用户名: 密码: 验证码:
微生物浸溶废弃低品位油页岩生态资源化新技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国经济不断发展,对能源的需求量越来越大,导致能源的供需矛盾持续升级,石油天然气等为不可再生能源且我国石油储量有限,因此新能源和替代能源的开发对我国经济可持续发展显得尤为重要。油页岩作为一种可提取页岩油(与石油类似)的资源受到相关专家的高度重视。由于我国油页岩整体含油率普遍不高、页岩油提取技术落后,直接导致大量低品位油页岩资源的浪费并引发环境问题,严重制约了我国油页岩的开发利用进程。因此,利用一种生态环保的技术方法将低品位油页岩资源化,提高页岩油提取率显得至关重要。
     近年来,微生物浸矿技术以其易操作、运行费用低、环境友好等特点越来越受到国内外专家的重视。目前国外已有少量关于利用微生物浸矿技术提高油页岩品位的研究报道,而国内尚无这方面报道。如果微生物浸溶废弃低品位油页岩生态资源化新技术研究成功,将对我国油页岩的开发利用产生深远意义。
     本文以吉林某地区低品位油页岩为研究对象,利用微生物浸矿技术展开对油页岩浸矿效果与机理的研究、微生物浸矿作用提高页岩油产率效果与机理的研究,进行了室内堆浸实验与场地扩大化堆浸实验的效果研究。
     本文对实验用油页岩矿物组份进行分析,其结果显示主要矿物质组份为硅酸盐、硅铝酸盐、碳酸盐、及少量的黄铁矿。通过广泛大量采集菌源,针对油页岩中的这些矿物组份,成功筛选到一株能够破坏硅酸盐结构的硅酸盐菌,成功筛选到一株能够去除碳酸盐与黄铁矿的产酸菌,经分子生物学鉴定分别为胶质芽孢杆菌、氧化亚铁硫杆菌。通过对这两株菌的浸矿特性研究确定了其最佳浸矿条件,硅酸盐菌最佳浸矿条件为:pH=7.5,浸矿时间7d,29℃,矿浆浓度15%,装液量100ml,转速150r/min;产酸菌的最佳浸矿条件为:pH=2,浸矿时间5d,29℃,矿浆浓度10%,装液量100ml,转速150r/min。在最佳浸矿条件的基础上,研究两株菌的最佳浸矿效果,硅酸盐菌浸矿效果:浸矿后可去除油页岩中占总重22%的矿物质,通过分析油页岩浸矿前后化学成分,经计算得出浸矿后Si的去除率为30.1%,Al的去除率为22%,含油率提高了约2个百分点,产油量提高了约8%;产酸菌浸矿效果:浸矿后可去除油页岩中占总重14%的矿物质,经化学成分分析碳酸钙去除率可达到96.4%,Fe的去除率为76.3%,S的去除率为88.5%,含油率提高了约1.2个百分点,产油量提高了约4%。两株高效浸矿菌的浸矿效果表明微生物浸矿作用可以有效提高油页岩品位,增加页岩油产量,提高了油页岩的利用率;而硫元素的去除有利于实现油页岩干馏提油过程的清洁生产,减少对大气的污染。
     基于微生物浸矿作用具有的显著效果,对微生物浸溶油页岩与提高页岩油产率的机理展开研究。通过对浸矿液成分分析,与油页岩在浸矿前后结构与组份变化得出,硅酸盐菌浸矿机理为:浸溶油页岩是菌体与其代谢产物共同作用,在油页岩表面形成一个胞外多糖、有机酸、菌体与油页岩构成的复合体,在这一微环境下破坏了油页岩中的硅酸盐结构,将硅酸盐、硅铝酸盐、部分碳酸盐从油页岩母体中逐步去除;产酸菌浸矿机理为:产酸菌氧化油页岩中低价的硫产生大量酸,产生的酸进一步溶解了油页岩中的碳酸盐及其它酸溶性矿物质。硅酸盐与产酸菌浸溶油页岩提高页岩油产率的机理相同,主要有两方面的作用,一方面是大量物质矿物的去除改变了油页岩结构;另一方面是在浸矿过程中油页岩中有机物保持稳定,得到有效富集,油页岩结构的改变导致其内部油路打通使得原本难以脱离油页岩的有机组份可有效分离,缩短油母裂解产物在高温环境的持续时间,避免进一步裂解为页岩气,这些因素综合作用提高了页岩油产量。
     在室内堆浸实验中,优化了堆浸过程中的浸矿条件,确定了首先添加产酸菌后添加硅酸盐菌的添加顺序,针对浸矿装置中定量的两种油页岩,产酸菌浸矿阶段最佳浸矿条件为:菌液添加速度为50ml/min,曝气量5L/min,循环浸矿液量20~25L,硫源添加量2~4g/L,浸矿时间7d;硅酸盐菌浸矿阶段最佳浸矿条件为:菌液添加速度为50ml/min,曝气量5L/min,循环浸矿液量25L,浸矿时间11d,整个浸矿时间维持18d。通过不同粒径油页岩浸矿效果分析,确定了室内堆浸实验中最佳油页岩粒径为2~4cm。
     研究了在优化浸矿条件下的堆浸效果,在室内浸矿过程中采集油页岩样品进行铝甑含油率测试,结果表明两个浸矿阶段均能显著提高油页岩含油率,桦甸油页岩含油率由4.55%升高至6.68%,梅河口油页岩含油率由4.5%升高至6.75%,表明联合浸矿工艺能有效提高油页岩品位,使低品位可用于干馏提取页岩油,达到了固废资源化的目的,减少了大量废弃低品位油页岩对环境造成的污染。通过对浸矿后油页岩干馏特性研究,得出浸矿后油页岩的最佳干馏条件为:500℃保持17min后即可获得最大页岩油产率,与标准铝甑法测定含油率对比表明浸矿后油页岩干馏条件大幅度下降,有利于实现在工业化提取页岩油过程中降低能耗。在室内堆浸实验过程中采集油页岩样品,提取总DNA利用DGGE技术分析其群落结构随浸矿时间变化,结果表明首先加入的产酸菌达到了抑制环境中其它微生物生长的作用,为硅酸盐菌浸矿阶段初期硅酸盐菌大量繁殖占据主导地位提供了有利条件,有利于硅酸盐菌浸矿效果的表达。
     最后进行了场地扩大化实验,主要针对较大量的油页岩进行堆浸实验,通过自主研制的铁甑可准确反映铝甑标准方法检测得出的油页岩含油率,在场地扩大化堆浸实验中浸矿后油页岩含油率升高了1.5个百分点,可以有效提高油页岩品位。对浸矿后油页岩的铁甑干馏特性进行研究,研究结果表明浸矿后的油页岩可缩短干馏保温时间9min,降低干馏温度15℃,在实际页岩油提取中可达到对油页岩干馏节能减排的目的。利用PCR-DGGE技术研究了场地扩大化浸矿过程中群落结构的变化,场地堆浸过程中目的菌种均能有效表达,表明浸矿菌在浸矿过程中可有效发挥浸矿作用。
     利用微生物浸矿技术可以有效提高油页岩品位以解决低品位油页岩的资源化问题,浸矿后油页岩页岩油产量增加提高了油页岩利用率,可将大量低品位油页岩资源化,更重要的是减少废弃低品位油页岩长期堆积对水土环境造成的的污染;微生物浸矿技术可以改变油页岩物理结构与化学组份,以降低油页岩干馏条件实现生产过程中节能减排的目的;由于产酸菌具有脱硫功能,可降低生产过程中硫化物的排放,减少对大气的污染,有助于实现油页岩利用过程的清洁生产。
With the continuous development of China, the demand of the energy is gettinglarger and larger, leading the contradiction between supply and demand of energycontinues to escalate, for petroleum is a finite resource and the oil reserves of ourcountry is limited, so the development of new energy and alternative energy sources isparticularly important for the sustainable development of China. The shale oil can beextracted from the oil shale which is similar to the petroleum, relationship experts payhigh attention to the oil shale resources. Because of the oil yield of the oil shale in ourcountry is low, and the oil shale retorting technologies of our country is backward,directly lead to the low grade of oil shale resources waste causing the environmentproblem, seriously restricted the development and utilization of oil shale. Therefore,using a eco-environment protection technology to recycling the low grade oil shaleresource and improve the shale oil yield is crucially.
     In recent years, the microbe bioleaching technology was taken seriously byexperts both at home and abroad for its easy manipulation, low running charge andenvironmentally friendly. There are some study reports about improving the oil shalegrade by the microbe bioleaching technology in other countries by now, but there areno similar reports in our country. If the technology was successful, may havefar-reaching positive effects on the developing and using of the oil shale in ourcountry.
     This paper regards the low grade oil shale in JiLin Province as the object ofresearch, study the the effect and mechanism of bioleaching oil shale and improvingshale oil yield, carry out the research of heap leaching experiments inlaboratory andfield, summarize the experimental effect of heap leaching experiments.
     In this analysis, the oil shale mainly composed of silicate, aluminosilicate,carbonate and small amounts of pyrite. Aiming at these components, screening the silicate bacteria to leaching the silicate and aluminosilicate; screening theacid-producing bacteria to leaching the carbonate and pyrite. We screened a silicatebacteria and acid-producing bacteria from many kinds of bacterial source, the silicatebacteria is identified as Bacillus mucilaginosus, the acid-producing bacteria isidentified as Thiobacillus ferrooxidans. The best leaching conditions of the silicatebacteria is pH=7.5, leaching for7d,29℃, pulp density15%, liquid medium volume100ml, rotation speed150r/min; the best leaching conditions of the acid-producingbacteria is pH=2, leaching for5d,29℃, pulp density10%, liquid medium volume100ml, rotation speed150r/min. On the basis of the optimum leaching miningconditions, the best effect of the silicate bacteria bioleaching:22%of the total weightof the raw oil shale was removed, based on the analysis of chemical compositionbefore and after bioleaching, the removal rate of Si was30.1%, the removal rate of Alwas22%, oil yield increased2percentage points, the absolute amount of shale oilincreased8%; the best effect of the acid-producing bacteria bioleaching:13%of thetotal weight of the raw oil shale was removed, based on the analysis of chemicalcomposition before and after bioleaching, the removal rate of Fe was76.3%, theremoval rate of S was88.5%, oil yield increased1.2percentage points, the absoluteamount of shale oil increased4%. The effect of bioleaching by both leaching bacteriasshow that the microbe bioleaching technology can improve the grade of oil shale,increase shale oil yield, and improved utilization of oil shale; Removal of S ishelpful to realize the clean production during oil shale retorting process, and reduceair pollution.
     Based on the microbe bioleaching technology has a significant effect, theresearchs about the mechanism of the microbe bioleaching and the shale oil yieldrising up were made. Through analyzing the composition of bioleaching liquor, andthe changes in structure and components of the oil shale before and after bioleaching,the mechanism of silicate bacteria bioleaching the oil shale as follows: bioleachingoil shale is a combined action by the silicate bacteria and its metabolites, a mixtureformed on the surface of oil shale, which is composed of EPS, organic acid, andthallus, in this micro environment the silicate, aluminosilicate, and part of the carbonate were removed from shale matrix step by step; the mechanism theacid-producing bacteria bioleaching as follows: the bacteria has a function ofoxidative desulfurization from the oil shale and produces sulfuric acid, the acidfurther dissolves the carbonate in the oil shale and other acid soluble minerals. Themechanism of ascending shale oil yield rate is the same by the two leaching bacterias,there are two major aspects, on the one hand, is a large amount of mineral matterremoval changed the structure of oil shale; on the other hand is in the process ofbioleaching the organic matter kept stable in oil shale, get effective accumulation,the changes in the structure make the organic components can be effectivelyseparated from oil shale, reduce the duration of the kerogen cracking in hightemperature environment to avoid further cracking into shale gas, these factorscombined action raised the shale oil production.
     During the laboratory heap leaching experiments, heap leaching experimentsindoors, the conditions in the process of heap leaching were optimized, aiming at thetwo kinds of quantitative oil shale in leaching device, the acid-producing bacteria wasadded first, the best bioleaching conditions as follows: microbial added speed is50ml/min, aeration quantity is5L/min, circulating bioleaching fluid volume is20~25L, sulfur source added quantity is2~4g/L, leaching time7d; then the silicatebacteria was added, the best bioleaching conditions as follows: microbial added speedis50ml/min, aeration quantity is5L/min, circulating bioleaching fluid volume is25L, leaching time11d. The whole heap bioleching process lasted for18d. Theimmersion time over18d. Through the different size oil shale bioleaching effect,determined the best laboratory heap leaching experiments shale particle size is2~4cm.
     The effect of heap leaching at optimized condition was studied, the shale oilyield was determined by dry distillation at the low temperature during the heapbioleaching process, the results showed that both bioleaching stages couldsignificantly increase the rate of shale oil yield, HuaDian shale oil yield increasedfrom4.55%to6.68%, the Meihekou shale oil yield increased from4.5%to6.75%,showed that combined bioleaching process could improve the oil shale grade effectively, the low grade can be used for the dry distillation extraction of shale oil,achieved the purpose of recycling the solid waste, reduced the pollution produced byvast discarded low-grade oil shale. The distillation characteristics of the bioleached oilshale were analysed by aluminum retort analysis, the best distillation conditions forbioleached oil shale is:500℃keep17min, then can obtain largest shale oilproduction rate, compared to the standard aluminium retort analysis of raw oil shalesamples distillation condition dropped substantially, conduciving to reduce the energyconsumption in the process of industrialized extraction of shale oil. Sampling oil shaleduring the process of laboratory heap leaching experiments, extracting of total DNAfrom the oil shale samples, and using DGGE technology to analyze the communitystructure changes with bioleaching time, the results showed that the firstly addedacid-producing bacteria reached to inhibit the growth of other microorganisms in thelow pH environment, provided favorable conditions for the silicate bacteria increasedto large numbers in the early stage of silicate bacteria bioleaching stage, conducivedto the effect of silicate bacteria bioleaching expression.
     The expanded heap bioleaching experiments were carried out in the field at last,mainly aimed at the large oil shale heap leaching experiments, the iron retort canaccurately reflect the shale oil yield tested by aluminium retort, shale oil yieldincreased1.5percentage points after field heap bioleaching, the grade of oil shaleimproved effective. The distillation characteristics of the oil shale were analysed, theresults showed that heat preservation time reduced9min, the carbonizationtemperature reduced15℃, helping to achieve energy conservation and emissionreduction in the actual process of shale oil distillation. PCR-DGGE technique wasused to study the changes of community structure of field expanded heap bioleaching,during field heap leaching process purpose strain can effectively express, showed thatthe bioleaching bacteria can effectively play a role.
     Using the microbe bioleaching technology can effectively improve the grade ofoil shale, is conducive to solve the problem of recycling low grade oil shale, afterbioleaching shale oil yield increased, more important is to reduce the environmentpollution caused by the low-grade oil shale long-term accumulation in soil and water; bioleaching technology can change the shale physical structure and chemicalcomponents, leading to reduce the oil shale distillation conditions to achieve thepurpose of energy conservation and emissions reduction in the process of production;due to the acid-producing bacteria has the function of desulphurizing, can reduce theemissions of sulfide in production process, reduce the pollution to the atmosphere,help to achieve shale utilization process of cleaner production.
引文
[1]黄志新,袁万明,黄文辉,Paul Eizenhoefer.油页岩开采技术现状[J].资源与产业,2008,(06):22-26.
    [2]刘丛茹,贾世阳,岳春彤,王克峰.油页岩干馏产燃料油和液化石油气的创新工艺[J].辽宁化工,2010,(06):604-608.
    [3]庄芮.石油进口持续增长对我国经济安全的影响[J].世界经济研究,2005,(06):16-22.
    [4]陈会军.油页岩资源潜力评价与开发优选方法研究[D].吉林大学,2010.
    [5]牛继辉,陈殿义.国外油页岩的地下转化开采方法[J].吉林大学学报:地球科学版,2006,36(6):1027-1030.
    [6]钱家麟,王剑秋,李术元.世界油页岩开发利用动态——记美国第27届国际油页岩会议[J].中外能源,2008,1(13):11-15.
    [7]王慎余,许家朋,王振海.我国油页岩资源开发利用状况及发展对策[J].中国地质经济,1992,(05):18-21.
    [8]刘昭君,董清水,叶松青,等.中国油页岩资源现状[J].吉林大学学报:地球科学版,2006,36(6):869-873.
    [9]赵隆业,陈基娘,王天顺.我国油页岩的成分和品级划分[J].现代地质,1991,(04):423-429.
    [10]刘招君,杨虎林.中国油页岩[M].北京:石油工业出版社,2009.
    [11]李术元,岳长涛,钱家麟.世界油页岩开发利用现状——并记2009年国内外次油页岩会议[J].中外能源,2010,15(2):21-28.
    [12]游君君,叶松青,刘招君等.油页岩的综合开发与利用.世界她质,23(3):261-265.
    [13]秦宏,姜秀民,孙键等.中国油页岩的能源利用,节能,12:17.
    [14]钱家麟,王剑秋,李术元.世界油页岩综述[J].中国能源,2006,28(8):16-19.
    [15]赵世永.榆林煤低温干馏生产工艺及污染治理技术[J].中国煤炭,2007,33(4):58-60.
    [16] Martignoni W P,Bachmann D L,Stoppa E F,et al. Petrosix oil shaletechnology learning curve[C]//Symposium on oil shale,Abstract. Tallinn:[sn].2002.
    [17] Brandt A R. Converting oil shale to liquid fuels with the Alberta TaciukProcessor: Energy inputs and greenhouse gas emissions[J]. Energy&Fuels,2009,23(12):6253-6258.
    [18] Veiderma M. Estonian oil shale-resources and usage[J]. Oil Shale,2003,20(3;SUPP):295-303.
    [19]潘振海,王昊,王习东,等.油砂干馏系统的DEM-CFD耦合模拟[J].天然气工业,2008,28(12).
    [20] Veiderma M. Estonian oil shale-resources and usage[J]. Oil Shale,2003,20(3;SUPP):295-303.
    [21]张晶,周彦文,陈维思.抚顺页岩油加工方案初步研究冰[J].当代化工,2009,38(6).
    [22]姜秀民.油页岩循环流化床锅炉的设计与运行[J].动力工程,1998,18(3):22-28.
    [23]姜秀民,韩向新,刘德昌,等.油页岩颗粒的燃烧模型[J].中国电机工程学报,2002,22(11):138-145.
    [24]王擎,姜庆贤,孙佰仲,等.桦甸油页岩燃烧性能的热分析研究阴.能源工程,2006,3(2): l-5.
    [25]郑恩辉,王擎,郝志金,等.油页岩在流化床锅炉内着火和燃烧特性的试验研究[J].洁净煤技术,2001,7(04):41一45.
    [26]国际壳牌研究有限公司.传导加热地下油页岩以赋予其渗透性并随后采油
    [P].荷兰专利,E21B43/28,87100890.1988.08.31.
    [27] Elkins L F. Shale oil recovery: U.S. Patent4,265,307[P].1981-5-5.
    [28] Crawford P,Biglarbigi K,Dammer A,et al. Advances in World Oil-ShaleProduction Technologies[C]//SPE Annual Technical Conference and Exhibition.2008.
    [29] Deng S,Wang Z,Gao Y,et al. Sub-critical water extraction of bitumen fromHuadian oil shale lumps[J]. Journal of Analytical and Applied Pyrolysis,2012.
    [30] Garrett D E. Process for in situ conversion of coal or the like into oil and gas:U.S. Patent4,057,293[P].1977-11-8.
    [31] BERGER A.L.,1963. In Organic Geochemistry. Pergamon Press. Oxford.
    [32] EGLINTON G.,MURPHY M.T.J.,1969. In Organic Geochemistry. Methodsand Results,Springer,Heidelberg.
    [33] Dopson M,Lindstr m E B. Potential role of Thiobacillus caldus in arsenopyritebioleaching[J]. Applied and environmental microbiology,1999,65(1):36-40.
    [34] Lizama H M,Suzuki I. Interaction of chalcopyrite and sphalerite with pyriteduring leaching by Thiobacillus ferrooxidans and Thiobacillus thiooxidans[J].Canadian journal of microbiology,1991,37(4):304-311.
    [35]李雄,柴立元,王云燕.生物浸矿技术研究进展[J].工业安全与环保,2006,32(3):1-3.
    [36]殷志勇,成海芳,张文彬.生物技术在湿法冶金领域的应用现状及研究趋势[J].湿法冶金,2006,25(3):113-116.
    [37]高曙光,张卫民,严思静.低品位原生硫化铜矿微生物浸出工艺研究进展[J].湿法冶金,2008,27(2):67-71.
    [38] Brierley C L. Bacterial succession in bioheap leaching[J]. Hydrometallurgy,2001,59(2):249-255.
    [39]任洪胜,邢洪波,刘新艳,等.辽宁三道沟含砷金精矿细菌氧化-氰化提金试验研究[J].黄金科学技术,2012,20(1):78-81.
    [40]朱昱.美国Newmont矿业公司黄金产量提高[J].稀有金属快报,2000,1:019.
    [41] Kargi F. Enhancement of microbial removal of pyritic sulfur from coal usingconcentrated cell suspension of T. ferrooxidans and an external carbon dioxidesupply[J]. Biotechnology and Bioengineering,1982,24(3):749-752.
    [42] Monticella D J,Finnerty W R.Microbial desulfurization of fossil fuels[J].Microbiology,1985,37:371-389.
    [43] Olson G J,Brinckmann F E.Bioprocessing of coal[J]. Fuel,1986,65:1638-1646.
    [44] Klein J,Beyer M,Afferden M,et al. Coal in biotechnology [J].Biotechnology,1988,6:497-567.
    [45] Kitae Baek,Chung-Sik Kim,Hyun-Ho Lee,Hyun-Jae Shin,Ji-Won Yang.Microbial desulfurization of solubilized coal [J]. Biotechnology Letters,2002,24:401-405.
    [46] Mao M W H,Dugan P R,Martin P A W,et al. Plasmid DNA inchemoorganotrophic Thiobacillus ferrooxidans and T. acidophilus[J]. FEMSMicrobiology Letters,1980,8(3):121-125.
    [47] Holmes D S,Yates J R,Lobos J H,et al. Strategy for the establishment of agenetic system for studying the novel acidophilic heterotroph Acidiphiliumorganovorum[J]. Biotechnology and applied biochemistry,1986,8(4):258-268.
    [48] Rawlings D E,Tributsch H,Hansford G S. Reasons why 'Leptospirillum '-likespecies rather than Thiobacillus ferrooxidans are the dominant iron-oxidizingbacteria in many commercial processes for the biooxidation of pyrite and relatedores [J]. Microbiology,1999,145:5-13.
    [49] Ghosh S,Mahapatra N R,Banerjee P C. Metal resistance in Acidocella strainsand plasmid-mediated transfer of this characteristic to Acidiphilium multivorumand Escherichia coli[J]. Applied and environmental microbiology,1997,63(11):4523-4527.
    [50] Jamshid Raheb,Mohammad Javad Hajipour,Babak Memari.Increasing ofbiodesulfurization activity of newly recombinant Pseudomonas AeruginosaATCC9027by cloning the flavin reductase gene[J].International journal ofbiotechnology and biochemistry,2010,6(2):219-229.
    [51]章春芳,解庆林,张萍,等.煤炭生物脱硫技术研究进展[J].矿业安全与环保,2008,35(4).
    [52]徐毅,钟董芳,蔡文六.微生物法脱煤炭中黄铁矿硫[J].微生物学报,1990,30(2):131-140.
    [53]内斯托D.用氧化亚铁硫杆菌生物浸出难处理金矿物的机理[J].国外金属矿选矿,2001,(11):11-15.
    [54]姜成林,徐丽华.微生物资料学[M].北京:科学出版社,1997.158-177.
    [55]邱冠周,柳建设,王淀佐,等.氧化亚铁硫杆菌生长过程铁的行为[J].中南工业大学学报,1998(3):226-228.
    [56]何正国,李雅芹,周培瑾.氧化亚硫杆菌的铁和硫氧化系统及其分子遗传学[J].微生物学报,2000,40(5):563-566.
    [57] Nunzi F,Woudstra M,Campese D,et a1. Amino-acid sequence of rusticyaninfrom Thiobacillus ferrooxidans and its comparison with other blue copperproteins[J].Biochim Biophys Acta,1993,1162(5):28-34.
    [58] Douglas E Rawlings.Biomining:theory,microbes and industrial processes[M].Springer Verlag,Berlin,Germany,1997.
    [59] Douglas E,Rawlings.The molechlar genetics of Thiobacillus ferrooxidans andother mesophilic,acidophilic,chemolithotrophic,iron-or sulfur-oxidizingbacteria[J]. Hydrometallurgy,2001,59:187-201.
    [60]亚历山大罗夫.硅酸盐细菌[M].叶维青,译.北京:科学出版社,1955:1-65.
    [61]蒋宝贵,赵斌.解磷解钾自生固氮菌的分离筛选及鉴定[J].华中农业大学学报,2005,24(1):43-48.
    [62]刘五星,杨启银,徐旭士,等.硅酸盐细菌肥料的研究进展[J].天津农业科学,2003,4(12):39-42.
    [63] Groudev S,Genchev F. Bioleaching of bauxites by wild and laboratory-bredmicrobial strains[C]//Fourth International Congress for the Study of Bauxites,Alumina and Aluminum.1978,1:271-278.
    [64] Andreev P I,Lydheva L V. Effect of the composition of the culture medium onthe bacterial decomposition of aluminosilicates [J]. IZV Vyssh Uchbn ZauedTsuetn metal,1979,(5):7-9.
    [65]索罗日金.细菌在矿物工程中的应用[J].国外金属矿选矿,1991,(5):1-10.
    [66] Yakhontova L K,Nesterovich L G,et al. Possibility of bacterial leaching ofaluminum from dawsonite[J]. Earth Science Sections v322n1Apr1994pp:152-1560012-494x TUESEL.
    [67] S N格劳德夫.矿物原料的生物选矿[J].国外金属矿选矿,2000,(6):2-9.
    [68]钮因健,邱冠周,周吉奎,等.硅酸盐细菌的选育及铝土矿细菌脱硅效果[J].中国有色金属学报,2004,14(2).
    [69]孙德四,张强.硅酸盐细菌的选育及其脱硅效果研究[J].西安科技大学学报,2006,26(2):235-239.
    [70]魏以和,钟康年,王军.生物技术在矿物工程中的应用[J].国外金属矿选矿,1996,99:1.
    [71]陈华葵.微生物[M],1962,2(3).
    [72]孙德四,张贤珍,张强.硅酸盐细菌代谢产物对硅酸盐矿物的浸溶作用研究[J].矿冶工程,2006,26(3).
    [73]连宾,傅平秋.硅酸盐细菌解钾作用机理的综合效应[J].矿物学报,2002,2,179-183.
    [74] Finaley J,Appleman MD,Yen TF. Degradation of oil shale bysulfur-oxidizing bacteria[J].American Society for Microbiology,1974,28(3):460-464.
    [75] Meyer W Craig,Yen TF. Enhanced dissolution of oil shale by bioleaching withthiobacilli [J]. American Society for Microbiology,1976,32(4):610-616.
    [76] Vrvi a M M,Djordjevi a V,Savkovi O. Preparation of rich kerogenconcentrates: removal of pyrite with thiobacillus ferrooxidans[J].OrganicGeochemistry,1988,13(4-6):1109-1114.
    [77] Dragutinovi,Vrvi MM,Cvetkovi. Bacterial depyritization of oil shale bythiobacillus ferrooxidans:the effect of initial pH value [J]. OrganicGeochemistry,1997,62(4):343-348.
    [78] Cvetkovi O,Dragutinovi V,Vrvi M M. Evidence of stable kerogencomposition during bacterial depyritization of an oil shale[J].OrganicGeochemistry,1993,20(1):57-68.
    [79] Cvetkovi O,Vrvi M M,Dragutinovi V. Preparation of sedimentary organicmatter concentrates by microbiological methods[J]. Mikrobiologija,2006,43(1):41-54.
    [80] Be koski Vladimir P,Mili Jelena,Mandi Boris,et al. Removal oforganically bound sulfur from oil shale by iron(III)-ion generated–regeneratedfrom pyrite by the action of acidithiobacillus ferrooxidans-research on a modelsystem[J]. Hydrometallurgy,2008,94(1-4):8-13.
    [81] Vrvi MM,Mati V,Vu eti J. Demineralization of an oil shaleby Bacilluscirculans (―siliceous bacteria‖)[J].Organic Geochemistry,1990,16(4/5/6):1203-1209.
    [82] Cvetkovi O,Curiale JA,Dragutinovi V. Evidence of stability of sedimentaryorganic matter during bacterial desilicification of an oil shale [J]. OrganicGeochemistry,2001.66(2):95-99.
    [83]肖怀秋,李玉珍.微生物培养基优化方法研究进展[J].酿酒科技,2010,(01):90-94.
    [84]于辉,翟庆洲,杨辉.硅钼蓝分光光度法测定环境水样中的硅[J].兵工学报,2009,(09):1268-1270.
    [85]孙德四,陈福山,张强.硅酸盐细菌特性及对硅铝的活化与吸持研究[J].苏州科技学院学报(工程技术版),2005,18(4):28-31.
    [86]龙中儿,黄运红,蔡昭铃,等.耐低pH的氧化亚铁硫杆菌选育及其氧化硫酸亚铁的初步研究[J].过程工程学报,2002,2(5):415.
    [87]中华人民共和国石油化工行业标准. SH/T0508-92油页岩含油率测定方法(低温干馏)[S]//全国文献工作标准化技术委员会.
    [88]卓尚军. X射线荧光光谱分析[J].分析试验室,2009,(07):112-122.
    [89]谢家仪,董光军,刘振英.扫描电镜的微生物样品制备方法[J].电子显微学报,2005,24(4):440-440.
    [90]张荣科,范光.粘土矿物X射线衍射相定量分析方法与实验[J].铀矿地质,2003,3.
    [91]刘齐,刘爱红,孙美玲,等.嗜酸乳杆菌胞外多糖提取工艺优化[J].食品与发酵工业,2011,37(2):200-204.
    [92]王晓晖,张玉玲,刘娜,等.微波消解-ICP-MS测定土壤样品中的重金属离子[J].光谱实验室,2008,25(6):1183-1187.
    [93]邱正松,丁锐.泥页岩比表面积测定方法研究[J].钻井液与完井液,1999,16(1):9-11.
    [94]陆婉珍.现代近红外光谱分析技术[M].中国石化出版社,2007.
    [95]苗真勇,吴国光,孟献梁,等.大庆油页岩热解特性及动力学研究[J].煤炭转化,2011,34(001):70-73.
    [96]管红霞,蔡青松,蒋生祥,等.大庆原油中石油羧酸组成的GC-MS分析[J].分析测试技术与仪器,2002,8(1):34-39.
    [97] SHENG Xia-fang,HE Lin-yan and HUANG Wei-yi The Conditions of ReleasingPotassium by a Silicate-dissolving Bacterial Strain NBT[J]. Agricultural Sciencesin China,2002,(06):71-75.
    [98] DAI Qunwei,DONG Faqin,DENG Jianjun. Effect of Mineral Dusts on theGrowth of Silicate Bacteria S35[J]. Acta Geologica Sinica(English Edition),2008,(05):1045-1049.
    [99]MO Binbin,LIAN Bin,Interactions between Bacillus mucilaginosus andsilicate minerals (weathered adamellite and feldspar): Weathering rate,products,and reaction mechanisms [J]. Chinese Journal of Geochemistry,2011,30(2):187-192.
    [100] Wuxing Liu,Xushi Xu,Xianghua Wu,et.al,2006. Decomposition ofsilicate minerals by Bacillus mucilaginosus in liquid culture [J]. EnvironmentalGeochemistry and Health,28,133-140.
    [101]刘五星,徐旭士,杨启银,等.胶质芽孢杆菌对土壤矿物的分解作用及机理研究[J].土壤(Soils),2004,36(5):547-550.
    [102]谢芳芳,王泽,宋文立,等.吉林桦甸油页岩及热解产物的红外光谱分析[J].光谱学与光谱分析,2011,31(001):91-94.
    [103]孟庆涛,刘招君,柳蓉,等.松辽盆地农安地区上白垩统油页岩含油率影响因素[J].吉林大学学报:地球科学版,2006,36(6):963-968.
    [104] Fischer S G,Lerman L S. Length-independent separation of DNA restrictionfragments in two-dimensional gel electrophoresis[J]. Cell,1979,16(1):191-200.
    [105] Ferris M J,Muyzer G,Ward D M. Denaturing gradient gel electrophoresisprofiles of16S rRNA-defined populations inhabiting a hot spring microbial matcommunity[J]. Applied and Environmental Microbiology,1996,62(2):340-346.
    [106]张洪霞,谭周进,张祺玲,等.土壤微生物多样性研究的DGGE/TGGE技术进展[J].核农学报,2009,(04):721-727.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700