用户名: 密码: 验证码:
新型聚乙烯醇载体的设计、制备及其固定化污水处理系统的构筑研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本学位论文综述了聚乙烯醇(PVA)材料作为固定化载体用于水处理的研究进展,并对目前研究现状与存在的问题进行了评述,提出了本学位论文的选题指导思想。
     应用反相悬浮交联法将纳米Fe0固定在PVA微球上,通过是否加入分散剂这一条件制备了两种不同尺寸的Fe0/PVA微球。Fe0/PVA微球降解硝基苯模拟废水遵循准一级反应动力学。其标准化表面速率(kSA)值,L-Fe0/PVA微球为0.162L h-1 m-2,S-Fe0/PVA微球为0.098 L h-1 m-2,未固定的纳米Fe0粒子为0.023 L h-1m-2。同时,通过用GC-MS分析反应产物,提出了Fe0/PVA微球还原降解硝基苯的可能途径。L-Fe0/PVA微球中铁离子的回收率为81.17%,S-Fe0/PVA微球铁离子的回收率为60.31%。
     使用不同浓度的环氧氯丙烷对PVA泡沫载体进行交联,应用载体的溶胀性测定其链间平均分子量,交联密度和链间距离。研究了不同交联浓度的PVA泡沫载体的热性能,比表面积和渗透系数。载体固定生物量和活性产率分别通过测定蛋白质浓度和溶解氧消耗速率求得。TG和DSC分析表明,随着交联度增加,载体的热稳定性增加,结晶度减少。载体固定生物量随交联密度的增大而增大,最高固定生物量为0.0638±0.0093 g VSS g-1载体。然而,生物活性回收率却随着交联密度的增大而减小,最高值为69.38%。
     通过交联聚乙烯醇泡沫(CPVAF)载体与传统的聚乙烯醇(TPVA)固定化微生物载体的比较可知,CPVAF有更好的化学和热稳定性,更大的比表面积和渗透系数。两种载体固定化硝化细菌的实验表明:CPVAF载体固定的生物量较TPVA载体更大且生物活性更高。在固定生物量相同的条件下,CPVAF载体固定化硝化菌的硝化速率更高,这是由于基质和氧气在载体和溶液间具有更加优异的传质能力所致。
     通过向载体中加入致孔剂(碳酸钙)改进的传统聚乙烯醇-硼酸法,制备大孔PVA球状载体(MPC),并与戊二醛交联,研究不同交联度载体的孔体积,孔结构,孔隙率和持水倍率。根据载体的溶胀性,应用Flory方程计算载体的交联度。MPC载体显示出较高的溶胀性,比表面积,渗透系数,以及化学和机械强度。高交联度载体固定的生物量较高但活性低,反之亦然。MPC载体的优良特性使得其在微生物固定化领域具有巨大的应用潜力。同时,本论文提供了一个固定化载体设计和优化的科学方法。
The preparations of poly(vinyl alcohol) (PVA) carrier for microorganism immobilization and their improved methods are introduced. The processes on immobilized microorganism by PVA carrier for wastewater treatment is reviewed. The research orientation of PVA carrier preparation and development prospects in wastewater treatment are pointed out. Nanoscale Fe0 was immobilized in and on PVA microspheres by the inverse suspension crosslinked method. Two different sizes of Fe0/PVA microspheres were synthesized in the presence and absence of dispersant. The nitrobenzene (NB) reduction reactions followed pseudo-first-order kinetics. The normalized surface rate constants (kSA) values were determined to be 0.162 L h-1m-2 for L-Fe0/PVA microspheres,0.098 L h-1m-2 for S-Fe0/PVA microspheres, and 0.023 L h-1m-2 for nanoscale Fe0 particles. Furthermore, with the analysis of the products by GC-MS, possible reductive pathways of NB by Fe0/PVA microspheres were suggested. The recovery rates of iron in microspheres were determined to be 81.17% for large Fe0/PVA and 60.31% for small Fe0/PVA。
     Macroporous PVA foam using epichlorohydrin as crosslinking agent was investigated. The average molecular weight among crosslinks, crosslinking density, and mesh size was determined through the equilibrium swelling theory. The characterization of foams with different crosslinking ratios was also investigated by testing thermal properties, specific surface areas, and diffusion coefficients. The biomass densities and activity yields were measured by detecting protein concentration and oxygen uptake rate. TG and DSC tests showed an increase in thermal stability and a decrease in polymeric crystallinity with increasing crosslinking ratio. The biomass densities increase along with the increase in the crosslinking ratio,with the highest value shown at 0.0638±0.0093 g VSS g-1 carrier. However, the activity yields decrease with the increase in the crosslinking ratio, showing the highest value at 69.38%.
     The crosslinked PVA foam (CPVAF) carrier demonstrated better chemical and thermal stability, as well as larger specific surface area and diffusion coefficients than the traditional PVA (TPVA) carrier. Nitrifying bacteria were used to test the suitability of CPVAF and TPVA carriers for immobilized microorganisms. CPVAF carriers supported higher biomass density and microbial activity than TPVA carriers. At the same biomass density, the higher nitrification rate of CPVAF carriers was attributed to excellent mass transfer of the substrate (and oxygen) between the bulk solution and the immobilized microorganisms.
     The traditional PVA-boric acid method was modified using calcium carbonate as a pore-forming agent to form the macroporous structure and formulated macroporous carrier (MPC) post crosslinked with glutaraldehyde. The pore volumes, pore structure, porosity, and swelling behavior of MPCs were evaluated. The crosslinking density of MPCs with four different crosslinker dosages was calculated from their swelling properties using the modified Flory equation. MPCs demonstrated high swelling capacity, large specific surface area, high diffusion coefficient, as well as chemical and mechanical strength. The high crosslinking degree MPCs resulted in high biomass densities and low activity yield and vice versa. The characterizations of MPC suggest significant potential of its use for microbial immobilization and provide a scientific basis for immobilized carrier design and optimization.
引文
[1]段海霞,刘炯天,郎成明,王京城.国内硝基苯废水治理的研究进展,工业安全与环保.(2009),35(5):5-7.
    [2]蒲文晶,杨波,刑伟.含氮废水处理技术的研究现状,石油化工(2005),34:701-702.
    [3]B. D. Ratner, S. J. Bryant. Biomaterials:Where we have been and where we are going, Annual Review of Biomedical Engineering. (2004),6:41-75.
    [4]A. M. Mathur, S. K. Moorjani, A. B. Scranton. Methods for synthesis of hydrogel networks:A review, Journal of Macromolecular Science-Reviews in Macromolecular Chemistry and Physics. (1996), C36(2):405-430.
    [5]C. C. DeMerlis, D. R. Schoneker. Review of the oral toxicity of polyvinyl alcohol (PVA), Food and Chemical Toxicology. (2003),41(3):PII S0278-6915(02)00258-2.
    [6]K. C. S. Figueiredo, T. L. M. Alves, C. P. Borges. Poly(vinyl alcohol) Films Crosslinked by Glutaraldehyde Under Mild Conditions, Journal of Applied Polymer Science. (2009),111(6):3074-3080.
    [7]Y. Yu, Y. Y. Zhuang, Z. H. Wang. Adsorption of water-soluble dye onto functionalized resin, Journal of Colloid and Interface Science. (2001),242(2): 288-293.
    [8]B. M. De Borba, E. T. Urbansky. Performance of poly(vinyl alcohol) gel columns on the ion chromato graphic determination of perchlorate in fertilizers, Journal of Environmental Monitoring. (2002),4(1):149-155.
    [9]J. Z. Bandstra, R. Miehr, R. L. Johnson, P. G. Tratnyek. Reduction of 2,4,6-trinitrotoluene by iron metal:Kinetic controls on product distributions in batch experiments, Environmental Science & Technology. (2005),39(1): 230-238.
    [10]J. F. Devlin, J. Klausen, R. P. Schwarzenbach. Kinetics of nitroaromatic reduction on granular iron in recirculating batch experiments, Environmental Science & Technology. (1998),32(13):1941-1947.
    [11]Y. S. Keum, Q. X. Li. Reduction of nitroaromatic pesticides with zero-valent iron, Chemosphere. (2004),54(3):255-263.
    [12]J. Klausen, J. Ranke, R. P. Schwarzenbach. Influence of solution composition and column aging on the reduction of nitroaromatic compounds by zero-valent iron, Chemosphere. (2001),44(4):511-517.
    [13]J. M. Thomas, R. Hernandez, C. H. Kuo. Single-step treatment of 2,4-dinitrotoluene via zero-valent metal reduction and chemical oxidation, Journal of Hazardous Materials. (2008),155(1-2):193-198.
    [14]S. F. Cheng, S. C. Wu. The enhancement methods for the degradation of TCE by zero-valent metals, Chemosphere. (2000),41(8):1263-1270.
    [15]R. A. Doong, K. T. Chen, H. C. Tsai. Reductive dechlorination of carbon tetrachloride and tetrachloroethylene by zerovalent silicon-iron reductants, Environmental Science & Technology. (2003),37(11):2575-2581.
    [16]J. Dries, L. Bastiaens, D. Springael, S. N. Agathos, L. Diels. Competition for sorption and degradation of chlorinated ethenes in batch zero-valent iron systems, Environmental Science & Technology. (2004),38(10):2879-2884.
    [17]T. L. Johnson, M. M. Scherer, P. G. Tratnyek. Kinetics of halogenated organic compound degradation by iron metal, Environmental Science & Technology. (1996),30(8):2634-2640.
    [18]M. L. Tamara, E. C. Butler. Effects of iron purity and groundwater characteristics on rates and products in the degradation of carbon tetrachloride by iron metal, Environmental Science & Technology. (2004),38(6): 1866-1876.
    [19]S. C. Ahn, S. Y. Oh, D. K. Cha. Enhanced reduction of nitrate by zero-valent iron at elevated temperatures, Journal of Hazardous Materials. (2008), 156(1-3):17-22.
    [20]Y. H. Liou, S. L. Lo, C. J. Lin, C. Y. Hu, W. H. Kuan, S. C. Weng. Methods for accelerating nitrate reduction using zerovalent iron at near-neutral pH: Effects of H-2-reducing pretreatment and copper deposition, Environmental Science & Technology. (2005),39(24):9643-9648.
    [21]J. M. Rodriguez-Maroto, F. Garcia-Herruzo, A. Garcia-Rubio, C. Gomez-Lahoz, C. Vereda-Alonso. Kinetics of the chemical reduction of nitrate by zero-valent iron, Chemosphere. (2009),74(6):804-9.
    [22]K. Sohn, S. W. Kang, S. Ahn, M. Woo, S. K. Yang. Fe(0) nanoparticles for nitrate reduction:Stability, reactivity, and transformation, Environmental Science & Technology. (2006),40(17):5514-5519.
    [23]W. Wang, Z. H. Jin, T. L. Li, H. Zhang, S. Gao. Preparation of spherical iron nanoclusters in ethanol-water solution for nitrate removal, Chemosphere. (2006),65(8):1396-1404.
    [24]M. Bitema, A. Arditsoglou, E. Tsikouras, D. Voutsa. Arsenate removal by zero valent iron:Batch and column tests, Journal of Hazardous Materials. (2007),149(3):548-552.
    [25]S. S. Chen, B. C. Hsu, L. W. Hung. Chromate reduction by waste iron from electroplating wastewater using plug flow reactor, Journal of Hazardous Materials. (2008),152(3):1092-1097.
    [26]J. Dries, L. Bastiaens, D. Springael, S. Kuypers, S. N. Agathos, L. Diels. Effect of humic acids on heavy metal removal by zero-valent iron in batch and continuous flow column systems, Water Research. (2005),39(15):3531-3540.
    [27]R. Rangsivek, M. R. Jekel. Removal of dissolved metals by zero-valent iron (ZVI):Kinetics, equilibria, processes and implications for stormwater runoff treatment, Water Research. (2005),39(17):4153-4163.
    [28]T. Satapanajaru, P. J. Shea, S. D. Comfort, Y. Roh. Green rust and iron oxide formation influences metolachlor dechlorination during zerovalent iron treatment, Environmental Science & Technology. (2003),37(22):5219-5227.
    [29]R. Cheng, J. L. Wang, W. X. Zhang. Comparison of reductive dechlorination of p-chlorophenol using Fe-0 and nanosized Fe-0, Journal of Hazardous Materials. (2007),144(1-2):334-339.
    [30]J. T. Nurmi, P. G. Tratnyek, V. Sarathy, D. R. Baer, J. E. Amonette, K. Pecher, C. M. Wang, J. C. Linehan, D. W. Matson, R. L. Penn, M. D. Driessen. Characterization and properties of metallic iron nanoparticles: Spectroscopy, electrochemistry, and kinetics, Environmental Science & Technology. (2005),39(5):1221-1230.
    [31]S. M. Ponder, J. G. Darab, T. E. Mallouk. Remediation of Cr(Ⅵ) and Pb(Ⅱ) aqueous solutions using supported, nanoscale zero-valent iron, Environmental Science & Technology. (2000),34(12):2564-2569.
    [32]S. R. Kanel, J. M. Greneche, H. Choi. Arsenic(V) removal kom groundwater using nano scale zero-valent iron as a colloidal reactive barrier material, Environmental Science & Technology. (2006),40(6):2045-2050.
    [33]S.-S. Chen, H.-D. Hsu, C.-W. Li. A new method to produce nanoscale iron for nitrate removal, Journal of Nanoparticle Research. (2004),6(6):639-647.
    [34]F. He, D. Y. Zhao. Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water, Environmental Science & Technology. (2005),39(9): 3314-3320.
    [35]F. He, D. Zhao, J. Liu, C. B. Roberts. Stabilization of Fe/Pd Nanoparticles with Sodium Carboxymethyl Cellulose for Enhanced Transport and Dechlorination of Trichloroethylene in Soil and Groundwater, Industrial and Engineering Chemistry Research. (2007),46(1):29-34.
    [36]耿兵,李铁龙,金朝晖,漆新华.壳聚糖稳定纳米铁的制备及其对地表水中Cr(Ⅵ)的去除性能,高等学校化学学报.(2009),30(4):796-799.
    [37]张环,金朝晖,韩璐,王薇,修宗明,高思.负载型纳米铁化学反硝化法去除硝酸盐氮的研究,中国给水排水,(2006),22(15):83-87.
    [38]H. Choi, S. R. Al-Abed, S. Agarwal, D. D. Dionysiou. Synthesis of reactive nano-Fe/Pd bimetallic system-impregnated activated carbon for the simultaneous adsorption and dechlorination of PCBs, Chemistry of Materials. (2008),20(11):3649-3655.
    [39]H. Kim, H. J. Hong, Y. J. Lee, H. J. Shin, J. W. Yang. Degradation of trichloroethylene by zero-valent iron immobilized in cationic exchange membrane, Desalination. (2008),223(1-3):212-220.
    [40]T. Shimotori, E. E. Nuxoll, E. L. Cussler, W. A. Arnold. A polymer membrane containing Fe-0 as a contaminant barrier, Environmental Science & Technology. (2004),38(7):2264-2270.
    [41]王薇,金朝晖,李铁龙.包覆型纳米铁的制备及其去除三氯乙烯的研究,中国环境科学(2009),29(8):811-815.
    [42]B. W. Zhu, T. T. Lim, J. Feng. Reductive dechlorination of 1,2,4-trichlorobenzene with palladized nanoscale Fe-0 particles supported on chitosan and silica, Chemosphere. (2006),65(7):1137-1145.
    [43]H. Nagadomi, T. Hiromitsu, K. Taken, M. Watanabe, K. Sasak. Treatment of Aquarium Water by Denitrifying Photosynthetic Bacteria Using Immobilized Polyvinyl Alcohol Beads, Journal of Bioscience and Bioengineering. (1999), 87(2):189-193.
    [44]R. Dave, D. Madamwar. Esterification in organic solvents by lipase immobilized in polymer of PVA-alginate-boric acid, Process Biochemistry. (2006),41(4):951-955.
    [45]M. Okazaki, T. Hamada, H. Fujii, A. Mizobe, S. Matsuzawa. Development of Poly(Vinyl Alcohol) Hydrogel for Waste-Water Cleaning.1. Study of Poly(Vinyl Alcohol) Gel as a Carrier for Immobilizing Microorganisms, Journal of Applied Polymer Science. (1995),58(12):2235-2241.
    [46]李花子,王建龙,文湘华,施汉昌.聚乙烯醇-硼酸固定化方法的改进,环境科学研究(2002),15(5):25-27.
    [47]C. Jeon, J. Y. Park, Y. J. Yoo. Novel immobilization of alginic acid for heavy metal removal, Biochemical Engineering Journal. (2002),11(2-3):159-166.
    [48]A. Idris, N. A. M. Zain, M. S. Suhaimi. Immobilization of Baker's yeast invertase in PVA-alginate matrix using innovative immobilization technique, Process Biochemistry. (2008),43(4):331-338.
    [49]K. C. Chen, Y. F. Lin. Immobilization of microorganism with phosphorylated polyvinyl alcohol (PVA) gel., Enzyme Microb.Technol. (1994),16(1):79-83.
    [50]K.-C. Chen, S.-J. Chen, J.-Y. Houng. Improvement of gas permeability of denitrifying PVA gel beads, Enzyme and Microbial Technology. (1996),18(7): 502-506.
    [51]K.-C. Chen, S.-C. Lee, S.-C. Chin, J.-Y. Houng. Simultaneous carbon-nitrogen removal in wastewater using phosphorylated PVA-immobilized microorganisms, Enzyme and Microbial Technology. (1998),23(5):311-320.
    [52]C. C. Chang, S. K. Tseng. Immobilization of Alcaligenes eutrophus using PVA crosslinked with sodium nitrate, Biotechnology Techniques. (1998), 12(12):865-868.
    [53]Y. J. Wang, X. J. Yang, H. Y. Li, W. Tu. Immobilization of Acidithiobacillus ferrooxidans with complex of PVA and sodium alginate, Polymer Degradation and Stability. (2006),91(10):2408-2414.
    [54]Y. J. Wang, X. J. Yang, W. Tu, H. Y. Li. High-rate ferrous iron oxidation by immobilized Acidithiobacillus ferrooxidans with complex of PVA and sodium alginate, Journal of Microbiological Methods. (2007),68(2):212-217.
    [55]安立超,王剑锋,”聚乙烯醇铝盐固定化酶/微生物的方法,”2005,CN200410014884.2.
    [56]J. L. Wang, X. C. Quan, L. P. Han, Y. Qian, W. Hegemann. Microbial degradation of quinoline by immobilized cells of Burkholderia pickettii, Water Research. (2002),36(9):2288-2296.
    [57]闵航,郑耀通,钱泽澍,陈美慈.聚乙烯醇包埋厌氧活性污泥处理废水的最优化条件,环境科学(1994),5(5):10-12.
    [58]S. Guobin, X. Jianmin, G. Chen, L. Huizhou, C. Jiayong. Biodesulfurization using Pseudomonas delafieldii in magnetic polyvinyl alcohol beads, Letters in Applied Microbiology. (2005),40(1):30-36.
    [59]Q. Li, C. Kang, C. Zhang. Waste water produced from an oilfield and continuous treatment with an oil-degrading bacterium, Process Biochemistry. (2005),40(2):873-877.
    [60]J.-W. Kim, E. I. Rainina, W. W. Mulbry, C. R. Engler, J. R. Wild. Enhanced-Rate Biodegradation of Organophosphate Neurotoxins by Immobilized Nongrowing Bacteria, Biotechnol. Prog. (2002),18(3):429-436.
    [61]J. L. Wang, P. Liu, Y. Qian. Biodegradation of phthalic acid esters by immobilized microbial cells, Environment Internationa. (1997),23(6): 775-782.
    [62]Y. Wang, Y. Tian, B. Han, H. Zhao, J. Bi, B. Cai. Biodegradation of phenol by free and immobilized Acinetobacter sp. strain PD12, Journal ot Emironmental Sciences. (2007),19(2):222-225.
    [63]G.-m. Cao, Q.-x. Zhao, X.-b. Sun, T. Zhang. Characterization of nitrifying and denitrifying bacteria coimmobilized in PVA and kinetics model of biological nitrogen removal by coimmobilized cells, Enzyme and Microbial Technology. (2002),30(1):49-55.
    [64]T. Nishio, T. Yoshikura, H. Mishima, Z. Inouye, H. Itoh. Conditions for Nitrification and Denitrification by an Immobilized Heterotrophic Nitrifying Bacterium A k&genes faecalis OKK 17, Journal of Fermentation and Bioengineering. (1998),86(4):351-356.
    [65]K. M. Khoo, Y. P. Ting. Biosorption of gold by immobilized fungal biomass, Biochemical Engineering Journal (2001),8(1):51-59.
    [66]P. X. Sheng, K. H. Wee, Y. P. Ting, J. P. Chen. Biosorption of copper by immobilized marine algal biomass, Chemical Engineering Journal. (2008), 136(2-3):156-163.
    [67]F. He, W. Hu, Y. Li. Investigation of isolation and immobilization of a microbial consortium for decoloring of azo dye 4BS, Water Research. (2004), 38(16):3596-3604.
    [68]K. C. Chen, J. Y. Wu, C. C. Huang, Y. M. Liang, S. C. J. Hwang. Decolorization of azo dye using PVA-immobilized microorganisms, Journal of Biotechnology. (2003),101(3):241-252.
    [69]X. Bai, Z.-F. Ye, Y.-Z. Qu, Y.-F. Li, Z.-Y. Wang. Immobilization of nanoscale Fe-0 in and on PVA microspheres for nitrobenzene reduction, Journal of Hazardous Materials. (2009),172(2-3):1357-1364.
    [70]X. Bai, Z.-f. Ye, Y.-f. Li, L.-c. Zhou, L.-q. Yang. Preparation of crosslinked macroporous PVA foam carrier for immobilization of microorganisms, Process Biochemistry. (2010),45(1):60-66.
    [71]X. Bai, Z. Ye, Y. Li, L. Yang, Y. Qu, X. Yang. Preparation and characterization of a novel macroporous immobilized micro-organism carrier, Biochemical Engineering Journal. (2010),49(2):264-270.
    [1]S. F. Cheng, S. C. Wu. The enhancement methods for the degradation of TCE by zero-valent metals, Chemosphere. (2000),41(8):1263-1270.
    [2]R. A. Doong, K. T. Chen, H. C. Tsai. Reductive dechlorination of carbon tetrachloride and tetrachloroethylene by zerovalent silicon-iron reductants, Environmental Science & Technology. (2003),37(11):2575-2581.
    [3]J. Dries, L. Bastiaens, D. Springael, S. N. Agathos, L. Diels. Competition for sorption and degradation of chlorinated ethenes in batch zero-valent iron systems, Environmental Science & Technology. (2004),38(10):2879-2884.
    [4]T. L. Johnson, M. M. Scherer, P. G. Tratnyek. Kinetics of halogenated organic compound degradation by iron metal, Environmental Science & Technology. (1996),30(8):2634-2640.
    [5]M. L. Tamara, E. C. Butler. Effects of iron purity and groundwater characteristics on rates and products in the degradation of carbon tetrachloride by iron metal, Environmental Science & Technology. (2004),38(6):1866-1876.
    [6]J. Z. Bandstra, R. Miehr, R. L. Johnson, P. G. Tratnyek. Reduction of 2,4,6-trinitrotoluene by iron metal:Kinetic controls on product distributions in batch experiments, Environmental Science & Technology. (2005),39(1): 230-238.
    [7]J. F. Devlin, J. Klausen, R. P. Schwarzenbach. Kinetics of nitroaromatic reduction on granular iron in recirculating batch experiments, Environmental Science & Technology. (1998),32(13):1941-1947.
    [8]Y. S. Keum, Q. X. Li. Reduction of nitroaromatic pesticides with zero-valent iron, Chemosphere. (2004),54(3):255-263.
    [9]J. Klausen, J. Ranke, R. P. Schwarzenbach. Influence of solution composition and column aging on the reduction of nitroaromatic compounds by zero-valent iron, Chemosphere. (2001),44(4):511-517.
    [10]J. M. Thomas, R. Hernandez, C. H. Kuo. Single-step treatment of 2,4-dinitrotoluene via zero-valent metal reduction and chemical oxidation, Journal of Hazardous Materials. (2008),155(1-2):193-198.
    [11]S. C. Ahn, S. Y. Oh, D. K. Cha. Enhanced reduction of nitrate by zero-valent iron at elevated temperatures, Journal of Hazardous Materials. (2008),156(1-3): 17-22.
    [12]Y. H. Liou, S. L. Lo, C. J. Lin, C. Y. Hu, W. H. Kuan, S. C. Weng. Methods for accelerating nitrate reduction using zerovalent iron at near-neutral pH:Effects of H-2-reducing pretreatment and copper deposition, Environmental Science & Technology. (2005),39(24):9643-9648.
    [13]J. M. Rodriguez-Maroto, F. Garcia-Herruzo, A. Garcia-Rubio, C. Gomez-Lahoz, C. Vereda-Alonso. Kinetics of the chemical reduction of nitrate by zero-valent iron, Chemosphere. (2009),74(6):804-9.
    [14]K. Sohn, S. W. Kang, S. Ahn, M. Woo, S. K. Yang. Fe(0) nanoparticles for nitrate reduction:Stability, reactivity, and transformation, Environmental Science & Technology. (2006),40(17):5514-5519.
    [15]W. Wang, Z. H. Jin, T. L. Li, H. Zhang, S. Gao. Preparation of spherical iron nanoclusters in ethanol-water solution for nitrate removal, Chemosphere. (2006), 65(8):1396-1404.
    [16]M. Bitema, A. Arditsoglou, E. Tsikouras, D. Voutsa. Arsenate removal by zero valent iron:Batch and column tests, Journal of Hazardous Materials. (2007), 149(3):548-552.
    [17]S. S. Chen, B. C. Hsu, L. W. Hung. Chromate reduction by waste iron from electroplating wastewater using plug flow reactor, Journal of Hazardous Materials. (2008),152(3):1092-1097.
    [18]J. Dries, L. Bastiaens, D. Springael, S. Kuypers, S. N. Agathos, L. Diels. Effect of humic acids on heavy metal removal by zero-valent iron in batch and continuous flow column systems, Water Research. (2005),39(15):3531-3540.
    [19]R. Rangsivek, M. R. Jekel. Removal of dissolved metals by zero-valent iron (ZVI):Kinetics, equilibria, processes and implications for stormwater runoff treatment, Water Research. (2005),39(17):4153-4163.
    [20]R. Cheng, J. L. Wang, W. X. Zhang. Comparison of reductive dechlorination of p-chlorophenol using Fe-0 and nanosized Fe-0, Journal of Hazardous Materials. (2007),144(1-2):334-339.
    [21]J. T. Nurmi, P. G. Tratnyek, V. Sarathy, D. R. Baer, J. E. Amonette, K. Pecher, C. M. Wang, J. C. Linehan, D. W. Matson, R. L. Penn, M. D. Driessen. Characterization and properties of metallic iron nanoparticles:Spectroscopy, electrochemistry, and kinetics, Environmental Science & Technology. (2005), 39(5):1221-1230.
    [22]S. M. Ponder, J. G. Darab, T. E. Mallouk. Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron, Environmental Science & Technology. (2000),34(12):2564-2569.
    [23]S. R. Kanel, J. M. Greneche, H. Choi. Arsenic(V) removal kom groundwater using nano scale zero-valent iron as a colloidal reactive barrier material, Environmental Science & Technology. (2006),40(6):2045-2050.
    [24]X. Q. Li, D. W. Elliott, W. X. Zhang. Zero-valent iron nanoparticles for abatement of environmental pollutants:Materials and engineering aspects, Critical Reviews in Solid State and Materials Sciences. (2006),31 (4):111-122.
    [25]T. Phenrat, N. Saleh, K. Sirk, R. D. Tilton, G. V. Lowry. Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions, Environmental Science & Technology. (2007),41(1):284-290.
    [26]T. Satapanajaru, P. J. Shea, S. D. Comfort, Y. Roh. Green rust and iron oxide formation influences metolachlor dechlorination during zerovalent iron treatment, Environmental Science & Technology. (2003),37(22):5219-5227.
    [27]S. Gupta, S. Nayek, R. N. Saha, S. Satpati. Assessment of heavy metal accumulation in macrophyte, agricultural soil, and crop plants adjacent to discharge zone of sponge iron factory, Environmental Geology. (2008),55(4): 731-739.
    [28]Y. An, T. Ushida, M. Suzuki, T. Koyama, K. Hanabusa, H. Shirai. Complex formation of partially phosphorylated poly(vinyl alcohol), with metal ions in aqueous solution, Polymer. (1996),37(14):3097-3100.
    [29]Y. Matsuo, K. Hatase, Y. Sugie. Preparation and characterization of poly(vinyl alcohol)-and Cu(OH)(2)-poly(vinyl alcohol)-intercalated graphite oxides, Chemistry of Materials. (1998),10(8):2266-2269.
    [30]R. J. Kieber, S. A. Skrabal, B. J. Smith, J. D. Willey. Organic complexation of Fe(II) and its impact on the redox cycling of iron in rain, Environmental Science & Technology. (2005),39(6):1576-1583.
    [31]G. N. Glavee, K. J. Klabunde, C. M. Sorensen, G. C. Hadjipanayis. Chemisty of borohydride reduction of iron(II) and iron(III) ions in aqueous and nonaqueous media-Formation of nanoscale Fe, FeB, and Fe2B powders, Inorganic Chemistry. (1995),34(1):28-35.
    [32]Z. Yehuda, Y. Hadar, Y. Chen. Immobilization of Fe chelators on Sepharose gel and its effect on their chemical properties, Journal of Agricultural and Food Chemistry. (2003),51(20):5996-6005.
    [33]S. J. Liao, J. Wang, D. W. Zhu, L. Y. Ren, J. W. Lu, M. J. Geng, A. Langdon. Structure and Mn2+ adsorption properties of boron-doped goethite, Applied Clay Science. (2007),38(1-2):43-50.
    [34]H. S. Mansur, C. M. Sadahira, A. N. Souza, A. A. P. Mansur. FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde, Materials Science & Engineering C-Biomimetic and Supramolecular Systems. (2008), 28(4):539-548.
    [35]M. K. Wang, C. S. Xi, D. Y. Ping. Elementary determination of the superficial amount of-OH on poly(vinyl alcohol) film by titration and X-ray photoelectron spectroscopy, Journal of Applied Polymer Science. (2008),109(1):584-588.
    [36]S. G. Lee, W. S. Lyoo. Preparation of monodisperse poly(vinyl alcohol) microspheres by heterogeneous surface saponification and iodine complex formation, Journal of Applied Polymer Science. (2008),107(3):1701-1709.
    [37]B. W. Zhu, T. T. Lim, J. Feng. Reductive dechlorination of 1,2,4-trichlorobenzene with palladized nanoscale Fe-0 particles supported on chitosan and silica, Chemosphere. (2006),65(7):1137-1145.
    [38]M. J. Alowitz, M. M. Scherer. Kinetics of nitrate, nitrite, and Cr(VI) reduction by iron metal, Environmental Science & Technology. (2002),36(3):299-306.
    [39]S. Choe, Y. Y. Chang, K. Y. Hwang, J. Khim. Kinetics of reductive denitrification by nanoscale zero-valent iron, Chemosphere. (2000),41(8): 1307-1311.
    [40]P. G. Tratnyek, M. M. Scherer, B. L. Deng, S. D. Hu. Effects of natural organic matter, anthropogenic surfactants, and model quinones on the reduction of contaminants by zero-valent iron, Water Research. (2001),35(18):4435-4443.
    [41]Y. H. Huang, T. C. Zhang. Reduction of nitrobenzene and formation of corrosion coatings in zerovalent iron systems, Water Research. (2006),40(16): 3075-3082.
    [42]X. B. Fan, F. B. Zhang, G. L. Zhang, G. Z. Li. Kinetics and mechanism study on the preparation of 4,4'-diaminostilbene-2,2'-disulfonic acid by reduction of 4,4'-dinitrostilbene-2,2'-disulfonic acid with zero-valent iron, Dyes and Pigments. (2007),75(2):373-377.
    [43]X. Zhang, Y. M. Lin, Z. L. Chen.2,4,6-Trinitrotoluene reduction kinetics in aqueous solution using nanoscale zero-valent iron, Journal of hazardous materials. (2009),165(1):923-927.
    [44]A. Agrawal, P. G. Tratnyek. Reduction of nitro aromatic compounds by zero-valent iron metal, Environmental Science & Technology. (1996),30(1): 153-160.
    [45]Y. Mu, H. Q. Yu, J. C. Zheng, S. J. Zhang, G. P. Sheng. Reductive degradation of nitrobenzene in aqueous solution by zero-valent iron, Chemosphere. (2004), 54(7):789-794.
    [1]K. Y. A. Wu, K. D. Wisecarver. Cell immobilization using PVA cross-linked with boric-acid, Biotechnology and Bioengineering. (1992),39(4):447-449.
    [2]S. Hashimoto, K. Furukawa. Immobilization of activated-sludge by PVA boric-acid method, Biotechnology and Bioengineering. (1987),30(1):52-59.
    [3]O. Ariga, H. Takagi, H. Nishizawa, Y. Sano. Immobilization of microoganisms with PVA hardened by iterative freezing and thawing, Journal of Fermentation Technology. (1987),65(6):651-658.
    [4]H. Myoga, H. Asano, Y. Nomura, H. Yoshida. Effects of immobilization conditions on the nitrification treatability of entrapped cell reactors using the PVA freezing method Water Science and Technology. (1991),23(4-6): 1117-1124.
    [5]T. G. Park, A. S. Hoffman. Immobilization of arthrobacter-simplex in a thermally reversible hydrogel-effect of temperature cycling on steroid conversion Biotechnology and Bioengineering. (1990),35(2):152-159.
    [6]K. Ichimura. Effect of poly (ethylene glycol) on the photochemical immobilization of an enzyme in photocrosslinkable poly (vinyl alcohol), Makromolekulare Chemie-Macromolecular Chemistry and Physics. (1987), 188(4):763-768.
    [7]H. Ichijo, J. Nagasawa, A. Yamauchi. Immobilization of biocatalysts with poly (vinyl alcohol) supports, Journal of Biotechnology. (1990),14(2):169-178.
    [8]K. C. Chen, S. J. Chen, J. Y. Houng. Improvement of gas permeability of denitrifying PVA gel beads, Enzyme and Microbial Technology. (1996),18(7): 502-506.
    [9]N. E. Malwitz, S. T. Lee, "Thermoplastic foamable polyvinyl alcohol compsn.-contains low mol. wt. alcohol as blowing agent to produce water-soluble, biodegradable foam," us Patent US5089535-A,1990.
    [10]Y. X. Bai, Y. F. Li. Preparation and characterization of crosslinked porous cellulose beads, Carbohydrate Polymers. (2006),64(3):402-407.
    [11]J. C. Bray, E. W. Merrill. Poly (vinyl alcohol) hydrogels for synthetic articular-cartilage material, Journal of Biomedical Materials Research. (1973), 7(5):431-443.
    [12]T. Kawai. Freezing point depression of polymer solutions and gels Journal of Polymer Science. (1958),32(125):425-444.
    [13]J. C. Bray, E. W. Merrill. Poly (vinyl alcohol) hydrogels-formation by electron-beam irradiation of aqueous-solutions and subsequent crystallization, Journal of Applied Polymer Science. (1973),17(12):3779-3794.
    [14]N. A. Peppas, E. W. Merrill. Crosslinked poly (vinyl alcohol) hydrogels as swollen elastic networks Journal of Applied Polymer Science. (1977),21(7): 1763-1770.
    [15]龙中儿,黄运红,蔡昭铃,丛威,欧阳藩.细胞固定化载体比表面的测定,生物技术(2003),13(4):21-23.
    [16]P. T. Hang. Methylene blue absorption by clay minerals-determination of surface areas and cation exchange capacities, Clays and Clay Minerals. (1970), 18(4):203-212.
    [17]D. Saraydin, H. N. Oztop, E. Karadag, A. Y. Oztop, Y. Isikver,O. Guven. The use of immobilized Saccharomyces cerevisiae on radiation crosslinked acrylamide-maleic acid hydrogel carriers for production of ethyl alcohol, Process Biochemistry. (2002),37(12):PII S0032-9592(01)00337-5.
    [18]L. S. Zhang, W. Z. Wu, J. L. Wang. Immobilization of activated sludge using improved polyvinyl alcohol (PVA) gel, Journal of Environmental Sciences-China. (2007),19:1293-1297.
    [19]K. C. Chen, S. C. Lee, S. C. Chin, J. Y. Houng. Simultaneous carbon-nitrogen removal in wastewater using phosphorylated PVA-immobilized microorganisms, Enzyme and Microbial Technology. (1998),23(5):311-320.
    [20]M. M. Bradford. Rapid and sensitive method for quantities of protein utilizing principle of protein-dye binding, Analytical Biochemistry. (1976),72(1-2): 248-254.
    [21]C. K. Yeom, K. H. Lee. A study on permeation behavior of a liquid mixture through PVA membranes having a crosslinking gradient structure in pervaporation Journal of Applied Polymer Science. (1996),59(8):1271-1279.
    [22]K. S. Atia, A. El-Batal. Preparation of glucose oxidase immobilized in different carriers using radiation polymerization, Journal of Chemical Technology and Biotechnology. (2005),80(7):805-811.
    [23]J. C. Santos, A. V. Paula, G. F. M. Nunes, H. F. de Castro. Pseudomonas fluorescens lipase immobilization on polysiloxane-polyvinyl alcohol composite chemically modified with epichlorohydrin, Journal of Molecular Catalysis B-Enzymatic. (2008),52-3:49-57.
    [24]J. Yu, M. Ji, P. L. Yue. A three-phase fluidized bed reactor in the combined anaerobic/aerobic treatment of wastewater Journal of Chemical Technology and Biotechnology. (1999),74(7):619-626.
    [1]B. D. Ratner, S. J. Bryant. Biomaterials:Where we have been and where we are going, Annual Review of Biomedical Engineering. (2004),6:41-75.
    [2]A. M. Mathur, S. K. Moorjani, A. B. Scranton. Methods for synthesis of hydrogel networks:A review, Journal of Macromolecular Science-Reviews in Macromolecular Chemistry and Physics. (1996), C36(2):405-430.
    [3]C. C. DeMerlis, D. R. Schoneker. Review of the oral toxicity of polyvinyl alcohol (PVA), Food and Chemical Toxicology. (2003),41(3):PⅡ S0278-6915(02)00258-2.
    [4]K. C. S. Figueiredo, T. L. M. Alves, C. P. Borges. Poly(vinyl alcohol) Films Crosslinked by Glutaraldehyde Under Mild Conditions, Journal of Applied Polymer Science. (2009),111(6):3074-3080.
    [5]D. Bezbradica, B. ObradoviCb, I. Leskosek-Cukalovic, B. Bugarski, V. Nedovic. Immobilization of yeast cells in PVA particles for beer fermentation, Process Biochemistry. (2007),42(9):1348-1351.
    [6]N. A. Peppas, J. Z. Hilt, A. Khademhosseini, R. Langer. Hydrogels in biology and medicine:From molecular principles to bionanotechnology, Advanced Materials. (2006),18(11):1345-1360.
    [7]M. D. Busto, V. Meza, N. Ortega, M. Perez-Mateos. Immobilization of naringinase from Aspergillus niger CECT 2088 in poly(vinyl alcohol) cryogels for the debittering of juices, Food Chemistry. (2007),104(3):1177-1182.
    [8]M. Sanchez-Chaves, C. Ruiz, M. L. Cerrada, M. Fernandez-Garcia. Novel glycopolymers containing aminosaccharide pendant groups by chemical modification of ethylene-vinyl alcohol copolymers, Polymer. (2008),49(12): 2801-2807.
    [9]Y. Yu, Y. Y. Zhuang, Z. H. Wang. Adsorption of water-soluble dye onto functionalized resin, Journal of Colloid and Interface Science. (2001),242(2): 288-293.
    [10]B. M. De Borba, E. T. Urbansky. Performance of poly(vinyl alcohol) gel columns on the ion chromatographic determination of perchlorate in fertilizers, Journal of Environmental Monitoring. (2002),4(1):149-155.
    [11]V. I. Lozinsky, A. L. Zubov, E. F. Titova. Poly(vinyl alcohol) cryogels employed as matrices for cell immobilization.2. Entrapped cells resemble porous fillers in their effects on the properties of PVA-cryogel carrier, Enzyme and Microbial Technology. (1997),20(3):182-190.
    [12]C. M. Hassan, N. A. Peppas, "Structure and applications of poly(vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods," in Biopolymers/Pva Hydrogels/Anionic Polymerisation Nanocomposites. vol.153, ed Berlin:Springer-Verlag Berlin,2000, pp.37-65.
    [13]K. Y. A. Wu, K. D. Wisecarver. Cell immobilization using PVA cross-linked with boric-acid, Biotechnology and Bioengineer ing. (1992),39(4):447-449.
    [14]S. Hashimoto, K. Furukawa. Immobilization of activated-sludge by PVA boric-acid method, Biotechnology and Bioengineering. (1987),30(1):52-59.
    [15]O. Ariga, H. Takagi, H. Nishizawa, Y. Sano. Immobilization of microoganisms with PVA hardened by iterative freezing and thawing, Journal of Fermentation Technology. (1987),65(6):651-658.
    [16]H. Myoga, H. Asano, Y. Nomura, H. Yoshida. Effects of immobilization conditions on the nitrification treatability of entrapped cell reactors using the PVA freezing method Water Science and Technology. (1991),23(4-6): 1117-1124.
    [17]L. S. Zhang, W. Z. Wu, J. L. Wang. Immobilization of activated sludge using improved polyvinyl alcohol (PVA) gel, Journal of Environmental Sciences-China. (2007),19(11):1293-1297.
    [18]M. Hernandez-Esparza, M. C. Doria-Serrano, G. Acero-Salinas, F. A. Ruiz-Trevino. Removal of high phenol concentrations with adapted activated sludge in suspended form and entrapped in calcium alginate/cross-linked poly(N-vinyl pyrrolidone) hydrogels, Biotechnology Progress. (2006),22(6): 1552-1559.
    [19]A. Idris, N. A. M. Zain, M. S. Suhaimi. Immobilization of Baker's yeast invertase in PVA-alginate matrix using innovative immobilization technique, Process Biochemistry. (2008),43(4):331-338.
    [20]T. G. Park, A. S. Hoffman. Immobilization of arthrobacter-simplex in a thermally reversible hydrogel-effect of temperature cycling on steroid conversion Biotechnology and Bioengineering. (1990),35(2):152-159.
    [21]X. Zhao, Y. M. Wang, Z. F. Ye, A. G. L. Borthwick, J. R. Ni. Oil field wastewater treatment in Biological Aerated Filter by immobilized microorganisms, Process Biochemistry. (2006),41(7):1475-1483.
    [22]I. de Ory, L. E. Romero, D. Cantero. Optimization of immobilization conditions for vinegar production. Siran, wood chips and polyurethane foam as carriers for Acetobacter aceti, Process Biochemistry. (2004),39(5):547-555.
    [23]C. L. Yang, Y. P. Guan, J. M. Xing, G. B. Shan, H. Z. Liu. Preparation and characterization of monodisperse superparamagnetic poly(vinyl alcohol) beads by reverse spray suspension Crosslinking, Journal of Polymer Science Part a-Polymer Chemistry. (2008),46(1):203-210.
    [24]K. M. Khoo, Y. P. Ting. Biosorption of gold by immobilized fungal biomass, Biochemical Engineering Journal. (2001),8(1):51-59.
    [25]K. C. Chen, S. C. Lee, S. C. Chin, J. Y. Houng. Simultaneous carbon-nitrogen removal in wastewater using phosphorylated PVA-immobilized microorganisms, Enzyme and Microbial Technology. (1998),23(5):311-320.
    [26]M. M. Bradford. Rapid and sensitive method for quantities of protein utilizing principle of protein-dye binding, Analytical Biochemistry. (1976),72(1-2): 248-254.
    [27]L. S. Zhang, W. Z. Wu, J. L. Wang. Immobilization of activated sludge using improved polyvinyl alcohol (PVA) gel, Journal of Environmental Sciences-China. (2007),19:1293-1297.
    [28]J. S. Park, J. W. Park, E. Ruckenstein. On the viscoelastic properties of poly(vinyl alcohol) and chemically crosslinked poly(vinyl alcohol), Journal of Applied Polymer Science. (2001),82(7):1816-1823.
    [29]X. M. Yang, Z. Y. Zhu, Q. Liu, X. L. Chen, M. W. Ma. Effects of PVA, agar contents, and irradiation doses on properties of PVA/ws-chitosan/glycerol hydrogels made by gamma-irradiation followed by freeze-thawing, Radiation Physics and Chemistry. (2008),77(8):954-960.
    [30]P. T. Hang. Methylene blue absorption by clay minerals-determination of surface areas and cation exchange capacities, Clays and Clay Minerals. (1970), 18(4):203-212.
    [31]D. Saraydin, H. N. Oztop, E. Karadag, A. Y. Oztop, Y. Isikver,0. Guven. The use of immobilized Saccharomyces cerevisiae on radiation crosslinked acrylamide-maleic acid hydrogel carriers for production of ethyl alcohol, Process Biochemistry. (2002),37(12):PII S0032-9592(01)00337-5.
    [32]K. Chandran, B. F. Smets. Applicability of two-step models in estimating nitrification kinetics from batch respirograms under different relative dynamics of ammonia and nitrite oxidation, Biotechnology and Bioengineering. (2000), 70(1):54-64.
    [33]G. M. Cao, Q. X. Zhao, X. B. Sun, T. Zhang. Characterization of nitrifying and denitrifying bacteria coimmobilized in PVA and kinetics model of biological nitrogen removal by coimmobilized cells, Enzyme and Microbial Technology. (2002),30(1):49-55.
    [1]J. H. Kim, E. R. Rene, H. S. Park. Biological oxidation of hydrogen sulfide under steady and transient state conditions in an immobilized cell biofilter, Bioresource Technology. (2008),99(3):583-588.
    [2]W. C. Chan, M. Q. Su. Biofiltration of ethyl acetate and amyl acetate using a composite bead biofilter, Bioresource Technology. (2008),99(17):8016-8021.
    [3]W. C. Chan, Z. Y. Lin. A process to prepare a synthetic filter material containing nutrients for biofiltration, Bioresource Technology. (2006),97(15):1927-1933.
    [4]W. Zhang, K. Furukawa, J. D. Rouse. Bench-scale study using PVA gel as a biocarrier in a UASB reactor treating corn steep liquor wastewater, Water Science and Technology. (2007),56(7):65-71.
    [5]W. Zhang, D. Wang, Y. Kaga, T. Yamamoto, L. Zhang, K. Furukawa. PVA-gel beads enhance granule formation in a UASB reactor, Bioresource Technology. (2008),99(17):8400-8405.
    [6]K. Y. A. Wu, K. D. Wisecarver. Cell immobilization using PVA cross-linked with boric-acid, Biotechnology and Bioengineering. (1992),39(4):447-449.
    [7]J. D. Rouse, O. Burica, M. Strazar, M. Levstek. A pilot-plant study of a moving-bed biofilm reactor system using PVA gel as a biocarrier for removals of organic carbon and nitrogen, Water Science and Technology. (2007),55(8-9): 135-141.
    [8]S. Hashimoto, K. Furukawa. Immobilization of activated-sludge by PVA boric-acid method, Biotechnology and Bioengineering. (1987),30(1):52-59.
    [9]O. Ariga, H. Takagi, H. Nishizawa, Y. Sano. Immobilization of microoganisms with PVA hardened by iterative freezing and thawing, Journal of Fermentation Technology. (1987),65(6):651-658.
    [10]H. Myoga, H. Asano, Y. Nomura, H. Yoshida. Effects of immobilization conditions on the nitrification treatability of entrapped cell reactors using the PVA freezing method Water Science and Technology. (1991),23(4-6): 1117-1124.
    [11]K. C. Chen, Y. F. Lin. Immobilization of microorganism with phosphorylated polyvinyl alcohol (PVA) gel., Enzyme Microb.Technol. (1994),16:79-83.
    [12]A. Idris, N. A. M. Zain, M. S. Suhaimi. Immobilization of Baker's yeast invertase in PVA-alginate matrix using innovative immobilization technique, Process Biochemistry. (2008),43(4):331-338.
    [13]C. C. Chang, S. K. Tseng. Immobilization of Alcaligenes eutrophus using PVA crosslinked with sodium nitrate, Biotechnology Techniques. (1998),12(12): 865-868.
    [14]W. Yujian, Y. Xiaojuan, L. Hongyu, T. Wei. Immobilization of Acidithiobacillus ferrooxidans with complex of PVA and sodium alginate, Polymer Degradation and Stability. (2006),91:2408-2414.
    [15]W. Yujian, Y. Xiaojuan, T. Wei, L. Hongyu. High-rate ferrous iron oxidation by immobilized Acidithiobacillus ferrooxidans with complex of PVA and sodium alginate, Journal of Microbiological Methods. (2007),68:212-217.
    [16]Y. Li, X. Bai, X. Men, L. Yang, "Macroreticular spherical carrier based on poly(vinyl alcohol) and its application," China Patent,2008.
    [17]Y. X. Bai, Y. F. Li. Preparation and characterization of crosslinked porous cellulose beads, Carbohydrate Polymers. (2006),64(3):402-407.
    [18]J. A. Greig, D. C. Sherrington. Molecular-sieve behavior in polymeric reagents Polymer. (1978),19(2):163-172.
    [19]J. C. Bray, E. W. Merrill. Poly (vinyl alcohol) hydrogels for synthetic articular-cartilage material, Journal of Biomedical Materials Research. (1973), 7(5):431-443.
    [20]J. C. Bray, E. W. Merrill. Poly (vinyl alcohol) hydrogels-formation by electron-beam irradiation of aqueous-solutions and subsequent crystallization, Journal of Applied Polymer Science. (1973),17(12):3779-3794.
    [21]N. A. Peppas, E. W. Merrill. Crosslinked poly (vinyl alcohol) hydrogels as swollen elastic networks Journal of Applied Polymer Science. (1977),21(7): 1763-1770.
    [22]T. Kawai. Freezing point depression of polymer solutions and gels Journal of Polymer Science. (1958),32(125):425-444.
    [23]龙中儿,黄运红,蔡昭铃,丛威,欧阳藩.细胞固定化载体比表面的测定,
    生物技术.(2003),13(4):21-23.
    [24]P. Grunwald, K. Hansen, W. Gunsser. The determination of effective diffusion coefficients in a polysaccharide matrix used for the immobilization of biocatalysts, Solid State Ionics. (1997),101:863-867.
    [25]T. Masuko, A. Minami, N. Iwasaki, T. Majima, S. I. Nishimura, Y. C. Lee. Carbohydrate analysis by a phenol-sulfuric acid method in microplate format, Analytical Biochemistry. (2005),339(1):69-72.
    [26]K. M. Khoo, Y. P. Ting. Biosorption of gold by immobilized fungal biomass, Biochemical Engineering Journal. (2001),8(1):51-59.
    [27]L. S. Zhang, W. Z. Wu, J. L. Wang. Immobilization of activated sludge using improved polyvinyl alcohol (PVA) gel, Journal of Environmental Sciences-China. (2007),19:1293-1297.
    [28]K. C. Chen, S. C. Lee, S. C. Chin, J. Y. Houng. Simultaneous carbon-nitrogen removal in wastewater using phosphorylated PVA-immobilized microorganisms, Enzyme and Microbial Technology. (1998),23(5):311-320.
    [29]M. M. Bradford. Rapid and sensitive method for quantities of protein utilizing principle of protein-dye binding, Analytical Biochemistry. (1976),72(1-2): 248-254.
    [30]P. T. Hang. Methylene blue absorption by clay minerals-determination of surface areas and cation exchange capacities, Clays and Clay Minerals. (1970), 18(4):203-212.
    [31]E. Emmanuel, K. Hanna, C. Bazin, G. Keck, B. Clement, Y. Perrodin. Fate of glutaraldehyde in hospital wastewater and combined effects of glutaraldehyde and surfactants on aquatic organisms, Environment International. (2005),31(3): 399-406.
    [32]M. Kowalska, M. Bodzek, J. Bohdziewicz. Biodegradation of phenols and cyanides using membranes with immobilized microorganisms, Process Biochemistry. (1998),33(2):189-197.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700