用户名: 密码: 验证码:
滚动轴承磨损区域静电监测技术及寿命预测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
滚动轴承作为旋转机械关键部件,其性能退化或失效影响整机性能甚至导致设备非计划停机,造成经济损失甚至人员伤亡。由于滚动轴承寿命离散较大,传统的定时维修往往造成“维修不足”或者“维修过剩”,因此研究滚动轴承状态监测技术和寿命预测方法,能够变定时维修为视情维修、预测维修,是实现故障预防、保障设备安全服役的关键。
     振动、温度等常规监测技术能够监测到滚动轴承较严重故障,如裂纹、表面剥落等,从发现故障征兆到最后失效间隔时间短,难以有充分时间制定维修决策。本文针对常规监测技术对于早期故障发现能力的不足,设计研制了磨损区域静电传感器,探讨静电信号的主要影响因素;深入分析静电信号噪声干扰类型,提出多方法联合的去噪方法,有效提高静电监测技术早期故障识别能力;从时域、频域以及复杂度度量角度提取静电信号多维特征,进而提出多特征参数融合的轴承性能退化评估方法以及两阶段剩余寿命预测框架。研究成果对于提高机械设备关键部件的状态监测和寿命预测能力具有重要的参考价值和指导意义。
     论文主要研究内容如下:
     (1)系统总结磨损区域荷电机理,分析静电测量原理并设计研制磨损区域静电传感器,探讨了静电感应信号的主要影响因素。开展了点接触滑动摩擦胶合实验,验证静电传感器早期故障检测能力,分析载荷转速对其影响,进行了滚动摩擦故障注入实验,研究静电传感器对于不同尺寸故障的反应能力以及受载荷转速的影响,设计改装了滚动轴承疲劳加速寿命监测试验平台,比较分析静电监测与振动监测的故障反应能力。
     (2)由于静电感应信号混有不同类型强噪声干扰,很难采取单一方法有效抑制噪声。通过仿真分析比较了陷波器法、独立分量法以及谱插值法三种工频干扰去除方法的效果,得出谱插值法计算简单并且滤除工频及其谐波分量的同时保留了附近有效成分。通过仿真分析比较了小波去噪、EMD去噪以及奇异值差分谱三种方法用于背景噪声和随机脉冲的去除效果,得出奇异值差分谱方法信噪比最高,效果最佳。在此基础上结合静电信号特点提出一种基于谱插值法和奇异值差分谱法的联合去噪方法,通过仿真和轴承寿命实验验证了所提方法的有效性和必要性。
     (3)针对静电监测常规时域频域指标对滚动轴承性能退化的反映能力不足,以及相关研究的匮乏,借鉴振动监测特征参数的研究方法,进一步探索新的适用于静电监测的指标。静电信号中随机成分随着滚动轴承性能退化而不断变化,引入复杂度度量方法描述这一变化过程,分析多种复杂度度量指标对滚动轴承性能退化的反映能力,发现复杂度指标对于轴承性能早期退化更加敏感,能够有效补充现有常规静电特征参数的不足。
     (4)为解决单特征参数对轴承性能退化反应不灵敏或不一致的问题,提出基于谱回归-高斯混合模型(spectrum regression-gaussian mixture models,SR-GMM)的多参数融合性能评估模型。利用谱回归后正常状态数据建立GMM的基准模型,以基于贝叶斯推断的距离(bayesianinference distance,BID)表征测试数据与GMM模型的全局距离,作为反映轴承性能退化程度的定量指标。与其它两种基于GMM的监控指标以及基于支持向量描述的性能评估方法相比,所提方法能够更早地发现退化的发生。在均采用本文所提融合评估方法前提下,静电监测评估结果相比振动监测更早发现异常,静电监测能够为振动等常规监测手段提供有益补充。
     (5)结合滚动轴承运行的两阶段性特点,提出了多特征参数融合的随机滤波剩余寿命预测框架,在正常运行状态时以监测为主,当轴承进入缺陷运行阶段时进行寿命预测。以多特征参数融合结果BID为输入,以随机滤波模型建立BID与剩余寿命的关系,该方法解决了两个主要问题,一是失效阈值难以给定或没有标准可以遵循的问题,二是随机滤波模型需要输入数据为单维,高维数据输入时需计算其联合概率分布,增加计算成本影响在线寿命预测速度的问题。将所提方法与基于支持向量机的状态寿命评估方法,基于时间序列的寿命预测方法以隐半马尔科夫寿命预测方法进行了比较,验证本文所提方法的优越性。
Rolling bearing is one of the key components in the rotating machinery, once the failure of therolling bearing occured will affect the performance of the whole machine, or cause unplanned outage,which will make for economic losses or even the heavy casualties. As the greate discreteness of thelife of the rolling bearing, traditional maintenance often causes “inadequate maintenance” or “Excessmaintenance”. Therefore it is great significance to study the condition monitoring and life predictionmethods of the rolling bearing, which are the crucial technicals of the fault prevention and securityservice of the devices. In view of the traditional monitoring techniques for the inadequacy of ability ofearly failure found, the wear site electrostatic sensor and the corresponding life prediction frameworkis designed and proposed in this paper. The research results have important reference values andguiding significances for the improvement of condition monitoring and life prediction ability ofmechanical equipment.
     The main contents of this paper are as follows:
     (1) The wear site charging mechanism is revaled in this paper, and we design the electrostaticsensor based on the electrostatic induction principle. Considering the rolling bearing workingpeculiarity as a mixture of rolling and sliding, sliding bearing steel point contacts for early detectionof scuffing experiments, rolling friction fault injection experiments and rolling bearing lifeexperiments are carried out, which are used to verify the electrostatic sensor sensitivity for earlyfailure and different degree of faults. The results show that the electrostatic sensor could detectabnormal signals before complete failure and provide more effective information of the rolling beaingdegradation.
     (2) As electrostatic induction signals are mixed with strong different types of noises, it is difficultto adopt single method to suppress noises effectively. Three power frequency interference removemethod, digital notch filter, independent component analysis and spectrum interpolation areintroduced and compared by simulation, and then three method, wavelet denoising, EMD denosingand difference spectrum of singular values, are introduced to remove the background noises and therandom pulses. On this basis, a noval joint denoising method based on the spectrum interpolation anddifference spectrum of singular values is proposed to denoising of the electrostatic signals. Thesimulation and experiments show that the proposed method is effective and necessary.
     (3) For the traditional time and frequency domain index is insufficient to reflect the performance degradation of the rolling bearing, new indicators are explored for electrostatic monitoring. The natureChange of the electrostatic signals of rolling bearing life cycle is the random component changingduring the degradation process. Complexity just right can reflect this change so several complexitymeasures are proposed in this paper. The results show that complexity measures can reflect initialdegradation more sensitive than general indices.
     (4) In view of single feature is insensitive or inconsistency on the performance degradation of thebearing, a multi-parameter fusion method based on spectrum regression-gaussian mixture models(SR-GMM) is proposed in this paper. Several dimension reduction algorithms are compared and theSR mothod will be better to discover the data structure and has faster computing speed, and than thedata set of normal state is used to built the baseline GMM, a new index, bayesian inference distance(BID), is used to characterize the global distance of the test data to the GMM model, which is usedas a quantitative indicator to reflect the bearing performance degradation degree. This indicator usesbayesian inference combined priori and posteriori probability, which could earlier response to datachanges. Comparing to the other index, bayesian inference probability (BIP) and negative loglikelihood probability (NLLP), BID is advantageous. And the GMM-BID method can finddegradation occurred much earlier than the support vector domain description (SVDD) method. Tofurther illustrate the advantages of electrostatic monitoring, it is compared with the vibrationmonitoring, it is found that the electrostatic monitoring is more sensitive to the early fault and canprepared enough time for the decision-making.
     (5) Stochastic filtering life prediction model is brought into the field of electrostaticmonitoring.In view of data input of stochastic filtering model need to be one-dimensional, when theinput is high-dimensional, it need to calculating the joint probability distribution, which willinfluence the speed of calculation, a multi-feature fusion life prediction framework based onstochastic filtering is proposed, which the BID results are used as the input data, and establish therelationship between BID and residual life by stochastic filtering. The accuracy of the predictionresults is verified by the experiments. Meanwhile, the proposed method is compared with the statelife assessment method based on support vector machine (SVM), life prediction based on time seriesand hidden semi-Markov model (HSMM), the results show the superiority of the proposed method.
引文
[1]陈进.机械设备振动监测与故障诊断[M].上海:上海交通大学出版社,1999.
    [2]陈果.滚动轴承早期故障的特征提取与智能诊断[J].航空学报,2009,30(2):362-367.
    [3] Ashok N. S., Robert W. M., Claudia M. Integrated Vehicle Health Management, Technical Plan,Version2.03.2009. National Aeronautics and Space Administration Aeronautics ResearchMission Directorate Aviation Safety Program.
    [4] Bird G.., Christensen M., Lutz D., Scandura P. A., Use of integrated vehicle health managementin the field of commercial aviation, Proceedings of the1st International Forum on SystemHealth Engineering and Management in Aerospace–NASA ISHEM Forum2005,Napa,California,USA,7–102005, paper no.12.
    [5]国际航空运输协会(IATA).国际航空运输2002年度行业报告.北京:国际航空运输协会,2002.
    [6] Mercer C. R., Simon D. L., Hunter G. W. et al. Fundamental Technology Development for Gas-turbine Engine Health Management [R]. NASA-TM-2007-00223642007.
    [7] Michael G. P., Prognostics and Health Management of Electronics. John Wiley&Sons.,2008.
    [8]涂善东,葛世荣,孟光,赵永翔,阎楚良.机械与制造科学学科发展战略研究报告(2006-2010年).机械结构强度与失效,2006:74-104.
    [9]国家中长期科学和技术发展规划纲要(2006-2020年).中华人民共和国国务院,2006.
    [10]国家“十一五”科学技术发展规划.中华人民共和国科学技术部,2006.
    [11] Peng Z K, Chu F L. Application of the wavelet transform in machine condition monitoring andfault diagnostics: a review with bibliography[J]. Mechanical systems and signal processing,2004,18(2):199-221.
    [12] Newland D E. An introduction to random vibrations, spectral and wavelet analysis[M].DoverPublications. com,2012.
    [13] Ocak H. Automatic detection of epileptic seizures in EEG using discrete wavelet transform andapproximate entropy[J]. Expert Systems with Applications,2009,36(2):2027-2036.
    [14]梁霖,徐光华.基于自适应复平移Morlet小波的轴承包络解调分析方法[J].机械工程学报,2006,42(10):151-155.
    [15]陶新民,徐晶,杜宝祥,等.基于小波域广义高斯分布的轴承故障诊断方法[J].机械工程学报,2009,45(10):61-67.
    [16]冯辅周,司爱威,饶国强,等.基于小波相关排列熵的轴承早期故障诊断技术[J].机械工程学报,2012,48(13):73-79.
    [17]袁静,何正嘉,訾艳阳.基于提升多小波的机电设备复合故障分离和提取[J].机械工程学报,2010,46(1):79-85.
    [18]赵学智,陈统坚,叶邦彦,等.内积型和卷积型小波变换对信号处理效果的研究[J].机械工程学报,2004,40(3):55-60.
    [19] N.E. Huang, Z. Shen, S.R. Long The Empirical mode decomposition and the Hilbert spectrumfor nonlinear and non-stationary time series analysis [J].Proceedings of the Royal Society ofLondon1998454903–995.
    [20] Yang Yu, Yu Dejie, Cheng Junsheng A roller bearing fault diagnosis method based on EMDenergy entropy and ANN [J].Journal of Sound and Vibration200629469–277.
    [21] Yu Yang, Dejie Yu, Junsheng Cheng. A fault diagnosis approach for roller bearing based onIMF envelope spectrum and SVM[J]. Measurement402007943–950.
    [22] Cheng Junsheng, Yu Dejie, Yang Yu A fault diagnosis approach for roller bearings based onEMD method and AR model[J] Mechanical Systems and Signal Processing200620350-362.
    [23] Yaguo Lei, Jing Lin, Zhengjia He, Ming J. Zuo, A review on empirical mode decomposition infault diagnosis of rotating machinery [J]. Mechanical Systems and Signal Processing,2013,35(1-2):108-126.
    [24] Wu,Z.H.,Huang,N.E. A study of the characteristics of white noise using the empirical modedecomposition method[J]. Proceedings of the Royal Society of London,2004460A,1597-1611.
    [25] Yaguo Lei, Zhengjia He,Yanyang Zi Application of the EEMD method to rotor fault diagnosisof rotating machinery[J]. Mechanical Systems and Signal Processing2009231327-1338.
    [26] Yaguo Lei, Ming J Zuo Fault diagnosis of rotating machinery using an improved HHT basedon EEMD and sensitive IMFs[J]. Meas. Sci. Technol.200920125701(12pp).
    [27] Yan, J.H.,J. Lee, Degradation assessment and fault modes classification using logisticregression[J]. Journal of Manufacturing Science and Engineering-Transactions of the ASME,2005,127(4):912-914.
    [28] Caesarendra W, Widodo A, Yang B S. Application of relevance vector machine and logisticregression for machine degradation assessment[J]. Mechanical Systems and Signal Processing,2010,24(4):1161-1171.
    [29] Pan Y, Chen J, Li X. Bearing performance degradation assessment based on lifting waveletpacket decomposition and fuzzy c-means[J]. Mechanical Systems and Signal Processing,2010,24(2):559-566.
    [30] Qiu H, Lee J, Lin J, et al. Robust performance degradation assessment methods for enhancedrolling element bearing prognostics[J]. Advanced Engineering Informatics,2003,17(3):127-140.
    [31] Huang R, Xi L, Li X, et al. Residual life predictions for ball bearings based on self-organizingmap and back propagation neural network methods[J]. Mechanical Systems and SignalProcessing,2007,21(1):193-207.
    [32] Yu J. Bearing performance degradation assessment using locality preserving projections andGaussian mixture models[J]. Mechanical Systems and Signal Processing,2011,25(7):2573-2588.
    [33] Yu J B. Bearing performance degradation assessment using locality preserving projections[J].Expert Systems with Applications,2011,38(6):7440-7450.
    [34] Yu J. A hybrid feature selection scheme and self-organizing map model for machine healthassessment[J]. Applied Soft Computing,2011,11(5):4041-4054.
    [35] Lapira E, Brisset D, Davari Ardakani H, et al. Wind turbine performance assessment usingmulti-regime modeling approach[J]. Renewable Energy,2012,45:86-95.
    [36] Hawman M W, Galinaitis W S. Acoustic emission monitoring of rolling element bearings[C]//Ultrasonics Symposium. Proceedings, IEEE1988:885-889.
    [37]郝如江,卢文秀,褚福磊.声发射检测技术用于滚动轴承故障诊断的研究综述[J].振动与冲击,2008,27(3):75-79.
    [38] Al-Ghamd A M, Mba D. A comparative experimental study on the use of acoustic emission andvibration analysis for bearing defect identification and estimation of defect size[J]. MechanicalSystems and Signal Processing,2006,20(7):1537-1571.
    [39] Shiroishi J, Li Y, Liang S, et al. Bearing condition diagnostics via vibration and acousticemission measurements[J]. Mechanical systems and signal processing,1997,11(5):693-705.
    [40] Mba D, Rao R B K N. Development of Acoustic Emission Technology for ConditionMonitoring and Diagnosis of Rotating Machines; Bearings, Pumps, Gearboxes, Engines andRotating Structures[J].2006.
    [41]赵元喜,胥永刚,高立新,等.基于谐波小波包和BP神经网络的滚动轴承声发射故障模式识别技术[J].振动与冲击,2010,29(010):162-165.
    [42] Muir D M, Howe B. In-line oil debris monitor(ODM) for the advanced tactical fighterengine[R]. SAE Paper961308, May1996.
    [43] Hughes I, Muir D. On-line oil debris monitor for aircraft engines[C].JOAP Conference,November,1994
    [44] Higgins P D, Crow J T. Advances in commercial engine lube debris monitoring[C].972603,1-4,1997
    [45] Byington C S, Schalcosky D C. Advances in real time oil analysis[J]. Practicing Oil AnalysisMagazine,2000,11(2):28-34.
    [46]宁练,周孑民.滚动轴承内部温度状态监测技术[J].轴承,2007,2:25-27.
    [47]周华明,孙宝元.一种轧钢机轴承温度传感器的研制[J].传感器技术,2001,20(2):19-21.
    [48] T.J. Harvey, R.J.K. Wood, H.E.G. Powrie. Electrostatic wear monitoring of rolling elementbearings. Wear20072631492-1501.
    [49] M. Craig, T.J. Harvey, R.J.K. Wood, K. Masuda, M. Kawabata, H.E.G. Powrie. Advancedcondition monitoring of tapered roller bearings, Part1. Tribology International2009421846-1856.
    [50] S.L. Chen, M. Craig, R.J.K. Wood, L. Wang, R. Callan, H.E.G. Powrie. Bearing ConditionMonitoring Using Multiple Sensors and Integrated Data Fusion Techniques2008.
    [51] Chen S L, Wood R J K, Wang L, et al. Wear detection of rolling element bearings usingmultiple-sensing technologies and mixture-model-based clustering method. Proceedings of theInstitution of Mechanical Engineers, Part O: Journal of Risk and Reliability,2008222(2):207-218.
    [52] Fisher C E. Gas path condition monitoring using electrostatic techniques[C]. Engine ConditionMonitoring: Technology and Experience,1988.
    [53] Cartwright R A, Fisher C. Marine gas turbine condition monitoring by gas path electrostaticdetection techniques[C]. International Gas Turbine and Aero-engine Congress and Exposition,American Society of Mechanical Engineers Paper91-GT-376.
    [54] Couch R P, Rossbach D R. Sensing incipient engine failure with electrostatic probes[C].Instrumentation for Airbreathing propulsion. Proceedings of the Symposium, Monterey,1972:515-529.
    [55] Couch R P, Rossbach D R. Sensing jet engine performance and incipient failure withelectrostatic probes instrumentation for airbreathing propulsion[C]. Proceedings of theSymposium, Monterey,1972:515-529.
    [56] Couch R P. Detecting abnormal turbine engine deterioration using electrostatic methods[J].Journal of Aircraft,1978,15(10):692-695.
    [57] Powrie H E G, K.Mcnicholas. Gas path condition monitoring during accelerated mission testingof a demonstrator engine[C]. The33rd AIAA/ASME/SAE/ASEE Joint Propulsion Conferenceand Exhibit, Seattle, WA, USA, AIAA,1997,2904.
    [58] Fisher C E. Gas path debris monitoring-A21st century PHM tool[C]. IEEE AerospaceConference Proceedings, Montana, USA, IEEE2000,6:441-448.
    [59] Novis A, Powrie H E G. PHM Sensor Implementation in the Real World–a Status Report[C],Proceedings of IEEE Aerospace Conference,Montana, USA,2006,3:1-9.
    [60] Powrie H, Novis A. Gas path debris monitoring for F-35joint strike fighter propulsion systemPHM[C]. Proceedings of IEEE Aerospace Conference, Montana, USA,2006,2:1-8
    [61] Powrie H E G, Fisher C E. Engine-health monitoring: towards total prognostics[C]. IEEEAeropsace Conference Proceedings, March,1999,3(6-13):11-20.
    [62] Powrie H E G. Use of electrostatic technology for aero engine oil system monitoring[C].Proceedings of IEEE Aerospace Conference,2000,57-71.
    [63] Powrie H E G, Wood R J K, Harvey T J et al. Electrostatic charge generation associated withmachinery component deterioration[C]. Proceedings of IEEE Aerospace Conference, Big Sky,Montana, March2002,6-2927-2934.
    [64] Tasbaz O D, Wood R J K, Browne M, et al. Electrostatic monitoring of oil lubricated slidingpoint contacts for early detection of scuffing[J]. wear,1999,230(1):86-97.
    [65] Morris S, Wood R J K, Harvey T J, et al. Electrostatic charge monitoring of unlubricated slidingwear of a bearing steel[J]. Wear,2003,255(1):430-443.
    [66] Wang L, Wood R J K, Harvey T J, et al. Wear performance of oil lubricated silicon nitridesliding against various bearing steels[J]. Wear,2003,255(1):657-668.
    [67] Wang L, Wood R J K, Care I, et al. Electrostatic wear sensing of ceramic-steel lubricatedcontacts[J]. Tribology Series,2003,43:711-720.
    [68] Sun J, Wood R J K, Wang L, et al. Wear monitoring of bearing steel using electrostatic andacoustic emission techniques[J]. Wear,2005,259(7):1482-1489.
    [69] Harvey T J, Morris S, Wang L, et al. Real-time monitoring of wear debris using electrostaticsensing techniques[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal ofEngineering Tribology,2007,221(1):27-40.
    [70] Harvey T J, Wood R J K, Denuault G, et al. Investigation of electrostatic charging mechanismsin oil lubricated tribo-contacts[J]. Tribology international,2002,35(9):605-614.
    [71] Harvey T J, Wood R J K, Powrie H E G, et al. Charging ability of pure hydrocarbons andlubricating oils[J]. Tribology transactions,2004,47(2):263-271.
    [72] Harvey T J, Wood R J K, Denuault G, et al. Effect of oil quality on electrostatic chargegeneration and transport[J]. Journal of electrostatics,2002,55(1):1-23.
    [73] Chiou Y C, Chang Y P, Lee R T. Tribo-electrification mechanism for selfmated metals in drysevere wear process. Part I. Pure hard metals[J]. Wear,2003,254(7-8):606–615.
    [74] Chiou Y C, Chang Y P, Lee R T. Tribo-electrification mechanism for selfmated metals in drysevere wear process. Part II. Pure soft metals[J]. Wear,2003,254(7-8):616–624.
    [75] Chang Y P, Chu H M, Chou H M. Effects of mechanical properties on the tribo-electrificationmechanisms of iron rubbing with carbon steels[J]. Wear,2007,262(1-2):112–120.
    [76] Chang Y P, Chu H M, Horng R F, et al. Another method of using dynamic tribo-electrificationmechanisms for measuring gas flowrate[J]. Proceedings of the Institution of MechanicalEngineers, Part J: Journal of Engineering Tribology,2007221(4):479-487
    [77]许传龙,汤光华,杨道业等.静电传感器灵敏场有限元仿真研究[J].仪器仪表学报,2007,28(7):1311-1318.
    [78]许传龙.气固两相流颗粒荷电及流动参数检测方法研究[D].南京:东南大学能源与环境学院,2006.
    [79]许传龙,汤光华,王式民等.基于静电传感器空间滤波效应的颗粒速度测量[J].化工学报,2007,58(1):67-74.
    [80]文振华,左洪福,李耀华.气路颗粒静电监测技术及实验[J].航空动力学报,2008,23(12):2321-2326.
    [81]李耀华,左洪福,刘鹏鹏.某型航空涡轮轴发动机尾气静电监测探索性实验[J].航空学报,2010,31(11):2174-2181.
    [82]刘鹏鹏,左洪福,孙见忠,等.涡喷发动机气路滑油泄漏故障在线监测研究[J].仪器仪表学报,2012,33(11):2601-2607.
    [83]陈志雄,左洪福,詹志娟,等.滑油系统全流量在线磨粒静电监测技术研究[J].航空学报,2012,33(3):446-452.
    [84]陈志雄,左洪福,詹志娟,等.轴承钢摩擦副全流量在线磨粒静电监测方法[J].航空动力学报,2012,27(5):1096-1104.
    [85]陈志雄,左洪福,詹志娟,等.黄铜全流量在线磨粒静电监测实验研究[J].中国机械工程,2012,23(15):1848-1854.
    [86] Cook R J, Lawless J F. The statistical analysis of recurrent events[M]. Springer,2007.
    [87] Meeker W Q, Escobar L A. Statistical method for reliability data[M]. John Wiley and Sons,1998.
    [88] Stephen B., Johnson, T. G., Seth K., System Health Management: with Aerospace Applications.Wiley,2011.
    [89] Cheng S. F., Michael H. Azarian, Michael G. Pecht. Sensor Systems for Prognostics and HealthManagement. Sensors2010,10,5774-5797.
    [90] Vachtsevanos G., Lewis F. L., Roemer M., A. Hess, B. Wu. Intelligent Fault Diagnosis andPrognosis for Engineering Systems. John Wiley&Sons,2006.
    [91]孙博,康锐,谢劲松.故障预测与健康管理系统研究和应用现状综述[J].系统工程与电子技术,2007,29(10):1762-1767.
    [92]曾声奎,吴际.故障预测与健康管理技术的现状与发展[J].航空学报,2005,26(5):626-632.
    [93] Si X S, Wang W, Hu C H, et al. Remaining useful life estimation–A review on the statisticaldata driven approaches[J]. European Journal of Operational Research,2011,213(1):1-14.
    [94] Ray A., Tangirala S., Stochasticmodeling of fatigue crack dynamics for on-line failureprognostics[J], IEEE Transactions on Control Systems Technology4(1996)443-451.
    [95] Kacprzynski G. J., Sarlashkar A., Roemer M.J., Predicting remaining life by fusing the physicsof failure modeling with diagnostics[J], Journal of Metal56(2004)29-35.
    [96] Li C. J., Lee H., Gear fatigue crack prognosis using embedded model, gear dynamic model andfracture mechanics[J], Mechanical Systems and Signal Processing19(2005)836-846.
    [97] Pecht M. G., Prognostics and health management of electronics[J]. Wiley-Interscience, NewYork,2008.
    [98]周井玲,吴国庆,陈晓阳.氮化硅陶瓷球滚动接触疲劳寿命模型[J].机械工程学报,2008,44(2):37-42.
    [99] Valentin R., Osterman M., Newman B., Remaining life assessment of aging electronics inavionc applications[J], Proceedings of the Annual Reliability and Maintainability Symposium(RAMS),2003:313-318.
    [100] Caesarendra W, Widodo A, Yang B S. Combination of probability approach and support vectormachine towards machine health prognostics[J]. Probabilistic Engineering Mechanics,2011,26(2):165-173.
    [101] Yam R C M, Tse P W, Li L, et al. Intelligent predictive decision support system forcondition-based maintenance[J]. The International Journal of Advanced ManufacturingTechnology,2001,17(5):383-391.
    [102] Caesarendra W, Widodo A, Yang B S. Application of relevance vector machine and logisticregression for machine degradation assessment[J]. Mechanical Systems and Signal Processing,2010,24(4):1161-1171.
    [103]任淑红,左洪福,白芳.基于带漂移的布朗运动的民用航空发动机实时性能可靠性预测[J].航空动力学报,2009,12:025.
    [104]蔡景,任淑红,陆晓华.基于带漂移布朗运动的滚轮滑轨可靠性预测方法研究[J].中国机械工程,2012,23(012):1408-1412.
    [105]朱磊,左洪福,蔡景.基于Wiener过程的民用航空发动机性能可靠性预测[J].航空动力学报,2013,28(5).
    [106] Si X S, Wang W, Hu C H, et al. A Wiener-process-based degradation model with a recursivefilter algorithm for remaining useful life estimation[J]. Mechanical Systems and SignalProcessing,2012.
    [107] De Freitas N. Rao-Blackwellised particle filtering for fault diagnosis[C]//Aerospace ConferenceProceedings,2002. IEEE. IEEE,2002,4:4-1767-4-1772vol.4.
    [108] Orchard M E, Vachtsevanos G J. A particle-filtering approach for on-line fault diagnosis andfailure prognosis[J]. Transactions of the Institute of Measurement and Control,2009,31(3-4):221-246.
    [109] Sun J. Z., Zuo H. F., Wang W. B., Michael G. Pecht., Application of a state space modelingtechnique to system prognostics based on a health index for condition-based maintenance[J].Mechanical Systems and Signal Processing (October2011) doi:10.1016/j.ymssp.2011.09.029.
    [110] Wang W. A model to predict the residual life of rolling element bearings given monitoredcondition information to date[J]. IMA Journal of Management Mathematics,2002,13(1):3-16.
    [111] Wang W. A two-stage prognosis model in condition based maintenance[J]. European Journal ofOperational Research,2007,182(3):1177-1187.
    [112] Liao H, Zhao W, Guo H. Predicting remaining useful life of an individual unit usingproportional hazards model and logistic regression model[C]//Reliability and MaintainabilitySymposium,2006. RAMS'06. Annual. IEEE,2006:127-132.
    [113]陈凤腾,左洪福,李惠娟,等.基于视情维修的航空发动机备发预测方法研究[J].机械科学与技术,2008,27(8):101-108.
    [114]戎翔,左洪福,张海军.视情维修策略下的民航发动机拆换时间预测研究[J].机械科学与技术,2008,27(5):583-587.
    [115] Dong M, He D. Hidden semi-Markov model-based methodology for multi-sensor equipmenthealth diagnosis and prognosis[J]. European Journal of Operational Research,2007,178(3):858-878.
    [116] Dong M. A novel approach to equipment health management based on auto-regressive hiddensemi-Markov model (AR-HSMM)[J]. Science in China Series F: Information Sciences,2008,51(9):1291-1304.
    [117]胡海峰,安茂春,秦国军,等.基于隐半Markov模型的故障诊断和故障预测方法研究[J].兵工学报,2009,30(1):69-75.
    [118]谢友柏主编.摩擦学科学及工程应用现状与发展战略研究:摩擦学在工业节能、降耗、减排中地位与作用的调查[M].北京:高等教育出版社,2009.
    [119] Parsons R. Electrical double layer: recent experimental and theoretical developments[J].Chemical Reviews,1990,90(5):813-826.
    [120] Gavis J, Koszman I. Development of charge in low conductivity liquids flowing past surfaces: atheory of the phenomenon in tubes[J]. Joumal of Colloid Science,1961,16(4):375-391.
    [121] Gavis J. Transport of electric charge in low dielectric constant fluids[J]. Chemical EngineeringScience,1964,19:237-252.
    [122] Touchard G, Patzek T W, Radke C J. A physicochemical explanation for flow electrification inlow-conductivity liquids in contact with a corroding wall[J]. IEEE Transactions on IndustryApplication,1996,32(5):1051-1057.
    [123] Cabaleiro J M, Paillat T, Moreau O, et al. Flow electrification of dielectric liquids in insulatingchannels: Limits to the application of the classical wall current expression[J]. Journal ofElectrostatics,2008,66,79-83.
    [124] Paillat T, Cabaleiro J M, Romat H, et al. Flow electrification process: the physicochemicalcorroding model revisited[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2009,16(2):259-263.
    [125] EL-Adawy M, Paillat T, Bertrand Y, et al. Physicochemical analysis at the interface betweenconductive solid and dielectric liquid for flow electrification phenomenon[J]. IEEETransactions on Industry Application,2010,46(4):1593-1600.
    [126] Nelson J K. Electrokinetic effects in pumped dielectric fluids[C]. Whitehead Memorial Lecture1993, Annual Report IEEE CEIDP,1993,25-61.
    [127] Williams I M, Richardson A T, Poulter R. The origins of conduction in hydrocarbons[C].Proceedings of the Sixth International Conference on Conduction and Breakdown in Dielectricliquids, Dreux,1978,49-55.
    [128] Grady P F O. Thales of miletus: The beginnings of western science and philosophy[M].Ashgate, Aldershot, UK,2002.
    [129] Wiles J A, Grzybowski B A, Winkleman A, et al. A tool for studying contact electrification insystems comprising metals and insulating polymers[J]. Anal. Chem.,2003,75:4859-4867.
    [130] Schein L B. Recent progress and continuing puzzles in electrostatics[J]. Science,2007,316:1572-1573.
    [131] Schmidt W F. Electrons in non-polar dielectric liquids[J]. IEEE Transactions on ElectricalInsulation,1991,26(4):560-567.
    [132] Lowell J. Contact electrification of metals[J]. J. Phys. D: Appl. Phys,1975,8:53-63.
    [133] Lowell J, Rose-Innes A C. Contact electrification[J]. Advances in Physics,1980,29:947-1023.
    [134] Terris B D, Stern J E, Ruggr D, et al. Contact electrification using force microscopy[J]. PhysicalReview Letters,1989,63(24):2669-2672.
    [135] Castle G S P. Contact charging between insulators[J]. Journal of Electrostatics,1997,40&41:13-20.
    [136] Horst S.物理手册[M].吴锡真,李祝霞,陈师平,译.北京:北京大学出版社,2004.
    [137] Harper W R. Contact and frictional electrification[M]. Oxford, Oxford University Press,1967.
    [138] Tanoue K, Ema A, Masuda H. Effect of material transfer and work hardening of metal surfaceon the current generated by impact of particles[J]. Journal of Chemical Engineering ofJapan,1999,32:544-548.
    [139] Nony L, Bocquet F, Loppacher C, et al. On the relevance of the atomic-scale contact potentialdifference by amplitude-modulation and frequency-modulation Kelvin probe forcemicroscopy[J]. Nanotechnology,2009,20(26):264014.
    [140] Zhang M, Liu B. Measurement of contact potential difference in head disk interface byreadback signal spectrum[J]. Microsystem technologies,2012,18(5):599-602.
    [141] Zuev L B, Danilov V I, Konovalov S V, et al. Influence of contact potential difference andelectric potential on the microhardness of metals[J]. Physics of the Solid State,2009,51(6):1137-1141.
    [142] Guidelli R, Becucci L. Estimate of the potential difference across metal/water interfaces andacross the lipid bilayer moiety of biomimetic membranes: an approach[J]. Soft Matter,2011,7(6):2195-2201.
    [143] Fenzel-Alexander D, Brock P, Diaz A. Control of contact charge in polymers with ionomers[J].Langmuir,1994,10:3323-3327.
    [144] Mizes H A, Conwell E M, Salamida D P. Direct observation of ion transfer in contact chargingbetween a metal and a polymer[J]. Appl. Phys. Lett.1990,56:1597-1599.
    [145] Nakayama K, Hashimoto H. Triboemission from various materials in atmosphere[J]. Wear,1991,147(2):335-343.
    [146] Nakayama K. Triboemission of charged particles and resistivity of solids[J]. Tribology Letters,1999,6(1):37-40.
    [147] Nakayama K. Tribocharging and friction in insulators in ambient air[J]. Wear,1996,194(1):185-189.
    [148] Sujak B, Gieroszynski A, Gieroszynska K. Energy distribution of exoelectrons emitted intovacuum from plastically deformed, oxide covered aluminum at low temperatures[J]. ActaPhysica Polonica,1974,46:3.
    [149] Morris S, Wood R J K, Harvey T J, et al. Use of electrostatic charge monitoring for earlydetection of adhesive wear in oil lubricated contacts[J]. Journal of tribology,2002,124(2):288-296.
    [150] Bhushan Bharat.摩擦学导论[M].葛世荣译,北京:机械工业出版社,2006.
    [151] Rossner M, Singer H. Measurement of micrometer particles by means of induced charges[C].IEEE Industry Applications Society Annual Meeting,1989,2:2233-2238.
    [152]温诗铸,黄平.摩擦学原理(第3版)[M]清华大学出版社.2008.
    [153]魏毅.基于电阻热噪声与振荡器的真随机数产生器设计[D].哈尔滨:哈尔滨工业大学,2007.
    [154] KEPHART J O,SORKIN G B.Fighting computer viruses[J].Scientific American,1997,277(5):56-61.
    [155] Ricardo Vigário,Jaakko S rel,Veikko Jousm ki,et al. Independent Component Approach to theAnalysis of EEG and MEG Recordings[J]. IEEE TRANSACTIONS ON BIOMEDICALENGINEERING.2000,47(5),589-593.
    [156] D. T. Mewett K. J. Reynolds H. Nazeran. Reducing power line interference in digitisedeiectromyogram recordings by spectrum interpolation[J]. Med. Bid. Eng. Comput.,2004,42,524-531.
    [157] SHIN K, FERADAY S A, HARRIS C J, et al. Optimal autoregressive modelling of a measurednoisy deterministic signal using singular value decomposition [J]. Mechanical Systems andSignal Processing,2003,17(2):423-432.
    [158]雷达,钟诗胜.基于奇异值分解和经验模态分解的航空发动机健康信号降噪方法[J].吉林大学学报.2012,42:xxx-xxx.
    [159] Jha S K, Yadava R D S.Denoising by singular value decomposition and its application toelectronic nose data processing[J]. Sensors Journal, IEEE,2011,11(1):35-44.
    [160]赵学智,叶邦彦,陈统坚.奇异值差分谱理论及其在车床主轴箱故障诊断中的应用[J].机械工程学报,2010,46(1):100-108.
    [161] Ma X, Zhou C, Kemp I J. Wavelets for the analysis and compression of partial dischargedata[R].2001Annual Report Conference on Electrical Insulation and Dielectric Phenomena,2001:329-334.
    [162]公茂盛,谢礼立. HHT方法在地震工程中的应用之初步探讨[J].世界地震工程,2003,19(3):39-43.
    [163]孙仁,沈海东,鲁传敬,等. HHT方法在脉搏波信号分析中的应用[J].医用生物力学,2006,21(2):87-93.
    [164]胡劲松,杨世锡,吴昭同,等.基于经验模态分解的旋转机械振动信号滤波技术研究[J].振动、测试与诊断,2003,23(2):96-98.
    [165]王洪波.基于支持向量机的非线性时间序列预测方法研究[D].无锡:江南大学通信与控制工程学院,2008.
    [166]潭善文,秦树人,汤宝平. Hilbert-Huang变换的滤波特性及其应用[J].重庆大学学报,2004,7(22):9-12.
    [167]吕志民,翟绪圣.基于奇异谱的降噪方法及其在故障诊断技术中的应用[J].机械工程学报,1999,35(3):85-88.
    [168]刘献栋,杨绍普,申永军,等.基于奇异值分解的突变信息检测新方法及其应用[J].机械工程学报,2002,38(6):102-105.
    [169]何田,刘献栋,李其汉.噪声背景下检测突变信息的奇异值分解技术[J].振动工程学报,2006,19(3):399-403.
    [170]张克南,陆扬,谢里阳,等.基于SVD方法的弱故障特征提取方法[J].机床与液压,2006,10:214-216.
    [171] Williams, T., X. Ribadeneira, S. Billington, T. Kurfess, Rolling element bearing diagnostics inrun-to-failure lifetime testing. Mechanical Systems and Signal Processing,2001,15(5):979-993.
    [172] Classem TACM et al The Wigner Distribution-A Tool for Time-Frequency Signal Analysis.Philips Journal of Research,1980(35)
    [173] Kaewkongka T. Joe Au Y. H. Rakowski R. et al. Continuous wavelets transform and neuralnetwork for condition monitoring of rotor-dynamic machinery. IEEE Instrumentation andMeasurement Technology Conference.2001:1962-1966
    [174]潘玉娜.滚动轴承的性能退化特征提取及评估方法研究[D].上海:上海交通大学,2011.
    [175] iha K. Event oriented system analysis[J]. Probabilistic engineering mechanics,2000,15(3):261-275.
    [176] Ozdemir, S., Measures of uncertainty in power split systems[J]. Mechanism and MachineTheory,2007,42(2):159-167.
    [177] Pincus S M. Approximate entropy: a complexity measure for biological time seriesdata[C]//Bioengineering Conference,1991, Proceedings of the1991IEEE Seventeenth AnnualNortheast. IEEE,1991:35-36.
    [178] Richman, J.S.,J.R. Moorman, Physiological time-series analysis using approximate entropy andsample entropy[J]. American Journal of Physiology-Heart and Circulatory Physiology,2000,278(6): H2039-H2049.
    [179] C. Bandt, B. Pompe Permutation entropy: a natural complexity measure for time series[J],Phys. Rev. Lett.200288174102-1-174102-4.
    [180] Ouyang G, Li J, Liu X, et al. Dynamic characteristics of absence EEG recordings withmultiscale permutation entropy analysis[J]. Epilepsy research,2012
    [181] Yan R, Liu Y, Gao R X. Permutation entropy: A nonlinear statistical measure for statuscharacterization of rotary machines[J]. Mechanical Systems and Signal Processing,2012,29:474-484.
    [182] Seung H S, Lee D D. The manifold ways of perception[J]. Science,2000,290(5500):2268-2269.
    [183] S. Roweis, L. Saul, Nonlinear dimensionality reduction by locally linear embedding[J], Science29020002323–2326.
    [184] M. Belkin, P. Niyogi, Laplacian eigenmaps for dimensionality reduction and datarepresentation[J], Neural Computation1520031373–1396.
    [185] J. Tenenbaum, D.D. Silva, J. Langford, A global geometric framework for nonlineardimensionality reduction[J], Science29020002319–2323.
    [186] X.F. He, P. Niyogi, Locality preserving projections[J], in: Proceedings of the Conference onAdvances in Neural Information Processing Systems,8–13December2003, Vancouver, Canada,MIT Press, Cambridge, MA,2004, pp.1–8.
    [187] Deng Cai, Xiaofei He, and Jiawei Han."Semi-Supervised Regression using SpectralTechniques"[J], Department of Computer Science Technical Report No.2749, University ofIllinois at Urbana-Champaign (UIUCDCS-R-2006-2749), July2006.
    [188] Deng Cai, Xiaofei He, and Jiawei Han."Spectral Regression for Dimensionality Reduction",Department of Computer Science Technical Report No.2856, University of Illinois atUrbana-Champaign (UIUCDCS-R-2007-2856), May2007.
    [189] Deng Cai, Xiaofei He, and Jiawei Han."SRDA: An Efficient Algorithm for Large ScaleDiscriminant Analysis", Department of Computer Science Technical Report No.2857,University of Illinois at Urbana-Champaign (UIUCDCS-R-2007-2857), May2007.
    [190] Deng Cai, Xiaofei He, and Jiawei Han."Isometric Projection", Proc.22nd Conference onArtifical Intelligence (AAAI'07), Vancouver, Canada, July2007.
    [191] Deng Cai, Xiaofei He, and Jiawei Han."Efficient Kernel Discriminant Analysis via SpectralRegression", Department of Computer Science Technical Report No.2888, University ofIllinois at Urbana-Champaign (UIUCDCS-R-2007-2888), August2007.
    [192] Povey D, Burget L, Agarwal M, et al. The subspace Gaussian mixture model-A structuredmodel for speech recognition[J]. Computer Speech&Language,2011,25(2):404-439.
    [193] Yum J, Kim T H, Kannatey-Asibu Jr E. A two-step feature selection method for monitoring toolwear and its application to the coroning process[J]. The International Journal of AdvancedManufacturing Technology,2013,64(9-12):1355-1364.
    [194]解翔.基于统计理论的多模态工业过程建模与监控方法研究[D].华东理工大学,2013.
    [195]解翔,侍洪波.多模态化工过程的全局监控策略[J].化工学报,2012,63(7):2156-2162.
    [196]潘玉娜,陈进.小波包-支持向量数据描述在轴承性能退化评估中的应用研究[J].振动与冲击,2009,28(4):164-167.
    [197]王英,王文彬,方淑芬.状态维修两阶段预知模型研究[J].哈尔滨工程大学学报,2007,28(11):1278-1281.
    [198]王英.设备状态维修系统结构与决策模型研究[D].哈尔滨工业大学博士论文,2007.
    [199]邓士杰,张英波,康海英,等.随机滤波模型在变速箱剩余寿命预测中的应用研究[J].军械工程学院学报,2013,25(1).
    [200] My tyri E, Pulkkinen U, Simola K. Application of stochastic filtering for lifetime prediction[J].Reliability Engineering&System Safety,2006,91(2):200-208.
    [201]苗学问,田喜明,洪杰.基于支持向量机的滚动轴承状态寿命模型[J].航空动力学报,2008,23(12):2190-2195.
    [202]苗学问.航空发动机主轴承使用寿命预测技术研究[D].北京航空航天大学,2008.
    [203]洪杰,韩磊,苗学问,等.基于支持向量机的滚动轴承状态寿命评估[J].北京航空航天大学学报,2010,8:005.
    [204]苗学问,牛枞,杨云,等.航空发动机主轴承使用状态寿命预测模型[J].南京航空航天大学学报,2012,29(2).
    [205]刘颖,严军.基于时间序列ARMA模型的振动故障预测[J].化工自动化及仪表,2011,38(7):841-843.
    [206] Yan J, Koc M, Lee J. A prognostic algorithm for machine performance assessment and itsapplication[J]. Production Planning&Control,2004,15(8):796-801.
    [207] Pham H T, Yang B S. Estimation and forecasting of machine health condition usingARMA/GARCH model[J]. Mechanical Systems and Signal Processing,2010,24(2):546-558.
    [208] Tian Z. An artificial neural network method for remaining useful life prediction of equipmentsubject to condition monitoring[J]. Journal of Intelligent Manufacturing,2012,23(2):227-237.
    [209] Rojas I, Valenzuela O, Rojas F, et al. Soft-computing techniques and ARMA model for timeseries prediction[J]. Neurocomputing,2008,71(4):519-537.
    [210] Dong M, He D. A segmental hidden semi-Markov model (HSMM)-based diagnostics andprognostics framework and methodology[J]. Mechanical Systems and Signal Processing,2007,21(5):2248-2266.
    [211] Dong M, Peng Y. Equipment PHM using non-stationary segmental hidden semi-Markovmodel[J]. Robotics and Computer-Integrated Manufacturing,2011,27(3):581-590.
    [212] Dong M, He D, Banerjee P, et al. Equipment health diagnosis and prognosis using hiddensemi-Markov models[J]. The International Journal of Advanced Manufacturing Technology,2006,30(7-8):738-749.
    [213] Peng Y, Dong M, Zuo M J. Current status of machine prognostics in condition-basedmaintenance: a review[J]. The International Journal of Advanced Manufacturing Technology,2010,50(1-4):297-313.
    [214]曾庆虎,邱静,刘冠军.小波相关特征尺度熵和隐半马尔可夫模型在设备退化状态识别中的应用[J].机械工程学报,2008,44(11):236-241.
    [215]曾庆虎,邱静,刘冠军,等.基于小波特征尺度熵-隐半马尔可夫模型的设备退化状态识别方法及应用[J].兵工学报,2008,29(2):198-203.
    [216] Zhao Y, Liu X, Gan S, et al. Predicting disk failures with HMM-and HSMM-basedapproaches[M]//Advances in Data Mining. Applications and Theoretical Aspects. SpringerBerlin Heidelberg,2010:390-404.
    [217]曾庆虎.机械传动系统关键零部件故障预测技术研究[D].国防科学技术大学,2010.
    [218]谭晓栋,曾庆虎,刘冠军,等.基于HSMM的故障识别方法研究[J].电子测量与仪器学报,2008,22(2):270-273.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700