用户名: 密码: 验证码:
纳米镍铁氧体及其复合材料的制备及电磁微波吸收性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微波吸收材料在军用及民用领域有着广泛的应用,已经成为各国军事装备隐身和民(?)电磁辐射等技术领域研究的热点。在众多的吸波材料中,铁氧体吸收剂由于具有较好的吸波性能和较低的成本,往往是其中的主要吸波成分。但是铁氧体有一个致命的缺点就是密度太大,不利于制备出质量轻的吸波材料。为解决这一难题,本论文以丙烯酰胺为聚合单体,N,N'-亚甲基双丙烯酰胺为网络剂,采用高分子凝胶法制备了尖晶石型纳米镍铁氧体,并把纳米镍铁氧体与空心微珠、多孔陶瓷、导电聚苯胺和聚苯乙烯等轻质材料复合,通过控制工艺过程能得到具有良好电磁性能、质轻、宽频带、强吸收的新型吸波材料。
     采用高分子凝胶法制备了纳米镍铁氧体(NiFe204).考察了单体与网络剂的配比、反应温度、反应时间对凝胶形成的影响,优化了工艺条件。结果表明,干凝胶为无定型状态,煅烧至500℃时,形成纯相的尖晶石型纳米NiFe204;煅烧温度为500、600、700、800和900℃时,粉体平均粒径分别约为8、20、45、80和120 nm;红外光谱显示金属-氧离子(M-O)键的特征吸收峰红移了23 cm-1;纳米镍铁氧体在8.2~12.4 GHz的测试频率范围内具有介电损耗与磁损耗,随着热处理温度的升高,纳米镍铁氧体的介电损耗、磁损耗和反射率增加。
     以空心微珠为基核,用高分子凝胶法在空心微珠表面制备了一层完整的镍铁氧体包覆层。复合粉是由镍铁氧体、石英和莫来石相组成。当空心微珠含量为25 wt%时,在空心微珠表面上可获得完整的镍铁氧体包覆层。与其它样品相比,空心微珠含量为25 wt%的复合材料在X波段具有更高的介电损耗和磁损耗,其介电损耗角正切值tanδε,和磁损耗角正切值tanδm分别可达0.30和0.10。空心微珠含量为25wt%的复合材料的电磁波反射率小于-10 dB的带宽可达2.1 GHz,其最小反射率为-13.7dB。空心玻璃微珠的加入大大降低了复合粉的密度,因此空心微珠表面镍铁氧体包覆层材料有望应用于轻质电磁波吸收领域。
     采用高分子凝胶法在多孔碳化硅陶瓷表面制备了镍铁氧体包覆层。当煅烧温度为600℃时,在多孔碳化硅陶瓷表面有立方晶系尖晶石结构的镍铁氧体晶相生成。随着包覆层数的增加,多孔陶瓷表面的镍铁氧体涂层的致密性和均匀性逐渐增强,涂层附载量缓慢增加。800℃时制备的涂层牢固度较高。与多孔陶瓷基体相比,包覆镍铁氧体涂层的多孔陶瓷的介电损耗角正切值taδε减小,而磁损耗角正切值tanδm增大,表现出较好的磁损耗特性,tanδm值最大可达0.55。包覆镍铁氧体涂层的多孔陶瓷在X波段的tanδm值随频率的升高呈现减小的趋势。
     以苯胺为单体、十二烷基苯磺酸为掺杂剂、过硫酸铵为氧化剂,采用超声乳液聚合法制备了导电率较高的聚苯胺。在超声场下采用原位聚合法制备了镍铁氧体/聚苯胺复合材料。聚苯胺与镍铁氧体按照不同质量比进行复合时,当镍铁氧体的含量为15 wt%时,复合材料的电导率具有最大值0.8455 S/cm。与聚苯胺相比,镍铁氧体/聚苯胺复合材料的介电损耗角正切tanδε值与磁损耗角正切tanδm值都增大。镍铁氧体的含量为5wt%和15 wt%的复合材料分别具有最大的tanδε值和最大的tanδm值。镍铁氧体的含量为15 wt%的试样在8~18 GHz范围内综合吸波性能最好,具有最大衰减-23.4 dB,-8 dB带宽为5.73 GHz。
     采用热压法制备了镍铁氧体/聚苯乙烯和羰基铁/聚苯乙烯复合材料。随着镍铁氧体含量的增加,镍铁氧体/聚苯乙烯复合材料的复数介电常数和复数磁导率增大。随着羰基铁含量的增加,羰基铁/聚苯乙烯复合材料复数介电常数和复数磁导率增大。145 MPa压力下制备的羰基铁/聚苯乙烯复合材料具有较好的微波吸收性能。通过采用镍铁氧体/聚苯乙烯与羰基铁/聚苯乙烯双层复合的结构形式达到阻抗匹配、展宽频带和提高吸收峰值的效果,从而改善单一一种吸波材料在雷达波段的吸波性能。
Microwave absorbing materials have been widely used in military and civilian applications. They are the hotspot in the field of stealth technology and electromagnetic compatibility technology. In most of the absorbers, ferrite is one of the main components because of its good performance and low cost. Its main disadvantage is high density which limits its application in light absorbers. In response to the requirement for high performance absorbers, the spinel type nanocrystalline nickel ferrite was prepared by the polyacrylamide gel method with acrylamide as the monomer and N,N'-methylenediacrylamide as the lattice agent. Then the composites of nanocrystalline nickel ferrite with hollow microspheres, porous ceramics, polyaniline and polystyrene were fabricated. These new microwave absorbing materials are light weight and have good electromagnetic, wide band and high absorbing properties.
     Nanocrystalline NiFe2O4 ferrite was prepared using the polyacrylamide gel method. The effects of ratio of acrylamide/N,N'-methylenediacrylamide, reaction temperature and reaction time on characteristics of the polycrylamide-gel were studied. XRD results show that the dry gel is amorphous, and after calcining at 500℃or a higher temperature, it transforms into spinel nickel ferrite. TEM observation shows that particle sizes of the spinel nickel ferrite obtained by calcination at 500℃,600℃,700℃,800℃and 900℃, are 8 nm,20 nm,45 nm,80 nm and 120 nm, respectively. FT-IR analysis illustrates that the characteristic absorption peak of the M-O shifts from 590 cm-1 to 613 cm-1. The nanocrystallne spinel nickel ferrite has both dielectric loss and magnetic loss in the range of 8.2-12.4 GHz, and its dielectric loss, magnetic loss and reflection loss increase with increasing heat treatment temperature.
     Hollow glass microspheres were coated with nickel ferrite using the polyacrylamide gel method. The obtained composite powder is composed of nickel ferrite, quartz and mullite. A continuous NiFe2O4 coating was obtained at a microsphere content of 25 wt%. The composite with 25 wt% microspheres exhibits better dielectric loss and magnetic loss properties in the X band. Its dielectric loss tangent and magnetic loss tangent are 0.30 and 0.10, respectively. The composite shows a minimum reflection loss of-13.7 dB with a bandwidth of-10 dB over the extended frequency range of 2.1 GHz. It is also low in density, implying its potential application as a good and light electromagnetic wave absorbing material.
     SiC porous ceramics were coated with nickel ferrite using the polyacrylamide gel method. Spinel structured NiFe2O4 forms on the porous ceramics at 600℃. With the increase of coating layers, the coating becomes more uniform and homogenous, and the loading of nickel ferrite coatings increases slowly. The nickel ferrite coating prepared at 800℃adheres well to the surface of SiC. The porous ceramics coated with nickel ferrite exhibit lower dielectric loss and higher magnetic loss compared with the porous ceramics matrix. Its maximum tanδm is 0.55, indicating a better magnetic loss property. The tanδm of the porous ceramics coated with nickel ferrite decreases with increasing frequency in the X band.
     Polyaniline with good electric conductivity was prepared by an ultrasoonic and emulsion polymerization process using aniline as monomer, dodecylbenzene sulfonic acid as dopant and ammonium peroxydisulfate as oxidant. The nickel ferrite/ polyaniline composites were prepared by the in situ polymerization method under ultrasonic field. The composite with a content of 15 wt% nickel ferrite has a maximum conductivity of 0.8455 S/cm. Dielectric loss tangent and magnetic loss tangent of the nickel ferrite/ polyaniline composites are higher than those of the polyaniline. The composites with a ferrite content of 5 wt% and 15 wt% have the maximum tanδεvalue and tanδm value, respectively. The composite with 15 wt% ferrite content shows better electromagnetic wave absorbing property, with a minimum reflection loss of-23.4 dB and a bandwidth of-8 dB over the extended frequency range of 5.73 GHz.
     A nickel ferrite/polystyrene composite and a carbonyl-iron/polystyrene composite were made by hot pressing. The complex permittivity values and complex permeability values of the nickel ferrite/polystyrene composite show an increasing trend with the increase of nickel ferrite content. The complex permittivity values and complex permeability values of the carbonyl-iron/polystyrene composite show an increasing trend with the increase of the carbonyl-iron. The material pressed at 145 MPa has the minimum reflection loss and the best microwave absorption. The double layer structure composed of the nickel ferrite/polystyrene and the carbonyl- iron/polystyrene has an effect impedance coupling, widening the band and improving minimum reflection loss, so that the electromagnetic wave absorbing properties can be improved compared to those of the single materials.
引文
[1]王海.雷达吸波材料的研究现状和发展方向[J],上海航天,1999,1:55-59.
    [2]吴正娴.微波原理[M].武汉:武汉大学出版社,1995.
    [3]丁鹭飞,耿富录.雷达原理(修订版)[M].西安:西安电子科大出版社,1997.
    [4]Vinoy K J, Jha R M. Trends in radar absorbing materials technology[J], Sadahana,1995, 20(5):815-851.
    [5]张树华.新型雷达吸波材料的发展与应用[J],国防科技,2004.15:25-27.
    [6]刘振兴,姜宁.高速飞行器的隐身技术现状及其发展[J],航空科学技术,2006,4:22-25.
    [7]Nicholas J, Strattan R D. Low observable technology for future surface combatants[J], Naval Engineers Journal,1996, (6):49-56.
    [8]阢颖诤.雷达截面与隐身技术[M],北京:国际工业出版社,1998.
    [9]聂建英,李兴国,娄国伟.毫米波隐身材料主要参数的计算及误差分析[J],兵工学报,2004,25(6):734-737.
    [10]钱九红.纳米多波段隐身材料研究进展[J].稀有金属,2006,30(4):511-516.
    [11]曹茂盛,王国凡,高正娟.结构型隐身复合材料吸波及动/静态力学性能研究[J],复合材料学报,2003,20(2):7-1 2.
    [12]Gupta N, Verma A, Subhash C, Kashyap D C. Dielectric behavior of spin-deposited nanocrystalline nickel-zinc ferrite thin films processed by citrate-route[J], Solid State Communications,2005,134:689-694.
    [13]Wu K H, Huang W C, Wang G P, Wu T R. Effect of pH on the magnetic and dielectric properties of SiO2/NiZn ferrite nanocomposites[J], Materials Research Bulletin,2005, 40:1822-1831.
    [14]He X H, Song G S, Zhu J H. Non-stoichiometric NiZn ferrite by sol-gel processing[J], Materials Letters,2005,59:1941-1944.
    [15]Liu X M, Fu S Y, Huang C J. Magnetic properties of Ni ferrite nanocrystals dispersed in the silica matrix by sol-gel technique[J], Journal of Magnetism and Magnetic Materials,2004,281:234-239.
    [16]孙杰、李建华.李松梅.尖晶石型Ni0.8Zn0.2Fe2O4纳米晶体的制备及电磁性能的研究[J],无机材料学报,2005,20(5):1077-1082.
    [17]Li B W, Shen Y, Yue Z X, Nan C W. Influence of particle size on electromagnetic behavior and microwave absorption properties of Z-type Ba-ferrite/polymer composites[J], Journal of Magnetism and Magnetic Materials,2007,313:322-328.
    [18]庄稼,陈学平,迟燕华,刘燕梅.纳米Ni0.5Zn0.5Fe2O4铁氧体的制备及电磁损耗特性研究[J].功能材料,2006.1:43-46.
    [19]Dosoudil R, Franek J. RF electromagnetic wave absorbing properties of ferrite polymer composite materials[J], Journal of Magnetism and Magnetic Materials,2006,304: 755-757.
    [20]Nie Y, He H H, Gong R Z, Zhang X C. The electromagnetic characteristics and design of mechanically alloyed Fe-Co particles for electromagnetic-wave absorber[J], Journal of Magnetism and Magnetic Materials,2005,293:140-144.
    [21]孟新强.国外雷达隐身和红外隐身技术的发展动向与分析[J].飞航导弹,2005,7:34-42.
    [22]Yin G J. Single Layer Chiral Microwave Absorber[J], Acta Scientiarum Naturalium Unversitatis Pekinensis,1995,131 (5):564-570.
    [23]刘顺华,郭辉进.电磁屏蔽与吸波材料[J],功能材料与器件学报,2002,8(3):213-217.
    [24]黄祖雄,吴唯.碳纳米管在聚合物基吸波隐身复合材料上的应用[J],材料工程,2004,7:55-59.
    [25]Nordwall B D. Tiny cerimic spheres used to absorb energy[J], Aviation Week and Space Technology,1999,9:44-45.
    [26]罗发,周万城,焦桓,赵东林.SiC/LAS吸波材料吸波性能研究[J],无机材料学报,2003,18(3):580-584.
    [27]牛志成,刘祖黎,廖海星,姚凯伦.导电导磁复合聚苯胺电磁参数及吸波性能的研究[J],华中理工大学学报,1999,27(8):87-89.
    [28]陈建定朱德钦吴叙勤.导电高分子纳米复合材料[J],功能高分子学报,2002,15:236-244.
    [29]马利,汤琪.导电高分子材料聚苯胺的研究进展[J].重庆大学学报,2002,25(2):124-127.
    [30]Fulghum D A. Stealth retains value, but its monopoly wanes[J], Aviation Week and Space Technology,2001,5 (2):53-57. (?) Fulghum D A, Washington O F. Stealth engine advances revealed in JSF designs[J], Avition Week and Space Technology,2001,19(5):90-92.
    [32]德康,胡明.F-117A和B-2的隐形及气动特点[J],国际航空,2003,2:10-12.
    [33]孙伟琢,杨常清.水面舰艇隐身技术现状及发展趋势[J],现代防御技术,2005,33(2):22-25.
    [34]张臣.纳米隐身材料及其在信息化化战争中的应用[J],微纳电子技术,2005,11:495-499.
    [35]张有纲,黄永杰,罗迪民.磁性材料[M],成都:电讯工程学院出版社,1988.
    [36]周志刚.铁氧体磁性材料[M],北京:科学出版社,1981.
    [37]唐辉,李玲玲.纳米材料的制备方法研究进展[J],科技资讯,2007,5:22-26.
    [38]Huang C C, Tsai J S, Huang T H. Combustion synthesis of Ni-Zn ferrite by using glycine and metal nitrates—investigations of precursor homogeneity, product reproducibility. and reaction mechanism[J]. Materials Chemistry and Physics,2005.93: 330-336.
    [39]Sharm R K, Suwalk O, Lakshmi N, Venugopalan K. Synthesis of chromium substituted nano particles of cobalt zinc ferrites by coprecipitation[J], Materials Letters,2005,59: 3402-3405.
    [40]Dey S, Ghose J. Synthesis, characterisation and magnetic studies on nanocrystalline Co0.2Zn0.8Fe2O4[J], Materials Research Bulletin,2003,38:1653-1660.
    [41]刘银,丘泰,沈春英,杨建.纳米晶Co1-xNixFe2O4铁氧体的制备及Ni2+对其磁性能的影响[J],硅酸盐学报,2007,2:35-39.
    [42]Kong C, Fang H C, Yang Z. Magnetic relaxation in Zn-Sn-doped barium ferrite nanoparticles for recording[J], Journal of Magnetism and Magnetic Materials,2000, 213:413-417.
    [43]Fang Q Q, Lin Y M, Yin P. Magnetic properties and formation of Sr ferrite nanoparticle and Zn, Ti/Ir substituted phases[J], Journal of Magnetism and Magnetic Materials,2001, 234:366-370.
    [44]Gul I H, Amin F, Abbasi A Z, Maqsood A. Physical and magnetic characterization of co-precipitated nanosize Co-Ni ferrites[J], Scripta Materials,2007,56:129-135.
    [45]Dias A. Moreira R L. Chemical mechanical and dielectric properties after sintering of hydrothermal nickel-zinc ferrites[J], Materials Letters,1999,39:69-76.
    [46]Dias A, Mohallem N D S, Moreira R L. Solid-state sintering of hydrothermal powders: densification and drain growth kinetics of nickel-zinc ferrite[J], Materials Research Bulletin,1998,33(3):475-486.
    [47]Kim C K, Lee J H, Katoh S,Murakami R. Synthesis of Co-, Co-Zn ferrite Powders by the microwave-hydrothermal method [J]. Materials Research Bulletin.2001.36: 2241-2250.
    [48]阎鑫,胡小玲,岳红.纳米微孔NixZn(1-x)Fe2O4的水热合成研究[J],无机化学学报,2002,18(7):693-696.
    [49]Rath C, Sahu K K, Anand S. Preparation and characterization of nanosize Mn-Zn ferrite[J], Journal of Magnetism and Magnetic Materials,1999,202:77-84.
    [50]Feng J, Guo L Q, Xu X D, Qi S Y. Hydrothermal synthesis and characterization of Mn1-xZnxFe2O4 nanoparticles[J]. Physica B.2007.394:100-103.
    [51]Kaczmarek W A. Structure modifications in magnetic oxides inducedby dry and wet milling[J], Journal of Magnetism and Magnetic Materials,1999,196:173-174.
    [52]Cheng Y, Zheng Y H, Wang Y S, Bao F. Synthesis and magnetic properties of nickel ferrite nano-octahedra[J], Journal of Solid State chemistry,2005,178:2394-2397.
    [53]Sileo E E, Rotelo R, Jacobo S E. Nickel zinc ferrites prepared by the citrate precursor method[J], Physics B,2002,320:257-260.
    [54]Wu K H, Huang W C, Yang C C, Su J S. Sol-gel auto-combustion synthesis of Ni0.5Zn0.5Fe2O4/(SiO2)x (x=10,20,30 wt.%) nanocomposites and their characterizations[J], Materials Research Bulletin,2005,40:239-248.
    [55]Wang L, Li F S. Mossbbauer study of nanocrystalline Ni-Zn ferrite[J], Journal of Mgnetism and Magnetic Materials,2001,223:233-237.
    [56]Dimri M C, Verma A, Kashyap S C, Dube D C. Structural, dielectric and magnetic properties of NiCuZn ferrite grown by citrate precursor method [J], Materials Science and Engineering B,2006,133:42-48.
    [57]Chen D H, He X R. Synthesis of nickel ferrite nanoparticles by sol-gel method[J], Materials Research Bulletin,2001.36:1369-1377.
    [58]Leest R E, Roozeboom F. Nickel-Zinc ferrite films by rapid thermal processing if sol-gel prtcursors[J], Applied Surface Science,2002,187:68-74.
    [59]齐西伟,周济,岳振星,桂治轮,李龙上.溶胶凝胶自燃烧法合成 vln0.6Cu0.2Zn0.2O(Fe2O3)0.98 (?)内米晶铁氧体及其磁性能研究[J],硅酸盐学报,2003,31(2):138-142.
    [60]Giannakopoulou T, Kompotiatis L, Kontogeorgakos A, Kordas G. Microwave behavior of ferrites prepared via sol-gel method[J], Journal of Magnetism and Magnetic Materials,2002,246:360-365.
    [61]Ma M, Zhang Y, Li X B, Fu D G, Zhang H Q. Synthesis and characterization of titania-coated Mn-Zn ferrite mamoparticles[J], Colloids and Surfaces A:Physicochem. Eng. Aspects,2003,224:207-212.
    [62]庄稼,迟燕华,石均宁.低热固相反应法制备纳米铈镍铁氧体粉末[J],功能材料,2002,33(3):253-256.
    [63]牛新书,刘艳丽,徐甲强ZnFe2O4纳米粉体的室温固相合成及其其敏特性研究[J],功能材料,2002,33(4):413-415.
    [64]姜继森,高濂,杨燮龙.Zn铁氧体纳米晶的磁性及微结构研究[J].功能材料,2000,31(6):593-595.
    [65]Liu J J, He H L, Jin X G. Synthesis of nanosized nickel ferrite by shock waves and their magnetic properties[J], Materials Research Bulletin,2001,36:2357-2363.
    [66]Shi Y, Ding J, Yin H. CoFe2O4 nanoparticles prepared by the mechanochemical method[J], Journal of Alloys and Compounds,2000,308:290-295.
    [67]Arcos D, Valenzuela R, Vazquez M. Frequency behaviour of Zn-Mn ferrites nanoparticles obtained by high-energy ball miling[J], Journal of Magnetism and Magnetic Materials,1999,203:319-321.
    [68]Bid S, Pradhan S K. Characterization of crystalline structure of ball-milled nano-Ni-Zn-ferrite by Rietveld method[J], Materials Chemistry and Physics.2004,84: 291-301.
    [69]Goya G F, Rechenberg H R. Magnetic properties of ZnFe2O4 synthesized by ball milling[J], Journal of Magnetism and Magnetic Materials,1999,203:141-142.
    [70]Arcos D, Valenzuela R, Vazquez M. Frequency behaviour of Zn-Mn ferrites nanoparticles obtained by high-energy ball miling[J], Journal of Magnetism and Magnetic Materials,1999,203:319-321.
    [71]Gonzalez T, Morales M P, Serna C J. Barium ferrite nanoparticles prepared directly by aerosol pyrolysis[J], Materials Letters,2000.43:97-101.
    [72]Casas L, Roig A, Rodriguez E. Silica aero-gel oxide nanocomposites:structure and magnetic properties[J], Journal of Non-crystalline Solids,2001,285:37-43.
    [73]Kinemuchi Y, Ishizaka K, Suematsu H. Magnetic properties of nanosize Ni ferrite particles synthesized by pulsed wire discharge[J], Thin Solid Films.2002,407: 109-113.
    [74]Zhong Z F, Li Q, Zhang Y L,Synthesis of nanocrystalline Ni-Zn ferrite powders by refluxing method[J], Powder Technology,2005,155:193-195.
    [75]Xie J L, Han M G, Chen L, Kuang R X, Deng L J. Microwave-absorbing properties of NiCoZn spinel ferrites[J], Journal of Magnetism and Magnetic Materials,2007,314: 37-42.
    [76]阮圣平,吴凤清,王永为,张力,乌日娜,宣丽.钡铁氧体纳米复合材料的制备及其微波吸收性能[J].物理化学学报,2003,19(3):275-277.
    [77]张海军,姚熹.张良莹.X、U铁氧体的溶胶-凝胶合成及微波性能研究[J],功能材料,2003,34(1):39-40.
    [78]孙杰,刘建华,李松梅.聚苯胺/NiFe2O4纳米晶体复合体系的电磁性能研究[J],宇航材料工艺,2005,6:48-50.
    [79]Chen N, Mu G H, Pan X F, Gan K K, Gu M Y. Microwave absorption properties of SrFe12O19/ZnFe2O4 composite powders[J], Materials Science and Engineering B,2007, 139:256-260.
    [80]Abbas S M, Dixit A K, Chatterjee R, Goel T C. Complex permittivity, complex permeability and microwave absorption properties of ferrite-polymer composites[J], Journal of Magnetism and Magnetic Materials,2007,309:20-24.
    [81]Hwang Y. Microwave absorbing properties of NiZn-ferrite synthesized from waste iron oxide catalyst[J], Materials Letters,2006,60:3277-32.
    [82]钱海霞,熊惟皓.纳米复合隐身材料的研究进展[J],宇航材料工艺,2002,2:8-11.
    [83]施景芳.雷达波吸收剂及其性能评估[J],宇航材料工艺,1993,5:1-4.
    [84]Qi X W, Yue Z X, Gui Z L. Auto-combustion synthesis of nanocrystalline LaFeO3[J], Materials Chemistry and Physics,2002,78:25-29.
    [85]Devi P S, Maiti H S. A modified citric gel for the synthesis of phase pure Bi2Sr2CaCu2O8 superconductor[J], J Mater. Res,1994,9(6):1357-1362.
    [86]吴瑾光,近代傅里叶变换红外光谱技术及应用[M],北京:科学技术文献出版社, 1994.
    [87]Birajadar D S, Devatwal U N, Jadhav K M. X-ray, IR and bulk magnetic properties of Cu1+xMnxFe2-2xO4 ferrite system[J], Journal of Materials Science,2002,37:1443-1448.
    [88]李莉娟,孙凤久.针状纳米CaCO3的红外光谱分析[J],东北大学学报:自然科学版,2006,27(4):462-464.
    [89]Druska P, Steinike P, Lepel V. Surface structure mechanically activated and of mechanosynthesized zinc ferrite [J], Solid State Chem.,1999,146(1):13-21.
    [90]杨志民,毛昌辉,杜军.Fe4N3电磁波吸收剂的合成及其吸波性能的研究[J],稀有金属,2002,26(2):103-107.
    [91]吴晓光,车桦秋.国外微波吸收材料[M],长沙:国防科技大学出版社,1992.
    [92]阮颖铮.雷达截面与隐身技术[M],北京:国防工业出版社,1998.
    [93]王智勇,刘俊能.超细金属粉微波电磁性能的研究[J].航空材料学报,1994,14(3)7-13.
    [94]廖绍彬.铁磁学(下)[M],北京:科学出版社,1998.
    [95]范薇,李熙,吕宝顺.锂铁氧体纳米晶材料的制备与微波吸收性能的研究[J],磁性材料与器件,1998,29(2):38-42.
    [96]Li X, Yang H B, Fu W Y, Wu C X. Preparation of low-density superparamagnetic microspheres by coating glass microballoons with magnetite nanoparticles[J], Materials Science and Engineering B,2006,135:38-43.
    [97]Mazen S A, Metawe F, Mansour S F. IR absorption and dielectric properties of Li-Ti ferrite[J], J. Phys. D:Appl. Phys.,1997,30:1799-1802.
    [98]Chinnasamy C N, Narayanasamy A, Ponpandian N. Magnetic properties of nanostructured ferrimagnetic zinc ferrite[J], J. Phys.:Condens. Matter,2001,13: 1179-1183.
    [99]Franklin D R, Pointon A J, Jenkins R C L. Resonance linewidths and crystallite alignment in oriented samples of polycrystalline barium hexaferrite[J], J. Phys. D:Appl. Phys.,1996.29:1268-1273.
    [100]Lisfi A, Lodder J C. The effects of ZnO underlayer on microstructural and magnetic properties of BaFe12O19 thin films[J], J. Phys.:Condens. Matter,2001,13 5917-5921.
    [101]KADAM S L, PATANKAR K K, MATHE V L. Dielectric Behavior and Magnetoelectric Effect Ni0.75Co0.25Fe2O4+Ba0.8Pb0.2TiO3 ME Composites[J], Journal of Electroceramics,2002,9:193-198.
    [102]Jungho RYU, Alfredo V, Azquez CARAZO. Piezoelectric and magnetoelectric properties of lead zirconate titanate/Ni-Ferrite particulate composites[J], Journal of Electroceramics.2001.7:17-24.
    [103]Sarbajit Ghosal, Sidney A.Self. Particle size-density relation and cenosphere content of coal fly ash[J], Fuel,1995,74(4):522-529.
    [104]Deng Y D, Liu X, Shen B. Preparation and microwave characterization of submicrometer-sized hollow nickel spheres[J], Journal of Magnetism and Magnetic Materials,2006,303(1):181-184.
    [105]Mu G H, Shen H G, Qiu J X, Gu M Y. Microwave absorption properties of composite powders with low density[J], Applied Surface Science,2006.253(4):2278-2281.
    [106]张晏清,张雄.包覆钡铁氧体的多孔玻璃微珠吸波材料制备与性能[J].无机材料学报,2006,21(4):861-866.
    [107]Wei J, Liu J H, Li S M. Electromagnetic and microwave absorption properties of Fe3O4 magnetic films plated on hollow glass spheres[J], Journal of Magnetism and Magnetic Materials,2007,312:414-417.
    [108]Fu H, Huang K C. Preparation and characterization of ester-derived BaFe12O19 powder[J], Journal of Materials Research,2002,253(1):199-203.
    [109]Rams, Estevez E, Garcia. Structural transformation with milling on sol-gel precursor for BaM hexaferrite[J], Journal of Physics D:Applied Physics,2000,7:2708-2711.
    [110]曾爱香.空心微珠复合吸波材料的研究(D),华中科技大学,2004
    [111]肖群芳,宁晓山,周和平.泡沫凝胶法制取陶瓷的气孔率影响因素研究[J],稀有金属材料与工程,2006,35(6):982-985.
    [112]罗民华.多孔陶瓷实用技术[M],北京:中国建材工业出版社,2006.
    [113]王连星,宁青据,姚治才.多孔陶瓷材料[J],硅酸盐通报,1998,17(1):41-45.
    [114]毛东兴,夏峻峰.顶部带吸声柱体的微穿孔声屏障的应用研究[J],声学技术1999,18(1):26-29.
    [115]Giblson L G, Ashby M F. Cellular Solids:Structure and Properties, second edition[M], Cambridge:Cambridge University Press,1997.
    [116]胡颂纯,钟祥璋.纤维型多孔吸声材料流阻的研究[J],声学技术,1994, 13(3):139-143.
    [117]朱新文,江东亮,谭寿洪.碳化硅网眼多孔陶瓷的制备[J],无机材料学报,2000,15(6):1055-1060.
    [118]吴晓光,车晔林编译.国外微波吸收材料[M],长沙:国防科技大学出版社,1992.
    [119]朱新文,江东亮,谭寿洪.碳化硅网眼多孔陶瓷的微波吸收特性[J].无机材料学报,2002,17(6):1152-56.
    [120]赵东林,罗发,周万城.纳米SiC和SiC(N)粉体的微波介电特性及其与微波的作用机理[J],西北工业大学学报,2002,20(2):167-171.
    [121]罗惠萍.电磁场与微波技术[M],广州:华南科技大学出版社,1991.
    [122]宫清,曹小明,方正.三维连通网络陶瓷的电磁特性Ⅰ网络结构特性[J],材料研究学报,2002,16(4):349-353.
    [123]Zhang H T, Zhang J S, Zhang H Y. Computation of radar absorbing silicon carbide foams and their silica matrix composites [J]. Computational Materials Science,2007, 38(4):857-864.
    [124]Zhang H T, Zhang J S, Zhang H Y. Electromagnetic properties of silicon carbide foams and their composites with silicon dioxide as matrix in X-band [J], Composites:Part A, 2007,38:602-608.
    [125]赵海涛,孙旭东,修稚萌,张罡.聚苯胺与Si/C/N复合粉体的制备及其微波介电特性[J],功能材料,2007,8(38):1251-1253.
    [126]焦桓,周万成,罗发.Si/C/N晶须的微波介电性能[J],复合材料学报,2003,20(4):34-38.
    [127]高宇.导电聚合物聚苯胺的研究进展[J],渝州大学学报,2001,18(1):69-72.
    [128]Vladimir Pavlinek, Petr Saha, Takeshi Kitano. The effect of polyaniline layer deposited on silica particles on electrorheological and dielectric properties of their silicone-oil suspensions [J], Physica A,2005,353:21-28.
    [129]Tourillon G, Gamier F. New electrochemically generated organic conducting polymers[J], J. Electroanal Chem,1982,135(2):173-178.
    [130]李英,赵地顺.导电高分子材料[J],河北科技大学学报,2000.21(2):9-12.
    [131]张雄伟,黄锐.高分子复合导电材料及其应用发展趋势[J],功能材料,1994,25(6):492-499.
    [132]马利.汤琪.导电高分子材料聚苯胺的研究进展[J],重庆大学学报(自然科学版), 2002,25(2):125-126.
    [133]曾幸荣,龚克成.聚苯胺的掺杂及其性能的研究[J],高分子材料科学与工程,1991,8(6):73-77.
    [134]Kazantseva N E, Vilcakova J, Kresalek V, Saha P, Sapurina I, Stejskal J. Magnetic behaviour of composites containing polyaniline-coated manganese-zinc ferrite[J]. Journal of Magnetism and Magnetic Materials,2004,269(1):30-37.
    [135]阿卜杜·伊拉明,姚凯伦.不同酸掺杂对聚苯胺导电性能的影响[J],华中理工大学学报,1999,27(6):104-108.
    [136]Koul S, Chandra R, Dhawan S K. Conducting polyaniline composite for ESD and EMI at 101GHz[J], Polymer,2000,41(26):9305-9310.
    [137]Paul R K, Pillai C K S. Melt/solution processable conducting polyaniline with novel sulfonic acid dopants and its thermoplastic blends[J]. Synthetic Metals,2000, 114(1):27-35.
    [138]Diaz A F, Logan J A. Electroactive polyaniline films[J], Journal of Electroanalytical Chemistry,1980,111(1):111-114.
    [139]沈之荃.导电高分子材料[J],功能高分子学报,1992,5(2):102-110.
    [140]Bakhshi A K, Ago H, Yoshizawa K, Tanaka K, Yamabe T. Electronic properties of polymers based on thienothiadiazole and thiophene[J], The Journal of Chemical Physics, 1996,96(6):5516-5521.
    [141]王利祥,王佛松.导电聚苯胺的研究进展[J],电化学,1990,7(5):1-8.
    [142]Xia H S, Wang Q. Synthesis and characterization of conductive polyaniline nanoparticles through ultrasonic assisted inverse micromulsion polymerization[J], J Nanopart Res,2001,3(5-6):401-411.
    [143]Xia H S, Wang Q. Polymerization rate and mechanism of ultrasonically initiated emulsion polymerization of n-butyl acrylate[J], Ultrasonics Sonochemistry,2002, 9(3):151-158.
    [144]李姜,梁梅.林影.超声技术在高分子材料中应用研究进展[J].应用声学,2005,24(1):53-57.
    [145]廖勇勤,王琪,王良文.超声辐照引发MMA微乳液聚合动力学研究[J],高等学校化学学报,2002,23(11):2192-2195.
    [146]武辉,阎立峰,徐瑜.无乳化剂条件下声波引发苯乙烯乳液聚合[J],中国科学技 大学学报,2003,33(2):243-246.
    [147]晏刚,霍超,刘化章.超声技术在催化化学中的研究进展[J],工业催化,2007,15(2):1-5.
    [148]Tang B Z. Geng Y H. Processible Nanostructured Materials with Electrical Conductivity and Magnetic Susceptibility:Preparation and Properties of Maghemite/Polyaniline Nanocomposite Films[J], Chemistry Material 1999,11(1):1581-1589.
    [149]万梅香,周维侠.聚苯胺膜的磁学性能[J],物理学报,1992,41(2):347-353.
    [150]杨青林,宋延林,万梅香,江雷.导电聚苯胺与Fe304磁性纳米颗粒复合物的合成与表征[J],高等学校化学学报,2002,23(6):1105-1109.
    [151]Li L C, Liu H, Wang Y P. Preparation and magnetic properties of Zn-Cu-Cr-La ferrite and its nanocomposites with polyaniline[J], Journal of Colloid and Interface Science, 2008,321(2):265-271.
    [152]Sapurin. Osadehey A Yu. Volchek B Z. In-situ Polymerized Polyaniline Films: 5.Brush-like Chain ordering[J], Synthetic Metals,2002,129(1):29-37.
    [153]Deng J G, He C L, Peng Y X. Magnetic and conductive Fe3O4-polyaniline nanopartieles with core-shell structure[J], Synthetic Metals,2003,139:295-301.
    [154]Li L C, Jiang J, Xu F. Synthesis and ferrimagnetic properties of novel Sm-substituted LiNi ferrite-polyaniline nanocomposite[J], Materials Letters,2007,61:1091-1096.
    [155]Deng J G, Ding X B, Zhang W C. Magnetic and conducting Fe3O4-cross-linked polyaniline nanopartieles with core-shell structure[J], Polymer,2002,43:2179-2184.
    [156]Aphesteguy J C, Bercoff P G, Jacobo S E. Preparation of magnetic and conductive Ni-Gd ferrite-polyaniline composite[J], Physica B,2007,398:200-203.
    [157]邵蔚,赵乃勤,师春生.吸波材料用吸收剂的研究及应用现状[J],兵器材料科学与工程,2003,26(4):65-68.
    [158]王海.雷达吸波材料的研究现状和发展方向[J],上海航天,1999,1:55-59.
    [159]方亮,龚荣州,官建国.雷达吸波材料的现状与展望[J],武汉工业大学学报,1999,21(6):21-24.
    [160]Viau G, Ravel F, Fievet-Vincent F. Preparation and Microwave Characterization of Spherical and Monodisperse Co-Ni Particles[J], Magnetism and Magnetic Materials, 1995,2:140-144.
    [161]Berthault A, Rousselle D, Zerah G. Magnetic properties of permalloy microparticles[J], Journal Magnetism and Magnetic Materials,1992,112(1):477-480.
    [162]巩晓阳,董企铭.吸波材料的研究现状与进展[J],河南科技大学学报,2003,24(2):19-22.
    [163]李金儡,陈康华,范令强,彭伟才,黄兰萍.雷达吸波材料的研究进展[J],功能材料,2005,36(8):1151-1154.
    [164]孟辉,王智慧,胡传忻.碳纤维/羰基铁粉复合涂层吸波效果及机理分析[J],材料保护,2006,39(1):17-19.
    [165]毛健,陈家钊,涂铭省,黄婉霞.微细铁粉/聚乙烯复合材料复磁导率研究[J],功能材料(增刊),1998,10:370-371.
    [166]冯永宝,丘泰,张军.羰基铁粉对橡胶吸波贴片力学与电磁性能的影响[J],宇航材料工艺,2005,4:37-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700