用户名: 密码: 验证码:
滇丁香、茜草抑制α-葡萄糖苷酶活性成分研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文分三章对植物中的α-葡萄糖苷酶抑制活性成分进行研究。第一章论述了42种药用植物体外α-葡萄糖苷酶初步筛选工作,并对茜草进行了哺乳动物来源的α-葡萄糖苷酶抑制活性研究,并与酵母糖苷酶抑制活性进行对比研究。第二章对初筛效果好的茜草和滇丁香采用活性追踪方法分离得到活性成分,并对它们进行了抑制动力学研究。第三章对植物来源α-葡萄糖苷酶抑制剂的研究意义及现状进行了总结和综述。
     第一章42种植物抑制α-葡萄糖苷酶活性筛选
     本章包含四个部分。第一部分主要概述了α-葡萄糖苷酶抑制剂筛选方法。第二部分建立微孔板法以PNPG为底物的α-葡萄糖苷酶抑制剂筛选模型。第三部分对来源于24个科37属的42种植物的133种提取物进行了α-葡萄糖苷酶抑制活性筛选,得到抑制率高于对照阿卡波糖的样品85个,IC50值低于对照品的样品共74个。抑制α-葡萄糖苷酶活性较好的植物样品主要来源于茜草科、苦苣苔科、毛茛科、豆科、木犀科,蓼科和报春花科。对三种苦苣苔科植物(牛耳岩白菜、岩豇豆、卷丝苣苔)、两种唇形科植物(荔枝草、夏至草)以及黄连不同部位的不同溶剂提取物进行了浓度与抑制活性关系研究,发现样品均有不同程度的剂量依赖性。对牛耳岩白菜、槐花、锦鸡儿根提取物进行了抑制动力学研究,结果显示多为非竞争性抑制类型,部分为竞争性抑制类型。最后一部分对部分植物样品的大鼠小肠α-葡萄糖苷酶抑制作用做初步研究,并与酵母α-葡萄糖苷酶抑制活性进行对比,发现样品对酵母糖苷酶的抑制活性强于对哺乳动物糖苷酶抑制活性。
     第二章单体化合物抑制α-葡萄糖苷酶活性筛选
     本章由两部分组成。第一部分采用活性追踪的方法研究滇丁香(Luculia pinciana Hook)和茜草(Rubia cordifolia L.)中抑制α-葡萄糖苷酶活性成分。从滇丁香中得到5个活性化合物:东莨菪内酯(1),5-甲氧基-8-羟基香豆素(2),1α,3β,24-三羟基熊果酸(3),熊果酸(4)和齐墩果酸(5),其中化合物4(IC50=3.30μg/mL)和5 (IC50 = 2.88μg/mL)的活性最好,对它们进行酶抑制动力学研究发现除化合物3属于α-葡萄糖苷酶竞争性抑制剂外,其它4个均为非竞争性抑制剂。第二部分从茜草氯仿活性部位中分离出3个有抑制α-葡萄糖苷酶活性的蒽醌类化合物,分别鉴定为:1,3-二羟-2-甲基蒽醌(6),1-羟基-2-甲基蒽醌(7)和1,2-二羟基蒽醌(8),其中化合物8 (IC50 = 7.97μg/mL)活性最好,与6(IC50=35.96μg/mL)和7(IC50 = 15.98μg/mL)的活性都明显高于阳性对照阿卡波糖(IC50 = 1081.27μg/mL)。化合物5和6为竞争性抑制类型,化合物3为非竞争性抑制类型。
     第三章中药中抑制α-葡萄糖苷酶活性成分研究进展
     本章对药用植物来源的α-葡萄糖苷酶抑制活性成分进行综述总结,通过文献研究,发现报道了139个药用植物来源的天然α-葡萄糖苷酶抑制活性化合物,涉及萜类、生物碱、黄酮类、醌类、酚类等类型化合物,其中黄酮类和苯丙素类化合物数量居多。
This paper is composed of three chapters to screenα-glucosidase inhibitory activity of the constituents from plants. Chapter I, theα-glucosidase inhibitory activity of forty two kinds of medicinal plants was screened in vitro. In addition, theα-glucosidase of mammalian sources was also assayed, and compare with the inhibitory activity against the yeastα-glucosidase. Chapter II, theα-glucosidase inhibitory compounds from Luculia pinciana and Rubia cordifolia by the bioassay-guided method were isolated and identified in vitro. Chapeter III,α-glucosidase inhibitors from plant sources were summarized.
     Chapter Iα-glucosidase inhibitory activity of forty-two kinds of medicinal plants
     This chapter includes four parts. First, some majorα-glucosidase inhibitor screening methods was summarized. Then the microplate screening model ofα-glucosidase inhibitor with PNPG as substrate was established. In the third part, theα-glucosidase inhibitory activity of the one hundred and thirty-three kinds of extracts from forty-two kinds of medicinal plants in thirty-seven generaes and twenty-four families were assayed. And inhibition rate of eighty-five samples were higher than that of Acarbose as positive control, IC50 values of seventy-four samples were less than that of Acarbose. Strongα-glucosidase inhibitory activity extracts were mainly from Rubiaceae, Gesneriaceae, Ranunculaceae, Leguminosae, Oleaceae, Polygonaceae, and Primulaceae. The relationship between concentration and inhibitory activity of three plants of Gesneriaceae, two plants of Labiatae and the extracts by different solvent from the different parts of Coptis was assayed, and all the samples had different degrees of dose-dependent. The inhibited kinetics of Chirita eburnea Hance, Sophora japonica L. and Caragana sinica (Buchoz) Rehd. were non-competitive inhibition type with some shown competitive inhibition type. The last part, the rat intestinalα-glucosidase inhibition was assayed compared with the yeastα-glucosidase inhibitory activity.
     Chapter II Active compounds on inhibiton ofα-glucosidase activity
     This chapter is composed of three parts. The first part,α-glucosidase inhibitors from L. pinciana and R. cordifolia by the bioassay-guided fraction. Five active compounds were isolated and identified from L. pinciana as scopletin (1), 5-methoxy-8-hydroxycoumarin (2), 1α, 3β, 24-trihydroxyursolic acid (3), ursolic acid (4) and oleanolic acid (5). The IC50 values of all compounds were lower than that of acarbose, in which compound 4 (IC50 = 3.3μg/mL) and 5 (IC50 = 2.88μg/mL) were the best. Four of them showed noncompetitive type manner onα-glucosidase inhibition except that compound 3 was competitive type manner. The second part, three active compounds from R. cordifolia were isolated and identified as 3-dihydroxy-2-methylanthra-quinone (6), 1-hydroxy-2-methylanthra- quinone (7), 2-dihydroxyanthraquinone (8). The IC50 values of compound 6, 7, 8 were all lower than that of acarbose, in which compound 8 was the best. Compound 6 and 7 showed competitive type manner onα-glucosidase, where as compound 8 showed noncompetitive type model.
     Chapter III Progress ofα-glucosidase inhibitors from medicinal plants
     This chapter summaried one hundred and thirty-nine compounds from medicinal plants which hadα-glucosidase inhibitory activity. Theses compounds were terpenes , alkaloids, flavonoids, quinones, phenols and other types of compounds. Flavonoids and phenylpropanoid compounds were main.
引文
[1]吴酬飞,许杨,李燕萍.α-葡萄糖苷酶抑制剂筛选模型的研究进展[J].国际药学研究杂志, 2008, 35(1):9-12
    [2] Kim YM, Jeong YK, Wang MH, et al. Inhibitory effect of pine extract onα-glucosidase activity and postprandial hyperglycemia [J]. Nutrition, 2005, 21: 756–761.
    [3] Adolfo A-C, Jaime B-J, Ren′e C–V. Alfa-glucosidase inhibiting activity of some Mexican plants used in the treatment of type 2 diabetes[J]. Journal of Ethnopharmacology, 2008, 116: 27–32.
    [4]沈忠明,李英,姜宏等.降糖中药对α-葡萄糖苷酶抑制作用研究[J].中国生化药物杂志, 2000, 21(2): 69-70.
    [5]林玉桓,王栩林,王颖,等. 34种中药对α-葡萄糖苷酶活性的抑制作用[J].大连轻工业学院学报, 2004, 23(4): 270-272.
    [6]张海凤,董亚琳,胡萨萨,等.五种中药对两种不同来源α-葡萄糖苷酶活性的抑制作用比较[J].中药材, 2008, 31(7): 1024-1027.
    [7] Gao H, Huang Y-N, Gao B, et al. Inhibitory effect onα-glucosidase by Adhatoda vasica Nees[J]. Food Chemistry, 2008, 108: 965–972.
    [8]刘志峰,李萍,李慎军,等. 5种中药体外α-糖苷酶抑制作用的观察[J].山东中医杂志, 2004, 23(1): 41-42.
    [9] Schafer A, Hogger P. Oligomeric procyanidins of French maritime pine bark extract (Pycnogenol) effectively inhibitα-glucosidase Diabetes[J]. Research and Clinical Practice, 2007, 77: 41–46.
    [10]张冉,刘泉,申竹芳,等.应用α-葡萄糖苷酶抑制剂高通量筛选模型筛选降血糖中药[J].中国药学杂志, 2007, 42(10): 740-742.
    [11]张振周,晓惠龙.血竭各部位对α-D-葡萄糖苷酶的抑制作用[J].科技信息, 2007, 27 : 331-332.
    [12] Li T, Zhang X-D, Song Y-W, et al. A microplate-based screening method for alpha-glucosidase inhibitors[J]. Chin J Clin Pharmacol Ther. 2005, 10(10): 1129
    [13]顾江萍,梁鑫淼.中药对α-葡萄糖苷酶抑制作用的研究[J].中华现代中医学杂志, 2005, 1(2): 116-118.
    [14]王镜岩,朱圣庚,徐长法.生物化学[M].北京:高等教育出版社, 2002: 371.
    [15]马庆一,陈丽华,杨海延,等.山茱萸α-葡萄糖苷酶抑制活性因子的筛选(Ⅱ)[J].食品科学, 2007, 28(2): 73.
    [16]康文艺,姬志强,王金梅.卷丝苣苔和勐醒芒毛苣苔脂肪酸成分的研究[J].天然产物研究与开发, 2009, 21: 203-207.
    [17]陈林,姚森森,何喜娟,康文艺.岩豇豆脂肪酸成分分析[J].河南大学学报(医学版), 2009, 28(1): 35-37.
    [18]康文艺,李彩芳,张丽.卷丝苣苔和勐醒芒毛苣苔抗氧化活性研究[J].天然产物研究与开发, 2009, 21: 470-472.
    [19]国家药典委员会.中国药典[M].北京:化学工业出版社, 2005: 213-214.
    [20]杨澄,仇熙,孔令东.黄连炮制品清除氧自由基和抗脂质过氧化作用南京大学学报(自然科学), 2001, 37(5): 659-663
    [21]屠大伟,张保顺,李学刚.黄连副产物体外抗氧化活性研究[J].中国农学通报, 2007, 23(4): 108-111.
    [22] Liu F, Ng TB. Antioxidative and free radicial scavenging activities of selected medicinal herbs[J]. Life Science, 2000, 66(8): 725-735.
    [23] Yan D, Jin C, Xiao XH, et al. Antimicrobial properties of berberines alkaloids in Coptis chinensis Franch by microcalorimetry[J]. J. Biochem. Biophys. Methods, 2008, 70: 845-849.
    [24]崔学军.黄连及其有效成分的药理研究进展[J].中国药师, 2009, 9(5): 469-470
    [25]王斌贵,王以群,张颖,等.荔枝草的抗氧化效能[J].中国油脂, 1997, 22(6): 40-43.
    [26] Powell R G, Platiner R D. Structure of a secoisolariciresinol diester from Salvia plebeia seed[J]. Phytochemistry, 1976, 15(12): 1963-1965.
    [27] Plattner R D, Powell R G. A secoisolariciresinol branched fatty diester from Salvia plebeia seed[J]. Phytochemistry, 1978, 17(1): 149-150.
    [28] García-Alvarez M C, Hasan M, Michavila A, et al. Epoxysalviacoccina, neo-clerodane diterpenoid from Salvia plebeia[J]. Phytochemistry, 1985,25(1): 272-274.
    [29]翁新楚,曹国锋,董新伟,等.荔枝草抗氧化性能的研究[J].中国粮油学报, 1998, 13(2): 25-28.
    [30]董新伟,曹国锋,段杉,等.荔枝草对鱼油的抗氧化作用[J].海洋科学, 2000, 24(1): 33-37.
    [31] Weng X C, Wang W. Antioxidant activity of compounds isolated from Salvia plebeia[J]. Food Chemistry, 2000, 71: 489-493.
    [32] Gu L W, Weng X C. Antioxidant activity and components of Salvia plebeia R. Br.- a Chinese herb[J]. Food Chemistry, 2001, 73: 299-305.
    [33] Jiang A L, Wang C H. Antioxidant properties of natural components from Salvia plebeia on oxidative stability of ascidian oil[J]. Process Biochemistry, 2006, 41: 1111–1116.
    [34]蒋毅,罗思齐,郑民实.荔枝草活性成分的研究[J].医药工业, 1987, 18(8): 349-351.
    [35]袁久容,李全文,李智立.夏至草化学成分的研究[J].中国中药杂志, 2000, 25(7): 421-423.
    [36]李作平,卫恒巧,郭振奇,等.夏至草化学成分的研究[J].河北医学院学报. 1990, 11(2): 71-72.
    [37]康文艺,武小红.槐花、槐米和槐叶脂肪酸成分的GC-MS分析[J].河南大学学报(医学版), 2009, 28(1): 17-20.
    [38]刘红霞,林文翰,杨峻山.锦鸡儿属植物化学成分及药理作用研究进展[J].中国药学杂志, 2004, 39(5): 327-330
    [39]戴岳,夏玉凤,林巳茏.地肤子正丁醇部分降糖机制的研究[J].中药药理与临床, 2003, 19 (5): 21-24.
    [40]张海风,董亚琳,胡萨萨,任少君.五种中药对两种不同来源α-葡萄糖苷酶活性的抑制作用比较[J].中药材, 2008, 31(7): 1024-1027.
    [41] Babu K.S, Tiwari A K., Srinivas P V., Ali A Z., Raju B. C, Rao J. M. Yeast and mammalianα-glucoside inhibitory constituents from Himalayan rhubarb Rheum emodi Wall.ex Meisson[J]. Bioorganic & Medicinal Chemistry Letters, 2004, 14: 3741-3845.
    [1]吴征镒.新华本草纲要[M].上海:上海科技出版社,1991: 447.
    [2]康文艺,杨小生,赵超,等.中型滇丁香挥发油化学成分分析[J].天然产物研究与开发, 2002, 14(1): 39.
    [3]康文艺,杨小生,赵洪芳,等.滇丁香抗耐药菌株活性研究[J].天然产物研究与开发, 2002, 14(3): 39.
    [4] Kang W Y, Wang J S, Yang X S, et al. Triterpenoid saponins from luculia pinceana Hook[J]. Jouranl of the Chinese Chemistry, 2003, 21, 1501.
    [5] Kang W Y, Du Z Z, Yang X S, et al. A new triterpene from Luculia pinceana Hook[J], J Asian Nat Prod Res, 2005, 7(1): 91.
    [6]康文艺,郝小江.滇丁香萜苷类化合物研究[J].中国中药杂志, 2007, 32(24): 2607
    [7]段朝辉,石宝俊,吴立宏,等.长梗秦艽的化学成分[J].中国天然药物, 2007, 5(6): 417.
    [8] Reiko S, Gen I N, Itsuo N. Phenol glucoside gallates from Mallotus japonicus[J].Phytochemistry, 1989, 28(9): 2443.
    [9] Mahato S B, Kundu A P. 13C NMR spectra of pentacylic triterpenoids[J]. Phytochemistry, 1994, 37(6): 1517.
    [10]王镜岩,朱圣庚,徐长法.生物化学[M].北京:高等教育出版社, 2002: 371.
    [11]马庆一,陈丽华,杨海延,等.山茱萸中α-葡萄糖苷酶抑制活性因子的筛选(Ⅱ)[J].食品科学, 2007, 28(2): 73.
    [12]丁宝章,王遂义.河南植物志[M].郑州:河南科技出版社, 1997: 486.
    [13] Talapatra SK, Sarkar AC, Talapatra B. Two pentacyclic triterpenes from Rubia cordifolia [J]. Phytochemistry, 1981, 20 (8): 1923-1927.
    [14] Itokawa H, Qiao Y F, Takeya K. Anthraquinones and naphthohydroquinones from Rubia cordifolia [J]. Phytochemistry, 1989, 28(12): 365-368.
    [15] Itokawa, H. Anthraquinones from Rubia cordifolia[J]. Chem. Pharm. Bull., 1983, 31(7): 2353-2358.
    [16] Courchesne M, Brassard P. Identification and characterization of naturally occurriring rubidins [J]. J. Nat. Prod., 1993, 56(5): 722-730.
    [17]王素贤,华会明,吴立军,等.茜草中蒽醌类成分研究[J].药学学报, 1992, 27(10): 743-747.
    [18] Singh R, Geetanjali, Chauhan SMS. 9,10-Anthraquinones and other biologically active compounds from the genus Rubia[J]. Chemistry & biodiversity, 2004, (1): 1241-1261.
    [19] Tripathi YB. Anti-platelet activating factor property of Rubia cordifolia linn. [J]. Indian J Exp Biol, 1993, 31(6): 533-535.
    [20]许兰芝,赵世琴,胡庆伟,等.茜草总蒽醌抗炎抗风湿作用及机制[J].潍坊医学院学报, 2002, 24 (1):11
    [21]马立人,孙仲诒,刘耀清等.茜草酸甙的分离和性质的观察[J].中国人民解放军军医学科学院院刊, l981, (1): 46-53
    [22] Subhalakshmi Basu. Evaluation of the Antibacterial Activity of Ventilago madraspatana Gaertn.,Rubia cordifolia Linn, and Lantana camara Linn.: Isolation of Emodin and Physcion as Active Antibacterial Agents[J]. Phytother.R es, 2005, 19: 88-894.
    [23] Guntupalli M.Mohana Rao. Hepatoprotective effects of rubiadin, a major constituent of Rubia cordifolia linn [J]. Eehnophermacology, 2006, 103: 484-490.
    [24]康文艺,臧鑫炎,李黎.茜草抗氧化成分研究[J].河南大学学报, 2006, 25(3): 6-8.
    [25]康文艺,郅妙利,王金梅,等. RP-HPLC法测定茜草中1,3,6-Trihydroxy-2-mthylan-thruinone-3-O-[3-O-Acetyl-α-L-rhamnopyranosyl-(1→2)-β-D-glucopyranoside]的含量[J].天然产物研究与开发, 2008, 20(2): 295-297.
    [26]尹冰,都群.自拟茜草合剂治疗早期糖尿病肾病30例[J].实用中医内科杂志, 2005, 19 (6) : 543.
    [1] Dahlqvist A , Pig intestinalα-glucosidases. Solubilization, separation and characterization. Dissertation, Univ. of Lund. 1960.
    [2] Miller D., Crane R.K. The digestive function of the epithelium of the small intestine, II. L ocalization of disaccharide hydrolysis in the isolated brush border protein of intestinal epithelial ce lls. Biochim. Biophys.Acta, 1962, 52: 293-298.
    [3]岳振峰,陈小霞,彭志英.α-葡萄糖苷酶研究现状及进展[J].食品与发酵工业, 2000, 26 (3): 63-67.
    [4]《中国糖尿病防治指南》(试行本)(节选)[J].中国慢性病预防与控制, 2004, 12 (6): 283-285.
    [5]文世林.糖尿病流行的全球趋势和国内现状[J].河南诊断与治疗杂志, 2002, 16(1): 14-17
    [6] Wild S, Roglic G, Green A, et al. Global prevalence of diabetes : estimates for the year 2000 and projections for 2030[J]. Diabetes Care, 2004, 27: 1047-1053.
    [7] Schen. AJ. Treatment of diabetes in Patients with severe obesity. Biomedicine and Pharmacotherapy. 2000, 54(2): 74-79.
    [8]李玉萍,白冰,叶军,等.α-葡萄糖苷酶抑制剂的制备和活性研究进展[J].食品科学, 2008, 29(09): 617-619.
    [9]杜伟奇,施秀芳,邱明艳,等.治疗糖尿病药物的研究进展[J].中国医院药学杂志. 2005, 25(1): 67-39.
    [10]陈静,程永强,刘晓庆,等.食品中α-葡萄糖苷酶抑制剂的研究进展[J].食品科学. 2007, 28(04): 360-363.
    [11] Sou S, Mayumi S, Takahashi H, Yamasaki R, Kadoya S, Sodeoka M, Hashimoto Y. Novelα-Glucosidase Inhibitors with a Tetrachlorophthalimide Skeleton[J]. Bioorganic & Medicinal Chemistry Letters, 2000, 10: 1081-1084.
    [12] Bridges C.G., Ahmed SP et al.,The effect of oral treatment with 6-o-butanoyl castanospermine (MDL 28,574) in the murine 20 steriform model of HSV-1 in fection. Glycobiology, 1995, 5(2): 249-253.
    [13] Tanaka Y, Kato J, Kohara M. Antiviral effects of glycosylation and glucose trimming inhibitors on human parainfluenza virus type 3[J]. Antiviral Research, 2006, 72: 1–9.
    [14] Chapel C., Garcia C., Bartosch B.. Alpha-glucosidase inhibitors prevent the assembly and induce a reduction of HCV infectivity[J]. Journal of Clinical Virology, 2006, 36:110.
    [15] Pili R., Chang J, et al., The alpha-glucosidase I in hibitore astanospermine alters endothelial cell glycosylation, prevents angiogenesis, and inhibits tumor growth[J]. Cancer Research, 1995,55 (13): 2920-2926.
    [16] Scofield A.M., Witham P., Nash R.J., Kite G.C., Fellows L. E.. Castanospermine and other polyhydroxy alkaloids inhibitors of insect glycosidases[J]. Camp. Biochem. Physiol. 1995, 112(1): 187-196.
    [17]杨海霞,朱祥瑞. 1-脱氧野尻霉素(DNJ)的研究进展[J].桑蚕通报, 2003, 34(1): 6-10.
    [18] Scheen A.J. Treatment of diabetes in patients with severe obesity[J]. Biomed & Pharmacother, 2000, 54: 74-79.
    [19]小野顺子.α-葡萄糖苷酶抑制剂[J].日本医学介绍, 1999, 20(1): 22-24.
    [20]陈代杰.微生物药[M].华东理工大学出版, 1999.
    [21] Melo E B, Gomes A S, Carvalho I.α- andβ-Glucosidase inhibitors: chemical structure and biological activity[J]. Tetrahedron, 2006, 62 (43): 10277-10302.
    [22] Mbaze L M, Poumale H M P, Wansi J D, et al.α-Glucosidase inhibitory pentacyclic triterpenes from the stem bark of Fagara tessmannii (Rutaceae)[J]. Phytochemistry, 2007, 68(5): 591-595.
    [23]康文艺,张丽,宋艳丽.滇丁香中抑制α-葡萄糖苷酶活性成分研究[J].中国中药杂志, 2009, 34(4): 406-409.
    [24] Luo JG, Ma L, Kong LY. New triterpenoid saponins with strongα-glucosidase inhibitory activity from the roots of Gypsophila oldhamiana[J]. Bioorganic & Medicinal Chemistry, 2008, 16(6): 2912-2920.
    [25] Gao H, Huang YN, Gao B, et al. Inhibitory effect onα-glucosidase by Adhatoda vasica Nees[J]. Food Chemistry , 2008, 108(3): 965-972.
    [26] Ikeda K, Takahashi M, Nishida M, et al. Homonojirimycin analogues and their glucosides from Lobelia sessilifolia and Adenophora spp.(Campanulaceae)[J]. Carbohydrate Research, 2000, 323(2): 73-80.
    [27]杨海霞,朱瑞祥. 1-脱氧野尻霉素(DNJ)的研究进展[J].蚕桑通报, 2003, 34(1): 6-10.
    [28] Tabopda T K, Ngoupayo J, Awoussong P K, et al. Triprenylated Flavonoids from Dorstenia psilurus and Theirα-Glucosidase Inhibition Properties[J]. J. Nat. Prod. 2008, 71(12): 2068–2072.
    [29]马静,刘树性.桑枝中1-脱氧野尻霉素(DNJ)的研究进展[J].食品科技, 2006, 9: 112-114.
    [30] Shibano M, Kakutani K, Taniguchi M, et al. Antioxidant constituents in the dayflower (Commelina communis L.) and theirα-glucosidase-inhibitory activity[J]. J Nat Med, 2008, 62(3): 349-353.
    [31]康文艺,张丽,宋艳丽.茜草中抑制α-葡萄糖苷酶活性成分研究[J].中国中药杂志, 2009, 34(9): 1104-1107.
    [32] Babu K S, Tiwari A K, Srinivas P V, et al. Yeast and mammalianα-glucosidase inhibitory constituents from Himalayan rhubarb Rheum emodi Wall.ex Meisson[J]. Bioorganic & Medicinal Chemistry Letters, 2004, 14(14): 3841-3845.
    [33]张宏愿,阎莉.黄酮类化合物抗微生物药理学研究进展[J].抗感染药学, 2009, 6(2): 92-95.
    [34] Jong-Anurakkun N, Bhandari M R, Hong G, et al.α-Glucosidase inhibitor from Chinese aloes[J]. Fitoterapia, 2008, 79(6) : 456-457.
    [35] Lee SS, Lin HC, Chen CK. Acylated flavonol monorhamnosides,α-glucosidase inhibitors,from Machilus philippinensis[J]. Phytochemistry. 2008, 69(12): 2347-2353.
    [36] Seo E J, Curtis-Long M J, Lee B W, et al. Xanthones from Cudrania Tricuspidata displaying potentα-glucosidase inhibition[J]. Bioorganic & Medicinal Chemistry Letters, 2007, 17: 6421-6424.
    [37] Ichiki H, Takeda O, Sakakibara I, et al. Inhibitory effects of compounds from Anemarrhenae Rhizoma onα-glucosidase and aldose reductase and its contents by drying conditions[J]. J Nat Med, 2007, 61: 146-153.
    [38] Iio M, Yoshioka A, Imayoshi Y, et al. Effect of Flavonoids onα-Glucosidase andβ-Fructosidase from Yeast[J]. Agric. Biol.Chem., 1984, 48(6): 1559-1563.
    [39] Kato A, Minoshima Y, Yamamoto J, et al. Protective Effects of DietaryChamomile Tea on Diabetic Complications[J]. J. Agric. Food Chem., 2008, 56: 8206–8211.
    [40] Watanabe J, Kawabata J, Kurihara H, et al. Isolation and Identification ofα-Glucosidase Iinhibitors from Tochu-cha[J]. Biosic. Biotech. Biochem., 1997, 61: 177-178.
    [41]康文艺,王金梅,张丽.河南产连翘叶抑制α-糖苷酶活性成分研究[J].中国中药杂志, 2010, 35(9): 1156-1159.
    [42] Lee DS, Lee SH. Genistein, a soy isolavone, is a potentα-glucosidase inhibitor[J]. FEBS Letters, 2001, 501: 84-86.
    [43] Raoa S A, Srinivas P V, Tiwari A K, et al. Isolation, characterization and chemobiological quantification ofα-glucosidase enzyme inhibitory and free radical scavenging constituents from Derris scandens Benth[J]. Journal of Chromatography B, 2007, 855: 166-172.
    [44] Jong-Anurakkun N, Bhandari M R, Kawabata J, et al.α-Glucosidase inhibitors from Devil tree (Alstonia scholaris)[J]. Food Chemistry, 2007, 103: 1319-1323.
    [45] Gamberucci A, Konta L, Colucci A, et al. Green tea flavonols inhibit glucosidase II[J]. Biochemical Pharmacology, 2006, 72: 640-646.
    [46] Bhandari M R, Jong-Anurakkun N, Hong G, et al.α-Glucosidase andα-amylase inhibitory activities of Nepalese medicinal herb Pakhanbhed (Bergenia ciliata, Haw.)[J]. Food Chemistry, 2008, 106: 247-252.
    [47] Zhao J, Zhou XW, Chen XB, et al.α-glucosidase inhibitory constituents from Toona sinensis Chemistry of Natural Compounds, 2009, 45:244-246.
    [48] Wansi J D, Lallemand MC, Chiozem D D, et al.α-Glucosidase inhibitory constituents from stem bark of Terminalia superba (Combretaceae)[J]. Phytochemistry, 2007, 68: 2096-2100.
    [49] Gao H, Huang YN, Gao B, et al.α-Glucosidase inhibitory effect by the flower buds of Tussilago farfara L.[J]. Food Chemistry, 2008, 106: 1195-1201.
    [50] Matsuuraa H, Miyazakia H, Asakawaa C, et al. Isolation ofα-glusosidase inhibitors from hyssop (Hyssopus officinalis)[J]. Phytochemistry, 2004, 65: 91-97.
    [51] Du ZY, Liu RR, Shao WY, et al.α-Glucosidase inhibition of natural curcuminoids and curcumin analogs[J]. European Journal of MedicinalChemistry, 2006, 41: 213-218.
    [52] Lam SH, Chen JM, Kang CJ, et al.α-Glucosidase inhibitors from the seeds of Syagrus romanzoffiana[J]. Phytochemistry, 2008, 69: 1173-1178.
    [53] Gao H, Huang YN, Xu PY, et al. Inhibitory effect onα-glucosidase by the fruits of Terminalia chebula Retz.[J]. Food Chemistry, 2007, 105: 628-634.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700