用户名: 密码: 验证码:
SBR法生物强化处理低温低C/N比污水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水污染问题日益受到人们的关注,水体富营养化日趋恶化,造成富营养化的主要原因是N、P的大量排放,传统的污水二级生物处理技术,对于TN的去除率仅为30%左右,污水中的氮多以NO3--N的形式排放到受钠水体,对生态环境和人类健康危害严重。目前,国内外对好氧反硝化的研究主要是利用嗜温微生物进行脱氮,而对于低温低碳氮比好氧反硝化的研究鲜有报道。
     本文研究了低温低碳氮比好氧反硝化污泥的驯化,不同影响因素对COD去除率及氮素转化的影响,氨氮降解动力学研究,并从驯化污泥中选育出5株能在10℃、C/N比为4的条件下生长较快的好氧反硝化细菌,同时选择改性膨润土作为固定化载体,使混合功能菌与载体固定化,并进行实验室内模拟生活污水的处理。结果表明,经过驯化的活性污泥对低温、低C/N比污水有一定的好氧反硝化作用,但也存在着较高的硝酸盐的累积,氨氮降解符合Monod一级反应动力学方程;从污泥中分离出的5菌株均具有较强的好氧反硝化能力,5菌株隶属于不动杆菌属和假单孢菌属;驯化活性污泥分别与混合菌剂和固定化载体处理模拟生活污水,固定化载体对低温、低碳氮比污水总氮的去除率有着稳定的处理效果。
With the change in die structure, component of urban sewage have extremely changed, such as increased nitrogen content and low C/N ratio. When using traditional nitrification and denitrification technology to treat urban sewage with low C/N ratio, nitrogen in form of nitrates in outlet water exceeded emission standard seriously as a result of carbon insufficience and low denitrification efficiency. Plankton in water grows greatly; the dissolved oxygen concentration reduced; the water quality became worse and the water ecological equilibrium was destroyed. In cold area in China, most of a year is at low temperature; the ice period are in the range of 3 to 6 months; water temperature of draining is generally about 10℃. Temperature change will affect absorption characteristic of the active sludge, settling property, microorganism growth and so on, thus influences biological cleaning process. In factors above, temperature is the key factor. According to water quality condition of urban sewage in cold winter, this thesis explores and studies how enhances nitrogen elimination rate in sewage with low temperature and low C/N ratio at low price, which has become current urgent research task in China. Comparing with normal temperature sewage treatment, it is complex and particular.
     Since the mid-1980s, at home and abroad, many research and the reports have fully certificated the existence of aerobic denitrifying bacteria. It has been report that some aerobic denitrifying bacteria under the different environment (for example soil, drainage ditch, pond, active sludge, deposit and so on) have been isolated. But these research mainly is at the normal temperature with warm-temperature microorganism, simultaneously must provide the enough carbon source, but research of sewage with low C/N by using low temperature and aerobic denitrifying bacteria rarely have the report. The metabolic activity of warm-temperature microorganism was suppressed at the low temperature seriously, but mechanism of low-temperature microorganism enables them to have the good growth and metabolism at the low temperature. Therefore, screening low temperature and low C/N aerobic denitrifying bacteria to sewage treatment will be more effective and has the practical significance.
     This thesis determines best operational factors through training active sludge to satisfy the condition of organic pollutant degeneration at the low temperature and low C/N ratio; Separating aerobic denitrifying bacteria at low temperature and low C/N ratio to perfect the influence of temperature on nitrogen removal; Using the fossilization technology to enhance activeness and quantity of aerobic denitrifying bacteria in reactor and solve denitrification efficiency problem of urban sewage with low C/N ratio in the winter of North China economically.
     The conclusions based on the above system research above are as flowing:
     (1) After one month acclimation of active sludge with low C/N ratio and at low temperature, which was collected from sewage treatment plant and initial control temperature was about at 10℃and C/N ratio was 8, removal rate of COD and NH4+-N were over 95% during 40 days when the sludge density reached 3500mg/L and C/N ratio was 4. Indicator organisms of the sludge were primarily firm-infusorium and the color of sludge changed from dark black, dispersed condition to light, flocculation condition, which showed that the microorganisms of sludge were adapted to the sewage basically and active sludge acclimation ended.
     (2) The research on influencing factors of removal rate of sewage showed that the removal rate of COD and NH4+-N were both up to over 90%, When MLSS was from 3000 to 4000mg/L, C/N ratio were from 4 to 6, inlet-water temperature was 10℃, pH values were from 7 to 8, DO density was more than 4mg/L, time was 7h and the time of running under conditions of continuous aeration running time was 30d. During the process, nitrite concentration is no more than 1.2mg/L, the removal rate of total nitrogen were from 45% to 64%. The orthogonal experiment with four factors and three levels showed that main factors influencing sewage elimination's rate --- MLSS, pH, DO, C/N was basically consistent with single factor.
     (3) The dynamics research of ammonia-nitrogen degradation indicated that the degradation dynamics fitted to Monod first-level reaction kinetics equation and correlation coefficients were -0.9548~-0.9856, - 0.9433~-0.9849, - 0.9548~-0.9856, - 0.9548~-0.9856 (at significant level) under conditions of different MLSS, load rate, pH and C/N.
     (4)In order to enhance TN removal rate of the sewage with low C/N ratio at low temperature and put forward low-temperature strategy. 5 strains of aerobic denitrifying bacteria with strong denitrification ability, which can grow at low temperature of 10℃and C/N was 4, were chosen from trained active sludge, named as HFX000, HFX01, HFX08, HFX12, HFX13 respectively. By evaluating sole strain's 16S rDNA squence, HFX00, HFX01, HF12, HFX13 strains belong to Acinetobacter, HFX08 strain subordinates in Pseudomonas, literature in related country and abroad did not report that there has been strain with the ability to aerobic denitrifying belonging to Acinetobacter.
     (5) Under the pure culturing condition, the growth of strains have experienced slow-growth phase, logarithmic phase, stabilization phase. The five strains' growth curve conformed to the shape of“S”and correlation coefficient reached at extremely remarkable level. The denitrification speed of the strain is the biggest when sodium acetate as the electron acceptor, KNO3 as the most suitable nitrogen source. pH value has big influence on bacterial growth, the biggest denitrification ability of strain HFX00, HFX01, HFX08, the HFX12 was found when the pH values were between 7 and 8. The pH scope was wider for strain HFX13 and the strain grew well when pH values varied from4 to 10. But when the PH value was 4, its highest denitrification rate was 94.8%, next is the pH value of 10, 7 and 8. The aerobic denitrification ability was strong when DO was 3.5mg/L. The denitrification speed increased when the temperature was bigger than 10℃, but it decreased when temperature was over 20℃, so this strain conforms to temperature growth scope of the low-temperature bacteria.
     When pH values were from 7 to 8, the added ratio was 5%, the sodium acetate was the carbon source, the potassium nitrate was the nitrogen source, C/N was 4, DO was more than 3.5mg/L, the temperature was 10℃, nitrogen removal rate of 5 strains increased from 85.92% (in theory) to 91.81%, the efficiency enhanced by 6.9%.
     (6)The research of the carrier adsorption dynamics has determined the pickling zeolite and the acid-modified bentonite as the microorganism carrier, the adsorption amount was 93.69mg/g and 95.49mg/g respectively and the stimulated equation conformed to the second-level reaction kinetics and correlation coefficient of the four kinds of carriers was from 0.9522 to 0.9891, which was at extremely remarkable level.
     By union fixing between the acid-modified bentonite and the mix strain, as well as adopting orthogonal test, it was determined that the most suitable content of fixing embedding dosage of ball was PVA8%, seaweed acid sodium 1%, bentonite 3%, CaCl2 is 2%; the temperature was 15℃, time was 30h, bacterial content was 50%; choosing 15% most suitable content above of reaction volume into a reactor with the active sludge, a perfect system of aerobic denitrification and nitrogen removal was formed by using aerobic denitrification and denitrification function of fixed ball as well as digestion function of active sludge, it may not only use aerobic denitrification of strain in fixed ball fully, but also overcome outflow of strain; The elimination rate of total nitrogen of sewage may stabilize above 80% in such condition.
引文
[1]高廷耀,顾国维,周琪主编.水污染控制工程[M].北京:高等教育出版社,2007.
    [2] 2007年环境状况公报,中华人民共和国环境保保部,2008.
    [3]尹军,王雪峰,王建辉,等.低温对污水生物处理过程的影响及改进措施[J].吉林建筑工程学院学报,2007,24(2):29-33.
    [4]任南琪,马放,杨基先,等.污染控制微生物学[M].哈尔滨:哈尔滨工业大学出版社,2007.
    [5] Oleszkiewicz J. , Berquig S. Low Temperature Nitrogen Remoal in Sequencing Batch Reactors[J]. War. Res, 1988, 22(9):1163-1171.
    [6] Knooq S ,Kunst S . Influence of Temperature and Sludge Loading on Activatcd Sludge Settling, Especiallyon Microthrix Parvicella[J]. Wat Sci, Tech , 1998, 37(4-5):27-35.
    [7]江建权,杨殿海,周琪.低温低浓度下城市污水活性污泥自然培养和驯化[J].苏州科技学院学报(工程技术版),2005,21(1):1-4.
    [8]周彦.自生生物动态膜反应器处理高氨氮、低碳氮比污水的研究[D].武汉:华中科技大学,2006.
    [9]邱兆富,周琪,杨殿海,等.低碳氮比城市污水短程生物脱氮试验研究[J].工业水处理,2006,26(11):35-38.
    [10]高景峰,彭永臻,王淑莹.有机碳源对低碳氮比生活污水好氧脱氮的影响[J].安全与环境科学,2005,5(6):11-15.
    [11]贲岳,陈忠林,徐贞贞,等.低温生活污水处理系统中耐冷菌的筛选及动力学研究[J].环境科学,2008,29(11):3189-3191.
    [12]候世全,水春雨,程学友.生物法处理低温生活污水试验研究[J].铁道劳动安全卫生与环保,2005,32(5):209-211.
    [13]孟雪征,曹相生,姜安玺,等.利用耐冷菌处理低温污水的研究[J].山东建筑工程学院学报,2001,16(2):53-57.
    [14]张自杰,戴爱临.国内城市污水低温生物处理试验[J].环境工程,1984,(3):19-22.
    [15]桑军强,王占生.低温条件下生物陶粒反应器运行特性研究[J].环境科学,2003,24(2):112-115.
    [16]吴成强,杨金翠,杨敏,等.运行温度对活性污泥特性的影响[J].中国给水排水,2003,19(9):5-7.
    [17] Liao B Q, Allen D G, Droppo I G, et al. Surface property of sludge and their role in bioflocculation and settleability[J]. Wat Res, 2001, 35(2):339-350.
    [18]白晓慧,王宝贞.寒冷地区城市污水处理厂改进工艺的运行效果[J].中国环境科学,2001,21(2):70-73.
    [19]罗固源,季铁军,豆俊峰. SUFR系统在低温影响下处理效果的试验分析[J].环境科学学报,2005,25(4):512-518.
    [20]曹积宏,马放,赵立军.二段法工艺在低温市政污水厂的工程应用[J].哈尔滨商业大学学报,2005,231(2):157-161.
    [21] Head M. A. , Oleszkiewicz a J. A. Bioaugmentation for Nitrification at Cold Temperatures[J]. Wat. Res, 2004, 38(3): 520-523.
    [22] Euiso Choi, Daewhan Rhu, Zuwhan Yun, etal. Temperature effects on biological nutrient removal system with weak municipal wastewater[J]. Wat Sci Tech, 1998,37(9): 219-226.
    [23]范振兴,王建龙.低温对固体碳源填充床反硝化的影响[J].清华大学学报(自然科学版),2008,48(3):436-439.
    [24] Welander U, Mattiasson B. Denitrification at low temperatures using a suspended carrier biofilm precess[J]. Water Research, 2003, 37:2394-2398.
    [25]张秀红,周集体,郭海燕,等.一体化A/O生物膜反应器低温硝化研究[J].环境科学,2007,28(1):142-146.
    [26]金春姬,佘宗莲,高京淑,等.低C/N比污水生物脱氮所需外加碳源量的确定[J].环境科学研究,2003,16(5):37-40.
    [27]张华.高负荷氧化沟处理城市污水效果分析[J].湖南大学学报(自然科学版),1998,25(5):115-118.
    [28]周克钊.生物/化学(BC)法处理城市污水研究[J].中国给水排水,2000,16(10):15-17.
    [29]杨鲁豫,王琳,王宝贞.我国水资源污染治理的技术策略[J].给水排水,2001,27(1):94-101.
    [30]张永波,刘奕玲,李白红.南方某城市污水处理厂工艺优化[J].给水排水,2006,32(1):110-111.
    [31]李军,江定国,宁玮华,等.炭载体MBR处理低碳、氮比生活污水效能分析[J].北京工业大学学报,2006,32(11):1022-1027.
    [32]李军,张宁,杨海燕,等.耦合生物反应器处理低碳氮比污水特性研究[J].现代化工,2005,25(12):32-36.
    [33]裘湛,张之源.高速厌氧反应器处理城市污水的现状与发展[J].合肥工业大学学报(自然科学版),2002,25(1):117-122.
    [34]季明,霍金胜.厌氧颗粒污泥床EGSB的工艺特征与运行性能[J].工业用水与废水,1999,30(4):1-4.
    [35]罗湘南,季民,杨景亮,等. UASB反应器处理低温低浓度生活污水试验研究[J].中山大学学报(自然科学版),2007,46(6):8-10.
    [36]曹国驱,许玫英,梁燕珍,等.亚硝化细菌的分离和特性的研究[J].生物技术,2005,15(1):27-28.
    [37]李云婷.脱氮技术的发展[J],北京节能,1999(6):40-41.
    [38]梁艳,汪苹.废水脱氮处理方法研究[J].北京轻工业学院学院,2001,19:26-28.
    [39]孙锦宜.含氮废水处理技术与应用[M].北京:化学工业出版社,2003.
    [40] Roberta Salvetti, Arianna Azzellino, Roberto Canziani, et al. Effects of temperature on tertiary nitrification in moving-bed biofilm reactors[J]. Water Research, 2006, 40(15): 2981-2993.
    [41]顾夏声.废水生物处理模式(第2版)[M].北京:清华大学出版社,1993.
    [42] Leslie Grady C. P, Daigger Glen T, HenreC.废水生物处理[M].北京:化学工业出版社,1998.
    [43] Castignetii D, Hollocher T C. Heterotrophic nitrification among denitrifiers. Applied and Environmental[J]. Microbiology, 1984, 47(4):620-623.
    [44] Kuenen J G, Robertson L A. Combined nitrification denitrification process[J]. FEMS. Microbial Rev. 1994, 15(2): 109-117.
    [45] Jetten S M, Strous M. The anaerobic oxidation of ammonium[J]. FEMS Microbiolgy Reviews, 1998, 22(5):421-437.
    [46] Gupta SK Raja S M. Simultaneous nitrification denitrification in a rotating biological contactor[J]. Envir, Tech. 1994, 15(3)145-153.
    [47] Yoo H Ahn K H. Nitrogen removal from synthetic wastewater by Simultaneous nitrification and denitrification (SND) via nitrate in an intermittentiy-aerated reactor[J]. Water Res. 1999,33(1):145-154.
    [48]孟怡,徐亚同.制药废水硝化反硝化除氮研究[J].化工环保,1999,19(4):204-207.
    [49] Zhou Shao qi Fang Hanping. Simultaneous nitrate-fixation and denitrification of high ammonia organic wastewaters treatment[J]. Asia Industrial Technology Congress, 1999(4):3-3.
    [50] Beun J J, Van Loosdrecht M C M, Heijnen J J. Aerobic granulation[J]. Water Science and Technology, 2000, 41(4):41-48.
    [51]赵玲,张之源.复合SBR系统中同步硝化反硝化现象及其脱氮效果[J].工业用水与废水,2002,33(2):4-6.
    [52] Byong-Hee Jun, Mari Yanagida, Yasunori Tanji et al. Effect of C/N values on microbial simultaneous removal of carbonaceous and nitrogenous substances in wastewater by single continuous-flow fluidized-bed bioreactor containing porous carrier particles[J]. Biochemical Engineering Joumal, 2000, 5:29-37.
    [53]周少奇,方汉平.低COD/N-NH4比废水的同时硝化反硝化生物处理策略[J].环境污染与防治,2000,22(1):18-21.
    [54] Collivignarelli C, Bertanza G. Simultaneous nitrification and denitrification processes in activated sludge plants: performance and applicability[J]. Water Science and Technology, 1999, 33(4):961-970.
    [55] Bertanza G. Simultaneous nitrification and denitrification process in extended aeration plants:pilot and real scaoe experiences[J]. Water Science and Technology, 1997, 35(6):53-61.
    [56] Surmacz-Gorsda J, Cichon A, Midsch K. Nitrogen removal from wastewater with high ammonia nitrogen concentration via shorter nitrification and denitrification[J]. Water Science and Technology, 1997, 36(10):73-78.
    [57] Hanaki K, Wantawin C, Ohgaki S. Nitrification at low levels of dissolved oxygen with and without organic loading in a suspended-growth reactor[J]. Water Research, 1990, 24(3):297-302.
    [58]王志盈,袁林江,彭党聪,等.内循环生物流化床硝化过程的选择特性研究[J].中国给水排水,2000,16(4):29-31.
    [59]唐光临,孙国新,徐楚韶.亚硝化反硝化生物脱氮[J].工业水处理,2001,21(11):11-13.
    [60]孙英杰,张隽超,胡跃城.亚硝酸型硝化的控制途径[J].中国给水排水,2002,18(6):29-31.
    [61]郭海燕.曝气动力循环一体化同进硝化反硝化生物膜反应器及其特性研究[D].大连:大连理工大学,2005.
    [62]王建龙.生物固定化技术与水污染控制[M].北京:科学技术出版社,2002.
    [63]黄霞,刘建广.固定化细胞处理难降解有机废水[J].城市环境与城市生态,1993,6(3):1-4.
    [64]徐雪芹,李小明,杨麒,等.固定化微生物技术及其在重金属废水处理中的应用[J].环境污染治理技术与设备,2006,7(7):99-105.
    [65]王广全,褚良银,杨平,等.固定化微生物技术及其在废水处理中的应用[J].重庆环境科学,2003,25(12):171-174.
    [66]沈耀良.固定化微生物技术及其在废水处理中的应用[J].污染防治技术,1995,8(1):12-18.
    [67]吴军见,朱延美,王栋,等.固定化细胞技术在废水治理中的应用及降解动力学研究进展[J].辽宁化工,2002,31(1):20-25.
    [68]徐向阳.固定化细胞技术在废水处理中的应用[J].中国给水排水,1992,8(2)39-43.
    [69]王新,李培军,巩宗强,等.固定化细胞技术的研究与进展[J].农业环境保护,2001,20(2):120-122.
    [70] Ansclmo A M. Degradation of phenol by immobilized mycelium of Fusarium flocciferum in continuous culture[J]. Water Science and Technology,1992,25(1):161-168.
    [71]田建民.生物吸附法在含重金属废水处理中的应用[J].太原理工大学学报,2000,31(1):74-78.
    [72] O Reilly KT,Degradation of pentachlorophcnol by polyurcthanc-immobilizcd Flavobacterium cell[J]. Apppl Environ Microbiol, 1989, 55: 2113-2118.
    [73]蒋宇红,黄霞,俞毓馨.几种固定化细胞载体的比较[J].环境科学,1993,14(2):11-15.
    [74]吴晓磊,刘建广,黄霞,等.海藻酸钠和聚乙烯醇作为固定化微生物包埋剂的研究[J].环境科学,1993,14(2):28-31.
    [75]黄霞,俞毓敏,王蕾.固定化细胞技术在废水处理中的应用[J].环境科学,1993,14(1):41-48.
    [76]王孔星,谢裕敏,张秀文,等.用无机载体固定脱色混合菌处理印染废水的模拟试验[J].环境科学与技术,1989,(4):26-29.
    [77]李慧蓉,谭晓莲,凌瑞锋.黄孢原毛平革菌细胞固定化技术的比较研究[J],环境科学研究,2001,14 (1):41-44.
    [78]闵航,郑耀通.聚乙烯醇包埋厌氧活性污泥处理废水的最优化条件研究[J].环境科学,1994,15(5):10-14.
    [79] Don R. Durham , Leda C. Marshall et al. Characterization of inorganic biocarriers that moderate system upsets during fixed-film biotreatment processes[J]. Appl . Environ. Microbiol . , 1994 , 60 :3329 -3335.
    [80] Keith E. Stormo , Ronald L. Crawford. Preparation of encapsulated microbial cell for environmental application [J]. Appl. Environ. Microbiol , 1992 , 58 :727-730.
    [81]韩静淑.生物细胞的固定化技术及应用[M].北京:科学出版社,2000.
    [82]王里奥,崔志强,钱宗琴,等.微生物固定化的发展及在废水处理中的应用[J].重庆大学学报,2004,27(3):125-129.
    [83] Lozihsky V I , Plieva F M. Poly(vinyl alcoho1) cryogels employed as matrices for cell immobilization. 3. Overview of recent research and developments[J]. Enzyme and MicrobiaI Technology, 1998 , 23(3) :227– 242.
    [84] Chih Cheng Chang , Szu Kung Tseng. Immobilization of Alcaligenes eutrophus using PVA cross - linked with sodium nitrate [J] . Biotechnology Techniques , 1998 , 12(12) :865– 868.
    [85] Uemoto H, Saiki H. Nitrogen removal by tubular gel containing nitrosomonas europaea and paracoccus denitrificans [J]. Appllied and Environmental Microbiology, 1996, 62(11):4224-4228.
    [86]曹国民,赵庆样.新型固定化细胞膜反应器脱氮研究[J].环境科学学报,2001,21(2):189-193.
    [87]张彤,曹国民,赵庆样,等.固定化微生物脱氮技术进展[J].城市环境与城市生态,2000,13(2):17-19.
    [88]安立超,孙静,薛涛,等.混合固定细菌单级生物脱氮技术[J].污染防治技术,2003,16(3):5-8.
    [89]朱鸣,张达崴,徐亚同.硝化细菌包埋固定化及其在废水处理中的应用(上)[J].上海化工,2001,15:4-7
    [90]王璐,迟莉娜,乔向利,等.固定化包埋处理微污染源水的研究[J].中国给水排水,2008,24(3):56-59
    [91]杨麟,李小明.固定化微生物技术及其在生物脱氮中的应用[J].江苏环境科技,2002,15(1):19-21.
    [92]郑平.环境微生物学[M].浙江:浙江大学出版社,2003.
    [93] Bernet N. , Bizeau C. , Moletta R. et al. Study of physicochemical factors controlling nitrite build-up during heterotrophic denitrification[J]. Environ. Tech. , 1995, 16:165-179.
    [94] Robertson L. A. , Van Niel E. W. J. , Torremans R. A. M. et al. Simultaneous nitrification and denitrification in aerobic chemostat cultures of Thiosphaera pantotropha. App[J]. Envir. Microbiol. , 1988, 54(11):2812-2818.
    [95] Ding A Z, Fu M, Sheng G Y. Evidence of aerobic denitrification[J]. Chin Scie Bull,2000, 45(3):2779-2785.
    [96] Krul J. M. Dissimilatory nitrate and nitrite reduction under aerobic conditions by anaerobically and anaerobically grown Alcaligenes sp. and by activated sludge[J]. Appl. Bacteriol. 1976, 40:245-260.
    [97] Meiberg J. B. M. , Bruinenberg P. M. and Harder W. Effect of dissolved oxygen tension on the metabolism of methylated amines in Hyphomiccrobium X in the absence and presence of nitrate:evidence for“aerobic denitrification”[J]. Gen. Microbiol, 1980, 120:453-463.
    [98]赵宗升,李炳伟,刘鸿亮.高氨氮渗滤液处理的好氧反硝化工艺研究[J].中国环境科学,2002,22(5):412-415.
    [99]罗固源,杨红薇. NBIAS系统中的好氧反硝化[J].重庆环境科学,2001,23(1):43-45,49.
    [100]谢曙光,张晓建,王占生.地表水处理中的好氧反硝化[J].中国给水排水,2002,18(3):7-9.
    [101] Scholten E , Lukow T , Auling G, et al . Thauera mechernichensis sp nov :an aerobic denitrifier from a leachate treatment plant [J]. Int J Syst Bacteriol , 1999 , 49 :1045– 1051.
    [102] Huang HK, Tseng SK. Nitrate reduction by citrobacter diversus under aerobic environment [J] . Appl Microbiol Biotechnol , 2001 , 55(1) :90– 94.
    [103] Gupta AB , Gupta SK. Simultaneous carbon and nitrogen removal from highstrength domestic wastewater inan aerobic RBC biofilm[J] . Water Research , 2001 , 35 (21) :1714– 1722.
    [104] P. Bonin, Gilewiz, M cent, Oceanol Marseille, Fac. Sci. Luminy;Marseille, Fr. Adirect demonstration of“co-respiration”of oxygen and nitrogen oxides byPseudomonas nautical:some spectral and kinetic properties of the respiratory components[J]. FEMS Microbiology Letters. 1991, 80(2-3):183-18.
    [105] Patureau D, Davison J, Bernet N, Moletta R. Denitrification under various aeration conditions in Comamonas sp. , strain SGLY[J]. FEMS Microbiology Ecology, 1994, 14(1):71~78.
    [106]周丹丹,马放,王弘宇,等.关于好氧反硝化菌筛选方法的研究[J].微生物学报,2004,44(6):837-839.
    [107]马放,王弘宇,周丹丹.活性污泥体系中好氧反硝化菌的选择与富集[J].湖南科技大学学报(自然科学版),2005,20(2):80-83.
    [108]马放,王弘宇,周丹丹,等.好氧反硝化菌株X31的反硝化特性[J].华南理工大学学报(自然科学版),2005,33(7):42-46.
    [109]李慧颖,黄少斌,范利荣.一株好氧反硝化菌的反硝化性能研究[J].环境科学与技术,2009,32(8):9-12.
    [110]廖小红、汪苹、刁慧芳,等.蜡状芽孢杆菌WXZ-8的异养硝化/好氧反硝化性能研究[J].环境污染与防治,2009,31(7):17-24.
    [111]陈松,洪秀娟,黄雷鸣,等.好氧反硝化细菌N6-1亚硝酸盐氮还原活性的研究[J].微生物学通报,2008,35(7):1007-1010.
    [112]李秀婷,高明阳,吕跃钢,等.好氧反硝化细菌的筛选及其反硝化特性的研究[J].食品科技,2009,34(1):7-9.
    [113]朱月琪,卫晋波,曾国驱,等.一株好氧反硝化菌的分离及特性研究[J].微生物学通报,2009,36(4):616-619.
    [114]何伟,王薇,王洁等.一株好氧反硝化菌的分离鉴定及其混合应用特性研究[J].生态与农村环境学报,2009,25(2):88-93.
    [115]关卫省,刘珊,张立柱. SBR法动力学研究及其工程应用[J].西安交通大学大学学报,1996,9(4):394-398.
    [116]国家环保总局.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社.
    [117]丁原红,任洪强,杨小毛序批式反应器中高强度氨氮降解的反应动力学[J].现代化工,2006,26(2)127-129.
    [118]马秀兰,张凤君,周兰影,等.不同MLSS对低温低碳氮比污水处理效果的影响[J].吉林农业大学学报,2009,31(6):733-737.
    [119]马秀兰,张凤君,田珍,等.低碳氮比污水氨氮降解动力学的研究[J],安徽农业科学,2009,37(26):12684-12685,12688.
    [120] Edz-polanco F. , Mendez E. , Uruena M. A. , et al. Spatial Distrbution of Hetertrophsand Nitrifiers in a Submerged Biofilter for Nitrification[J]. WaterResearch. 2000,34(16):4081-4089.
    [121] Mann A. T. Modeling Biological Aerated Filters for Wastewater Treatment[J]. Wat. Tes. 1997,31(10):2443-2448.
    [122]顾夏声.废水生物处理数学模型[M].北京:清华大学出版社,2002.
    [123]东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京科学出版社,2001.
    [124]黄运红,冯香玲,龙中儿,等.好氧反硝化有效微生物群的筛选及特性研究[J].安徽农业科学,2007,35(36):11977-11979.
    [125]王弘宇,马放,苏俊峰,等.不同碳源和碳氮比对一株好氧反硝化细菌脱氮性能的影响[J].环境科学学报,2007,27(6):968-972.
    [126]郑兴灿,李亚新.污水除磷脱氮技术[M].北京:中国建筑工业出版社,1998
    [127] J. E. Alleman. Elevated Nitrite Occurrence in Biological Wastewater Treatment Systems, Water[J]. Sci,Tech. 2000:17.
    [128] Balmelle B. et al. Study of Factors Controlling Nitrite Build–up in Biological Processes for Water Nitrification[J]. Wat. Sci. Tech. 2002,26(5):260-271.
    [129] Dyreborg S. and Arvin E. Inhibition of nitrification by creosote contaminated water[J]. Wat. Res,2005,29:1603-1606.
    [130] Groeneweg J. B. and Tappe W. Ammonia oxidation in nitrosomonas at NH3 concentrations near Km:effects of pH and temperature[J]. Wat. Res,1994,28(28):2561-2566.
    [131] Her J J, Huang J. S. Influences of carbon source and C/N Ratio on nitrate/nitrate denitrification and carbon breadthrough[J]. Bioresource Technology,1995(54):45-51.
    [132] Shammas N. K. Interactions of temperature, pH and biomass on the nitrification process[J]. JWPCF. 1986(58):52-59.
    [133] Fdz-polanco F. et al. Temperature effect on nitrifying bacteria activity in biofilters:activation and free ammonia inhibition[J]. Wat. Sci. Tech. 2003,30(11):121-130.
    [134] U. Abeling. Anaerobic-Aerobic Treatment of High-Strength AmmoniumWastewater-Nitrogen Removal Via Nitrite[J]. Wat,Sci,Tech. 2002,26(5):16-21.
    [135]韩晓云.低温生物膜及其微生物特性的研究[D].哈尔滨:哈尔滨工业大学,2007.
    [136] Cervantes F, MonroyO, Gomez J. Influence of ammonium on the performance of a denitrifying culture under heterotrophic conditions[J]. Appl Biochem Biotechnol, 1999,81:13-21.
    [137] Wilson L P. Biodegradation of aromatic compounds under mixed oxygen/ denitrifying conditions:areview[J]. J lnd Microbiol Biotechnol, 1997, 18:116-130.
    [138]栾文楼,李明路.膨润土的开发应用[M].北京:地质大学出版社,1998.
    [139]孙传庆,武占省,李春,等不同酸化剂对乌兰格林膨润土活化效果的影响[J].化工矿物与加工,2007,2:19-25.
    [140] Strawn, D. G. , Schidegger, A. M. , Sparks, D. L. Kinetics and mechanisms of Pb(II) sorption and desorption at the aluminum oxide–water interface[J]. Environ. Sci. Technol. 1998:32,2596-2601.
    [141] Strawn, D. G. , Sparks, D. L. Effects of soil organic matter on the kinetics and mechanisms of Pb(II) sorption and desorption in soil[J]. Soil Sci. Soc. Am. J. 2000:64,144-156.
    [142]朱路,张宗阳,张仲鼎,等.天然沸石吸附甲基橙的准二级动力学[J].郑州大学学报(理学版),2008,40(1):97-100。
    [143]邹学权,万先凯.活性炭对2, 4-二氯苯酚的吸附动力学特性[J].浙江大学学报,2009,36(4):457-462。
    [144] Haigler B E, Nishino S F, Spain J C. Degradation of 1,2-dichlorobenzene by a Pseudomonas sp. [J]. Appl Environ Microbiol,1988,54:294-301.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700