Cotesia-Rubecula [J]. Entomologia Experimentalis Et Applicata,1994,73(3):289-297.
    Ghasemi-Varnamkhasti. M., Mohtasebi, S.S., Siadat, M., Balasubramanian, S. Meat Quality Assessment by Electronic Nose (Machine Olfaction Technology) [J]. Sensors, 2009,9(8):6058-6083.
    Gomez, A.H., Hu, G.X., Wang, J., Pereira, A.G. Evaluation of tomato maturity by electronic nose [J]. Computers and Electronics in Agriculture,2006,54(1):44-52.
    Gomez, A.H., Wang, J., Hu, G.X., Pereira, A.G. Discrimination of storage shelf-life for mandarin by electronic nose technique [J]. Lwt-Food Science and Technology, 2007,40(4):681-689.
    Gomez, A.H., Wang, J., Pereira, A.G. Mandarin ripeness monitoring and quality attribute evaluation using an electronic nose technique [J]. Transactions of the Asabe, 2007,50(6):2137-2142.
    Gomez, A.H., Wang, J., Hu, G.X., Pereira, A.G. Monitoring storage shelf life of tomato using electronic nose technique [J]. Journal of Food Engineering,2008,85(4):625-631.
    Goschnick J, Koronczi I, Frietsch M, et al. Water Pollution Recognition with the Electionic Nose KAMINA[J]. Sensors and Actuators B,2005,106:182—186.
    Halitschke, R., Kessler, A., Kahl, J., Lorenz, A., Baldwin, I.T. Ecophysiological comparison of direct and indirect defenses in Nicotiana attenuata [J]. Oecologia,2000,124(3):408-417.
    Hampden J.R.,Effects of C6-C10 alkenals and alenols on eliciting a defense response in the developing cotton boll[J]. Phytochem.1992,31:2305-2308.
    Harman. I.T., Drake, V.A. Insect monitoring radar:analytical time-domain algorithm for retrieving trajectory and target parameters [J]. Computers and Electronics in Agriculture. 2004,43(1):23-41.
    Henderson, W.G., Khalilian, A., Han, Y.J., Greene, J.K., Degenhardt, D.C. Detecting stink bugs/damage in cotton utilizing a portable electronic nose [J]. Computers and Electronics in Agriculture,2010,70(1):157-162.
    Huichun Yu, Jun Wang, Hong Xiao, et al. Quality grade identification of green tea using the eigenvalues of PCA based on the E-nose signals[J]. Sensors and Actuators B,2009,140: 378—382.
    Jackson, R.D., Pinter, P.J., Reginato, R.J., Idso, S.B. Detection and Evaluation of Plant Stresses for Crop Management Decisions [J]. Ieee Transactions on Geoscience and Remote Sensing, 1986,24(1):99-106.
    Jonsson, A., Winquist, F., Schnurer, J., Sundgren, H., Lundstrom, I. Electronic nose for microbial quality classification of grains [J]. International Journal of Food Microbiology, 1997,35(2):187-193.
    Jullada L., Jason P.M., Jane E. Taylor et al. Discrimination for plant volatile signatures by an electronic nose:A potential technology for plant pest and disease monitoring[J]. Environmental Science and Technology,2008(42):8433—8439
    Klieber. A., Bagnato, N., Barrett, R., Sedgley. M. Effect of post-ripening nitrogen atmosphere storage on banana shelf life, visual appearance and aroma [J]. Postharvest Biology and Technology,2002,25(1):15-24.
    Kobayashi, T., Kanda, E., Kitada, K., Ishiguro, K., Torigoe, Y. Detection of rice panicle blast with multispectral radiometer and the potential of using airborne multispectral scanners [J]. Phytopathology,2001,91 (3):316-323.
    Labreche S, Bazzo S, Cade S, et al. Shelf Life Determination by Electronic Nose:Application to Milk[J]. Sensors and Actuators B,2005,106:199—206.
    Lan, Y.B., Zheng, X.Z., Westbrook, J.K., Lopez, J., Lacey, R., Hoffmann, W.C. Identification of Stink Bugs Using an Electronic Nose [J]. Journal of Bionic Engineering, 2008,5:172-180.
    Laothawornkitkul, J., Moore, J.P., Taylor, J.E., Possell, M., Gibson, T.D., Hewitt, C.N., et al. Discrimination of Plant Volatile Signatures by an Electronic Nose:A Potential Technology for Plant Pest and Disease Monitoring [J]. Environmental Science & Technology, 2008,42(22):8433-8439.
    Lee. H., Chung. C.H., Kim, K.B., Cho, B.K. Evaluation of Freshness of Chicken Meat during Cold Storage Using a Portable Electronic Nose [J]. Korean Journal for Food Science of Animal Resources,2010,30(2):313-320.
    Lou, Y.G., Hua, X.Y., Turlings, T.C.J., Cheng, J.A., Chen, X.X., Ye, G.Y. Differences in induced volatile emissions among rice varieties result in differential attraction and parasitism of Nilaparvata lugens eggs by the parasitoid Anagrus nilaparvatae in the field [J]. Journal of Chemical Ecology,2006,32(11):2375-2387.
    Lu, Y.J., Wang, X., Lou, Y.G., Cheng, J.A. Role of ethylene signaling in the production of rice volatiles induced by the rice brown planthopper Nilaparvata lugens [J]. Chinese Science Bulletin,2006,51(20):2457-2465.
    Luo. D.H., Hosseini, H.G., Stewart, J.R. Application of ANN with extracted parameters from an electronic nose in cigarette brand identification [J]. Sensors and Actuators B-Chemical, 2004.99(2-3):253-257.
    Magan, N., Evans, P. Volatiles as an indicator of fungal activity and differentiation between species, and the potential use of electronic nose technology for early detection of grain spoilage [J]. Journal of Stored Products Research,2000,36(4):319-340.
    Marti, M.P., Boque, R.. Busto, O., Guasch, J. Electronic noses in the quality control of alcoholic beverages [J]. Trac-Trends in Analytical Chemistry,2005,24(1):57-66.
    Mathus T J, Maderia A C. High resolution spectral diometry: spectral reflectance of field bean leaves infected by Botrytis fabae [J]. Remote sensors Environ,1993,45:107—116
    Mattiacci, L., Dicke, M., Posthumus, M.A. Induction of Parasitoid Attracting Synomone in Brussels-Sprouts Plants by Feeding of Pieris-Brassicae Larvae - Role of Mechanical Damage and Herbivore Elicitor [J]. Journal of Chemical Ecology,1994,20(9):2229-2247.
    Mattiacci, L., Rocca, B.A., Scascighini, N., D'Alessandro, M., Hern, A., Dorn, S. Systemically induced plant volatiles emitted at the time of "danger" [J]. Journal of Chemical Ecology, 2001,27(11):2233-2252.
    Mattiacci, L., Rudelli, S., Rocca, B.A., Genini, S., Dorn, S. Systemically-induced response of cabbage plants against a specialist herbivore, Pieris brassicae [J]. Chemoecology, 2001,11(4):167-173.
    Manuela O'Connell, Gabritla Valdora, Gustavo Peltzer. A practical approach for fish freshness determinations using a portable electronic nose [J].Sensor and Actuators B 80, 2001:120-150
    McAuslane, H.J., Alborn, H.T. Systemic induction of allelochemicals in glanded and glandless isogenic cotton by Spodoptera exigua feeding [J]. Journal of Chemical Ecology, 1998,24(2):399-416.
    Mcculloch, L., Hunter, D.M. Identification and Monitoring of Australian Plague Locust Habitats from Landsat [J]. Remote Sensing of Environment,1983,13(2):95-102.
    Mehl P M,Chao K,Kim M,et al. Detection of defects on selected apple cultivars using hyperspectral and multispectral image analysis[J]. Applied Engineering in Agriculture,2002,18(2):219-226.
    Mielle, P., Marquis, F. An alternative way to improve the sensitivity of electronic olfactometers [J]. Sensors and Actuators B-Chemical,1999,58(1-3):526-535.
    Miresmailli. S., Gries. R.. Gries, G., Zamar, R.H., Isman, M.B. Herbivore-induced plant volatiles allow detection of Trichoplusia ni (Lepidoptera:Noctuidae) infestation on greenhouse tomato plants [J]. Pest Management Science,2010,66(8):916-924.
    Musatov, V.Y., Sysoev, V.V., Sommer, M., Kiselev, I. Assessment of meat freshness with metal oxide sensor microarray electronic nose:A practical approach [J]. Sensors and Actuators B-Chemical.2010,144(1):99-103.
    Natale, D., Mattiacci, L., Hern, A., Pasqualini, E., Dorn, S. Response of female Cydia molesta (Lepidoptera:Tortricidae) to plant derived volatiles [J]. Bulletin of Entomological Research,2003,93(4):335-342.
    Nilsson H E. Remote sensing of oel seed rape infected by Sclerotinia stem rot and Verticillium wilt[M].Uppsala(Sweden):Sveriges Lantbruksuniv,1985.
    Olsson, J., Borjesson, T., Lundstedt, T., Schnurer, J. Volatiles for mycological quality grading of barley grains:determinations using gas chromatography-mass spectrometry and electronic nose [J]. International Journal of Food Microbiology,2000,59(3):167-178.
    Oshita, S., Shima, K., Haruta, T., Seo, Y., Kawagoe, Y., Nakayama, S., et al. Discrimination of odors emanating from 'La France'pear by semi-conducting polymer sensors [J]. Computers and Electronics in Agriculture,2000,26(2):209-216.
    Panchabhavi, K.S., Kulkarni, K.A., Veeresh, G.K., Hiremath, P.C., Hegde, R.K. Comparative Efficiency of Techniques for Assessing Loss Due to Insect Pests in Upland Cotton (Gossypium-Hirsutum) [J]. Indian Journal of Agricultural Sciences,1990,60(4):252-254.
    Panigrahi. S., Chang, Y., Khot, L.R., Glower, J., Logue, C.M. Integrated electronic nose system for detection of Salmonella contamination in meat [J].2008 Ieee Sensors Applications Symposium,2008:85-88
    Pare, P.W., Tumlinson, J.H. Plant volatiles as a defense against insect herbivores [J]. Plant Physiology,1999.121 (2):325-331.
    Pathange, L.P., Mallikarjunan, P., Marini, R.P., O'Keefe, S., Vaughan, D. Non-destructive evaluation of apple maturity using an electronic nose system [J]. Journal of Food Engineering,2006,77(4):1018-1023.
    Penza, M., Cassano, G., Tortorella, F., Zaccaria, G. Classification of food, beverages and perfumes by WO3 thin-film sensors array and pattern recognition techniques [J]. Sensors and Actuators B-Chemical,2001,73(1):76-87.
    Persaud, K., Dodd. G. Analysis of Discrimination Mechanisms in the Mammalian Olfactory System Using a Model Nose [J]. Nature,1982,299(5881):352-355.
    Potting. R.P.J., Vet, L.E.M., Dicke, M. Host Microhabitat Location by Stem-Borer Parasitoid Cotesia Flavipes-the Role of Herbivore Volatiles and Locally and Systemically Induced Plant Volatiles [J]. Journal of Chemical Ecology,1995,21(5):525-539.
    Ragazzo-Sanchez, J.A., Chalier, P., Chevalier, D., Ghommidh, C. Electronic nose discrimination of aroma compounds in alcoholised solutions [J]. Sensors and Actuators B-Chemical,2006,114(2):665-673.
    Rajamaki, T., Alakomi, H.L., Ritvanen, T., Skytta, E.S., Smolander, M., Ahvenainen, R. Application of an electronic nose for quality assessment of modified atmosphere packaged poultry meat [J]. Food Control,2006,17(1):5-13.
    Reisig. D., Godfrey, L. Remote sensing for detection of cotton aphid-(Homoptera:Aphididae) and spider mite-(Acari:Tetranychidae) infested cotton in the San Joaquin Valley [J]. Environmental Entomology,2006,35(6):1635-1646.
    Riedell, W.E., Blackmer, T.M. Leaf reflectance spectra of cereal aphid-damaged wheat [J]. Crop Science,1999,39(6):1835-1840.
    Riley, J.R. Radar Observations of Individual Desert Locusts (Schistocerca-Gregaria]Forsk) (Orthoptera, Locustidae) [J]. Bulletin of Entomological Research,1974,64(1):19-&.
    Riley, J.R., Reynolds, D.R. Vertical-looking radar as a means to improve forecasting and control of desert locusts [J]. New Strategies in Locust Control,1997:47-54
    Rinehart G L, Cathoun J H, Schabbenberger O. Australian Turfgrass Management,2002,4
    Rose, U.S.R., Manukian, A., Heath, R.R., Tumlinson, J.H. Volatile semiochemicals released from undamaged cotton leaves-A systemic response of living plants to caterpillar damage [J]. Plant Physiology,1996,111(2):487-495.
    Rossi, V., Garcia, C., Talon, R., Denoyer, C., Berdague, J.L. Rapid discrimination of meat products and bacterial strains using semiconductor gas sensors [J]. Bioflavour 95, 1995(75):85-89
    Saevels, S., Lammertyn, J., Berna, A.Z., Veraverbeke, E.A., Di Natale, C., Nicolai, B.M. An electronic nose and a mass spectrometry-based electronic nose for assessing apple quality during shelf life [J]. Postharvest Biology and Technology,2004,31(1):9-19.
    Saleeb, R.K., Press, L.M., Cale, K., Skrobanski, R. Application of Electronic Nose for coffee and ready to drink beverage. [J]. Food Flavors and Chemistry,2001(274):412-419
    Singh, D., Sao, R., Singh, K.P. A remote sensing assessment of pest infestation on sorghum [J]. Advances in Space Research,2007.39(1):155-163.
    Tang, K.T., Chiu. S.W., Pan, C.H., Hsieh, H.Y., Liang, Y.S., Liu, S.C. Development of a Portable Electronic Nose System for the Detection and Classification of Fruity Odors [J]. Sensors.2010.10(10):9179-9193.
    Turlings, T.C.J., Bernasconi. M., Bertossa, R., Bigler, F., Caloz, G., Dorn, S. The induction of volatile emissions in maize by three herbivore species with different feeding habits: Possible consequences for their natural enemies [J]. Biological Control, 1998,11(2):122-129.
    Vinci, G., Tantini. C., Vezzio, D., Rossi, M., D'Ascenzo, F. Protein and fat determination in meat and meat-based products by means of rapid and precise analytical methods [J]. Industrie Alimentari,1999.38(380):369-373.
    Wang, H.K., Drake, V.A. Insect monitoring radar:retrieval of wingbeat information from conical-scan observation data [J]. Computers and Electronics in Agriculture, 2004,43(3):209-222.
    Wang, Y.W., Wang, J., Zhou, B., Lu, Q.J. Monitoring storage time and quality attribute of egg based on electronic nose [J]. Analytica Chimica Acta,2009,650(2):183-188.
    Wilkens, W.F., Hartman, J.D. Electronic Analog for Olfactory Processes [J]. Journal of Food Science,1964,29(3):372-&.
    Xu, T., Zhou, Q., Xia, Q., Zhang, W.Q., Zhang, G., Gu, D.X. Effects of herbivore-induced rice volatiles on the host selection behavior of brown planthopper, Nilaparvata lugens [J]. Chinese Science Bulletin,2002,47(16):1355-1360.
    Yan, Z.G., Yan, Y.H., Wang, C.Z. Attractiveness of tobacco volatiles induced by Helicoverpa armigera and Helicoverpa assulta to Campoletis chlorideae [J]. Chinese Science Bulletin, 2005,50(13):1334-1341.
    Ye, S., Hu, J. Insect herbivory information detection by Principal Component Analysis on electronic nose system [J]. Proceedings of the 2005 International Conference on Neural Networks and Brain, Vols 1-3,2005:401-404
    Zhang, H.M., Wang, J. Detection of age and insect damage incurred by wheat, with an electronic nose [J]. Journal of Stored Products Research,2007,43(4):489-495.
    于新文,沈佐锐,高灵旺,李志红.昆虫图像几何形状特征的提取技术研究[J].中国农业大学学报,2003(03):47-50.
    于慧春.基于电子鼻技术的茶叶品质检测研究博士学位论文:浙江大学;2007.
    于慧春,王俊,张红梅,于勇.龙井茶叶品质的电子鼻检测方法[J].农业机械学报,2007(07):103-106.
    于慧春,王俊.电子鼻技术在茶叶品质检测中的应用研究[J].传感技术学报,2008(05):748-752.
    马银晓,姚敏.支持向量机在植物分类中的应用[J].科技通报,2007,23(3):404-407.
    毛罕平,张艳诚,胡波.基于模糊C均值聚类的作物病害叶片图像分割方法研究[J].农业工程学报,2008,24(9):136-139.
    《农作物种子检验规程发芽试验》GB/T 3543.4-1995.
    石亚萍,蔡静平.种子发芽率快速测定方法的研究进展[J].中国种业,2008,2:13-14.
    史志存.电子鼻及其应用研究博士学位论文:中国科学院电子学研究所;2000.
    纪寿文,王容本,陈佳娟等.应用计算机图像处理技术识别玉米苗期田间杂草的研究[J].农业工程学报,2001,17(2):154-156.
    孙钟雷.电子鼻技术在猪肉新鲜度识别中的应用[J].肉类研究,2008(02):50-53.
    孙红,李民赞,周志艳,刘刚,罗锡文.基于光谱技术的水稻稻纵卷叶螟受害区域检测[J].光谱学与光谱分析,2010(04):1080-1083.
    李建光.光肩星天牛对寄主植物挥发性物质的行为反应及作用机理的研究博士学位论文:北京林业大学;2001.
    闫锋,汪霞,吕静,庞保平,娄永根.二化螟与稻纵卷叶螟幼虫取食诱导的水稻挥发物比较[J].昆虫知识,2010(01):96-101.
    吴孔明,翟保平,封洪强,程登发,郭予元.华北北部地区二代棉铃虫成虫迁飞行为的雷达观测[J].植物保护学报,2006(02):163-167.
    吴守一,邹小波.电子鼻在食品行业中的应用研究进展[J].江苏理工大学学报(自然科学版),2000(06):13-17.
    吴曙雯,王人潮,陈晓斌等.稻叶瘟对水稻光谱特性的影响研究[J].上海交通大学学报(农业科学版),2002,20(1):73-76.
    杜家纬.植物-昆虫间的化学通讯及其行为控制[J].植物生理学报,2001(03):193-200.
    娄永根,程家安.植物的诱导抗虫性[J].昆虫学报,1997(03):320-331.
    周志艳,罗锡文,张扬,李燕芳,臧英.农作物虫害的机器检测与监测技术研究进展[J].昆虫学报,2010(01):98-109.
    周大云,杨伟华,许红霞等.棉种贮藏过程中温度对发芽率和休眠的影响[J].棉花学报,2009,21(5):405-409.
    周亦斌,王俊.基于电子鼻的番茄成熟度及贮藏时间评价的研究[J].农业工程学报,2005,21(5):113-116
    陈兵,王克如,李少昆等.棉花黄萎病冠层高光谱遥感监测技术研究[J].新疆农业科学,2007,44(6):740-745.
    陈佳娟,纪寿文,李娟,赵学笃.采用计算机视觉进行棉花虫害程度的自动测定[J].农业工程学报,2001(02):157-160.
    陈铁冰,邢媛媛,谭也平.基于MATLAB的支持向量机结构可靠度分析方法[J].华中科技大学学报,2009,26(1):60-63.
    陈华才,娄永根,程家安.寄主昆虫及被害水稻的挥发物对螟蛉绒茧蜂寄主选择行为的影响[J].浙江大学学报(农业与生命科学版),2003(01).
    陈广平,蔡继宝,杜启云,孟庆宇.基于质谱技术的电子鼻在鉴别真假卷烟上的应用[J].辽宁化工,2010(04):353-355.
    陈永利.蔬菜种子的质量鉴别[J].现代种业,2010,1:64.
    邹小波,赵杰文.电子鼻在饮料识别中的应用研究[J].农业工程学报,2002(03):146-149.
    邹小波,赵杰文.电子鼻快速检测谷物霉变的研究[J].农业工程学报,2004(04):121-124.
    张晓华,张东星,刘远方,常伟,李阳,李景明,等.电子鼻对苹果货架期质量的评价[J].食品与发酵工业,2007(06):20-23.
    张红梅,何玉静.电子鼻技术的历史、研究现状及发展前景[J].科技信息,2008(27):12-13.
    张风娟,金幼菊,陈华君,武晓颖.光肩星天牛对4种不同槭树科寄主植物的选择机制[J].生态学报,2006(03):870-877.
    张覃轶.电子鼻:传感器阵列、系统及应用研究博士学位论文:华中科技大学;2005.
    张覃轶,胡伟,叶卫平,孙伟,姜栎,徐海维.一种基于电子鼻的食醋识别新方法[J].传感器与微系统,2008(06):18-20+23.
    张晓洁,隋洁,王丽华等.包装材料对贮藏期间不同类型棉种活力的影响[J].山东农业科学,2008,2:103-105.
    张书慧,张晓梅.苹果桃等农副产品品质检测与分级图像处理系统的研究[J].农业工程学报,1999,15(1):201-204
    张生梅.贮藏年限对种子发芽率的影响[J].长江蔬菜,2010,4:39-41.
    庞林江,王俊,路兴花.电子鼻判别小麦陈化年限的检测方法研究[J].传感技术学报,2007(08):1717-1722.
    胡桂仙.G 6 mez,A.H.,王俊.王小骊.电子鼻无损检测柑橘成熟度的实验研究[J].食品与发酵工业,2005(08):57-61.
    胡桂仙,王俊,海铮,王小骊.不同储藏时间柑橘电子鼻检测研究[J].浙江农业学报,2006(06):458-461.
    胡国文,梁天锡,刘光杰,楼小华,马巨法,吴国生,唐健.抗白背飞虱水稻品种挥发性次生物质的提取、组分鉴定与生测[J].中国水稻科学,1994(04).
    郑丽敏,田立军,朱虹等.基于MATLAB的BP神经网络在猪等级评定中的应用研究[J].计算机应用研究,2008,25(6):1642-1644.
    姚青,赖凤香,傅强,张志涛.褐飞虱求偶鸣声中有效声段及其特征[J].昆虫学报,2004(04):479-484.
    姚青,赖凤香,傅强,张志涛,程登发.基于人工神经网络的昆虫鸣声识别[J].昆虫分类学报,2005(01):19-22.
    高海波,沈应柏.旱柳机械损伤后挥发物释放的时序性规律的研究[J].山东林业科技,2007(5):47-48
    高大启.机器嗅觉在气味类别与浓度同时估计中的应用.In;2004;中国广州;2004.
    高岩,金幼菊,邹祥旺,陈华君.珍珠梅花挥发物对小鼠旷场行为及学习记忆能力的影响[J].北京林业大学学报,2005(03):61-66.
    高艳萍,周敏,姜凤娇.基于BP网络养殖水体氨氮预测模型及实现[J].农机化研究,2008,7:48-50.
    徐良.新型气体传感器及呼吸诊断电子鼻设计[硕士]:浙江大学;2003.
    徐涛,周强,夏嫱,张文庆,张古忍,古德祥.虫害诱导的水稻挥发物对褐飞虱寄主选择行为的影响[J].科学通报,2002(11):849-853.
    耿森林.储粮害虫活动声特征检测、分析及其数据库建立博士学位论文:陕西师范大学;2005.
    黄木易,黄文江,刘良云等.冬小麦条锈病单叶光谱特性及严重度反演[J].农业工程学报,2004,20(1):176-180.
    柴春祥,陈庆森,刘勤生.鸡肉新鲜度电子鼻评价特征值的确定[J].食品与发酵工业,2007(11):5-8.
    柴春祥,杜利农,范建伟,蔡悦,陈佺,王妍.电子鼻检测猪肉新鲜度的研究[J].食品科学,2008(09):444-447.
    盖颜欣,王艳芝,季志强等.玉米种子水分变化及烘干对发芽率的影响[J].中国种业,2010,5:33-34.
    顾赛麒,王锡昌,刘源,赵勇,张晶晶,谢晶,等.电子鼻检测不同贮藏温度下猪肉新鲜度变化[J].食品科学,2010(06):172-176.
    殷勇,吴守一,邱明.用基于神经网络的电子鼻评定卷烟香气质量[J].仪器仪表学报,2003(01):86-88.
    蔡清,何东健.基于图像分析的蔬菜食叶害虫识别技术[J].计算机应用,2010(07):1870-1872.
    蒋德云,孔晓玲,李宝筏,胡多传,余进海,张弓.电子鼻在储粮害虫检测中的应用研究[J].安徽农业大学学报,2005(02):254-257.
    海铮.基于电子鼻的牛肉新鲜度检测[硕士]:浙江大学:2006.
    程彬,付晓霞,韩启,张宝民,张大明,李兴鹏,等.虫害诱导的家榆挥发物对榆紫叶甲寄主选择行为的影响[J].林业科学,2010(10):76-82.
    潘天红,陈山,赵德安.电子鼻技术在谷物霉变识别中的应用[J].仪表技术与传感器,2005(03):51-52.
    魏明,邓晓军,胡文利,魏洪义,杜家纬.应用固相微萃取技术分析番茄与天竺葵活体植株的挥发物[J].生态学杂志,2004(04):184-187.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700