用户名: 密码: 验证码:
两种典型有机共轭聚合物相干振动过程的超快光谱研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
20世纪,人们合成了一系列具有光电特性的有机材料,称为有机光电材料。同无机半导体材料相比,它兼有柔软性、容易制备等优点,已成为材料、物理、化学等领域的热点课题。人们对有机光电材料的合成以有机光电器件的制备开展了大量的研究。有机光电材料从结构上分为有机分子和聚合物两大类。其中,聚合物材料因成膜简单、电输运性能优良、光电转换效率高等优点而引起人们广泛的关注。然而,在器件工作过程中,有机聚合物的很多物理过程和化学问题还不十分清楚,相关的基本理论也不够完善,比如激发态能量的弛豫过程、化学键振动相位关系的耗散和转移以及光致诱导荧光猝灭的机制等等,这些问题制约了有机共轭聚合物的发展和应用。
     近年来,超快激光光谱技术发展迅速,并成为研究材料光物理过程和光化学问题的有力工具。在本课题中实现了三种超快非线性激光光谱系统,并开展了有机共轭聚合物的光物理过程和光化学问题的研究。聚乙烯咔唑(PVK)和聚(2-甲氧基-5-(2’-乙基己氧基)-1,4-对苯乙炔)(MEH-PPV)是两种具有光电特性的的共轭聚合物。利用上述超快光谱系统,我们研究了它们化学键振动相位关系的耗散、激发态振动相干特性以及光致诱导荧光猝灭等问题。
     首先,搭建超快多元相干反斯托克斯拉曼散射(CARS)光谱系统,测量基态乙醇分子C-H键的振动动态过程,验证了该激光光谱系统的可靠性。研究发现,在乙醇分子内振动相干关系可从“CH3”基团传输到“CH2”基团,所需时间大约90fs,传输速率约1670m/s,服从“化学键”传输机制。利用该系统研究了有机共轭聚合物PVK在基态时的C-H化学键伸缩振动模的动态过程。探测发现,PVK的C-H化学键伸缩振动模在3000cm?1左右(这与红外光谱测量结果一致),在其时间分辨CARS信号中出现了拍频现象。研究表明,时间分辨CARS信号包含三种成份:PVK中的电子在外加光场调制下的相位变化过程,C-H伸缩振动模的失相过程和C-H伸缩振动模之间的相干耦合过程。通过数据拟合得知,C-H伸缩振动模的失相时间大约是740fs,拍频的周期大约是170fs。
     其次,利用超快多元光子回波(PE)光谱系统,研究了MEH-PPV的激发态振动相干特性。系统的信号包含自由感应衰减信号(FID)和光子回波(PE)信号,其光谱中包含多个劈裂的特征峰(源自聚合物化学键的振动)。“峰移”(Peak shift)测量表明MEH-PPV激发态具有“相位重构能力”(Rephasing capability),且“相位重构能力”随聚合物激发态的上升而增强。调节光谱系统中激光脉冲之间的时序,获得了时间分辨光子回波信号。研究表明,时间分辨光子回波信号包含主要三种成份:化学键的振动失相过程、化学键的振动能量弛豫过程和量子拍频现象。通过数据拟合得知,相干振动的失相时间约为一百飞秒,而振动能量的弛豫寿命在一个皮秒左右。量子拍频现象源自于主链上化学键的振动相干耦合。
     最后,通过宽带瞬态光栅光谱系统,探测MEH-PPV光致诱导荧光猝灭的动态过程。研究发现,主链和侧链上的化学键在激光的诱导下因与空气中的氧反应,而发生了断裂。其中主链上C-H键的断裂影响了激子在共轭基团之间的传输,而共轭基团上碳原子之间化学键(包括C-C和C=C)的断裂降低了激子的产量,二者都能降低MEH-PPV的荧光量子效率。侧链上化学键损伤后的产物可认为是PPV类的新型衍生物,其电子结构虽与MEH-PPV相似,但还是略有不同,故其荧光光谱形状和峰位同MEH-PPV相比都有一定的改变。数据分析表明,各个化学键的损伤动态过程和损伤速率与分子能态的关系密切。
     本课题搭建了多种超快非线性激光光谱系统,并利用上述光谱系统开展了有机共轭聚合物PVK和MEH-PPV的振动相干特性的研究,获得了一系列新颖的有意义的结论,有利于今后深入开展这个领域的相关工作。
In the 20th century, people synthesized a series of organic materials with photoelectric properties, which are called organic photoelectric material. In comparison with inorganic semiconductor materials, they have many merits such as soft, easy preparation etc, and become hot spot in the domain of materials, physics, and chemistry. People extensively investigate synthesis of organic photoelectric materials and preparation of organic photoelectric equipments. Organic photoelectric materials can be divided into organic molecules and organic polymer according to their configuration. Organic photoelectric polymer attracts extensive attention because of its easy film preparation, excellent electron transport property and high photoelectric conversion efficiency. However, during the work process of equipment many physical process and chemical problem of organic photoelectric polymer is not clear; some basic theories are not perfect, such as energy relaxation process of excited state, dissipation and transfer of chemical bond’s vibration phase and mechanism of fluorescence quenching due to photoinduced oxidation damage, etc. These problems restrict improvement and application of organic photoelectric polymer.
     Recently, ultrafast nonlinear laser spectroscopy technique has been improved greatly and become a facilitative tool for investigating the photophysical processes and photochemical problem. In this work, we build three kinds of ultrafast nonlinear spectroscopic systems and investigate photophysical and photochemical properties of organic photoelectric polymer. Polyvinyl carbazole (PVK) and poly[2-methoxy-5-(2′-ethylhexoxy)]-1,4-phenylene vinylene (MEH-PPV) are two typical organic conjugated polymer with photoelectric property. With these spectroscopic systems, vibrational phase dissipation, energy relaxation and photodamage of PVK and MEH-PPV have been detailed investigated.
     At first, ultrafast multiplex coherent anti-stokes Raman scattering (CARS) spectroscopic system is built, vibrational kinetic process of C-H bonds of ethanol in gournd state is detected, and the reliability of this spectroscopic system is verified. Vibrational coherence would transfer from“CH3”group to“CH2”group, the transfer time is estimated about 90 fs, the velocity is estimated about 1670 m/s and its process follows the mechanism of“bond transfer”. By using this system, the kinetic process of stretching vibrational mode of C-H bonds of PVK in ground state is detected. It is found that the C-H stretching vibrational modes are located at about 3000 cm?1, and the beating phenomenon occurs in their time-resolved CARS signal. Investigation suggests that time-resolved CARS signal consists of three components: the variation of electronic phase in PVK coming from the modulation of external light field, dephasing process of C-H stretching vibration and vibrational coherent coupling process of C-H stretching vibration. Titting results give out a vibration dephasing time of about 740 fs and a beating period of about 170 fs.
     Secondly, the vibrational coherent characteristic of MEH-PPV at excited state is investigated by using ultrafast multiplex photon echo spectroscopic system. The signal consists of free induced decay (FID) and photo echo (PE) signals. Their spectral line-shape encloses multiple splitting peaks (which come from the vibration of chemical bonds). Peak shift measurement suggests that MEH-PPV own rephrasing capability, which enhances with the excited state of polymer. By modulating temporal sequence among the laser pulses in this system, time-resolved photon echo signal is obtained. It is found that time-resolved photon echo signal consists of three components: vibratioin dephasing process and vibratioinal energy relaxation process of chemical bonds, and quantum beating phenomenon. Fitting results show that dephasing time of coherent vibration is about 100 fs, lifetime of vibrational energy relaxation is about 1 ps and quantum beating phenomenon comes from vibrational coherent coupling of bonds in major chain.
     At last, the kinetic process of photoluminescence quenching caused by the photon-induced oxidation is detected by using broadband transient grating spectroscopic system. Investigation shows that chemical bonds in the side and major chains react with oxygen in the atmosphere, which accounts for the breakup of chemical bonds. The breakup of C-H bonds in major chain influences the exciton transport among conjugated groups, and the damage of bonds between carbon atoms in conjugated groups (C=C/C-C bonds) leads to the decreasing of exciton yield. Both of them can decrease the fluorescence quantum yields of MEH-PPV. The product of side chain breakup is considered to be a new derivative of PPV. Its electronic structure is similar to that of MEH-PPV, but still has some difference, therefore the line-shape and peak of fluorescence are changed compared with MEH-PPV. Analysis of data suggests that the damage dynamic process and the damage velocities of chemical bonds have close relationship with the molecular energy state.
     With investigation above, we further investigate vibrational coherent characteristic of organic conjugated polymer and obtain a series of meaningful conclusion, which will be helpful for further research work in this field.
引文
1董建华有机光电材料研究进展自然科学进展2007,10:607~614
    2 C. W. Tang, S. A. Vanslyki. Organic Electroluminescent Diodes. Appl. Phys. Lett. 1987, 51:913~915
    3 J. H. Burroughes, D. D. C. Bradley, A. R. Brown. Light-emitting Diodes Based on Conjugated. Nature, 1990, 347:539~541
    4 H. J. Schon, S. Berg, C. H. Kloc. Ambipolar Pentacene Field-Effect Transistors and Inverters. Science, 2000, 287:1022~1023
    5 F. Garnier, G. Horowitz, D. Fiechou. Field-effect Transistors Comprising Molecular Beam Depositedα,ω-di-hexyl-hexathienylene and Polymeric Insulator. Synth. Met. 1998, 92:47~52
    6 F. Garnier, R. Hajlaoui, R. Yassar. All-Polymer Field-Effect Transistor Realized by Printing Techniques. Science. 1994, 265:1684~1686
    7 C. Drury, C. Mutsaers, C. Hart. Low-cost All-polymer Integrated Circuits. Appl. Phys. Lett. 1998, 73:108~110
    8 B. Crune. Large-scale Complementary Integrated Circuits Based on Organic Transistors. Nature. 2000, 403:521~523
    9 H. Siringhaus, N. Tessler, R. H. Fried. Integrated Optoelectronic Devices Based on Conjugated Polymers. Science. 1998, 280:1741~1744
    10 A. Dodabalapur. Organic Smart Pixels. Appl. Phys. Lett. 1998, 73:142~144
    11黄春晖,李富友,黄岩谊.光电功能超薄膜。北京:北京大学出版社2001
    12 S. E. Shaheen, C. J. Brabec, S. N. Serdar. 2.5% Efficient Orgainc Plastic Solar Cells. Appl. Phys. Lett. 2001, 78:841~843
    13彭强,谢明贵共轭聚合物材料及电致发光器件化学研究与应用2004,16:585~589
    14 N. Tessler, G. J. Denton, R. H. Friend. Lasing from Conjugted-Polymer Microcaities. Nature, 1996, 382:695~697
    15 F. Hide, M. A. Diaz-Garcia, B. J. Schwartz. Semiconducting Polymer: A new Class of Solid-state Laser Materials. Science, 1996, 273:1833~1835
    16 H. J. Brouwer, V. V. Krasnikov, A. Hiberer. Blue Superadiance from New Semiconducting Alternating Copolymer Films. Advanced Material, 1996, 8:935~940
    17 Y. Kawabe, C. Spieegelberg, A. Schulzgen. Whispering-gallery-mademicroring laser using a conjugated polymer. Appl. Phys. Lett. 1998, 72:141~143
    18 B. R. Hsieh, Y. Yu, E. W. Fersythe. A New Family of Highly Emissive Soluble Poly(p-phenylene vinylene) Derivatives. A Step toward Fully Conjugated Blue Emitting Poly(p-phenylene vinylenes). J. Am. Chem. Soc. 1998, 120:231~232
    19 G. Markus, M. C. David, N. G. Heiz, S. Ulrich, N. Dieter. Nature 2000, 405:661~665
    20 H. H. K. Peter, B. H. Jeremy, B. Heinrich, L. Y. F. Sam, B. M. Thomas, C. Franco, F. H. Richard. Molecular-scale interface enginerring for polymer light-emitting diodes. Nature 2000, 404:481~484
    21 J. Kim, T. M. Swager. Control of conformational and interpolymer effects in conjugated polymers. Nature. 2001, 411:1030~1034
    22 G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer bends. Nature Materils. 2005, 4:864~868
    23 J. Zaumseil, R. H. Friend, H. Sirringhaus. Spatial control of the recombination zone in an ambipolar light-emitting organic transistor. Nature Materials 2006, 5:69~74
    24 I. Mcculloch, M. Heeney, C. Bailey. Liquid-crystalline semiconducting polymers with high chare-carrier mobility. Nature Materials. 2006, 5:328~323
    25 W. Y. Wang, X. Z. Wang, Z. He, C. T. Yip, K. Y. Cheung, H. Wanh. Metallated conjugated polymers as a newavenue towards high-efficiency polymer solar cells. Nature Materials. 2007, 6:521~527
    26王夺元光电子学与光电子产业专题系列介绍超分子光化学与有机光电功能材料物理1991,2:445~451
    27蒋克健,陈红征,汪茫,杨士林纳米有机光电功能材料材料科学与工程1995,4:48~51
    28李银奎,王建营,龙永福等有机共轭聚合物电致发光器件化工时刊1996,7:9~13
    29单训英,钱鹰,刘举正有机光电功能材料偶氮化合物的合成及表征东南大学学报1999,29(2):220~222
    30董建华“有机/聚合物光电信息材料与器件”研究取得重要进展神州学人1999,12
    31 J. M. Huang, Y. Yang, S. H. Xue. Photoluminescence andElectroluminescence of ZnS:Cu Nanocrystals in Polymeric Networks. Appl. Phys. Lett. 1997, 70:2335~2337
    32 Y. G. Ma, H. Y. Zhang, J. C. Shen. Electroluminescence from Triplet Metal-Ligand Change-transfer Excited State of Transition Metal Complexes. Synth. Met. 1998, 94:245~251
    33刘德胜,王鹿霞,解士杰准一维多嵌段共聚物有机量子阱和超晶格特征中国科学G辑2003,33(2):168~178
    34夏蔡娟,李冬梅,解士杰官能团对分子器件电输运特性的影响物理学报2008,57(5):3148~3154
    35宋骏,张大成,解士杰DNA分子能带结构及载流子性质研究山东大学学报(理学版) 2003,38(5):86~90
    36荣华,佟拉嘎,郭生苯-烷氧基苯有机共轭聚合物的光致发光性能发光学报2003,24:493~496
    37韩奎,吴玉喜,王文澄LB膜的制膜条件优化及对其光学性质的影响光子学报2002,31(3):922~925
    38邹应苹,霍利军,李永舫共轭聚合物发光和光伏材料研究进展高分子通报2008 8:641~669
    39赵金玲,李滨松,薄志山新型金属卟啉共轭聚合物的合成与光电流响应科学通报2006,51(5):524~532
    40刘星元,李洪超一种新型聚合物激光染料光学学报1999,6(19):860~861
    41李建科,韩孝族,王德利一种新型二阶非线性光学聚合物材料高分子材料科学与工程1999,15:136~138
    42 F. C. D. Schryver, S. D. Feyter, and G. Schweitzer. Femtochemistry. (Wiley-VCH Verlag GmbH, 2001)
    43宋心琦飞秒化学及启示化学教育2000,5:4~5
    44 D. V. Liinde, A. Laubereau, W. Kasier. Molecular Vibrations in Liquids: Direct Measurement of the Molecular Dephasing Time; Determination of the Shape of Picosecond Light Pulses. Phys. Rev. Lett. 1971, 26:954~957
    45 A. Laubereau, D. V. Linde, W. Kaiser. Direct Measurement of the Vibrational Lifetimes of Molecules in Liquids. Phys. Rev. Lett. 1972, 28:1162~1165
    46 K. Spanner, A. Laubereau, W. Kaiser. Vibrational Energy Redistribution of Polyatomic Molecules in Liquids after Ultrashort Infrared Excitation. Chem. Phys. Lett. 1976, 44:88~92
    47 J. Chesnoy, D. Ricard. Experimental Study of Vibrational Relaxation inLiquid Hydrogen Chloride. Chem. Phys. Lett. 1980, 73:433~437
    48 E. J. Heilweil, M. P. Casassa, R. R. Cavanagh, J. C. Stephenson. Temperature Dependence of the Vibrational Population Lifetime of OH (ν= 1) in Fused Silica. Chem. Phys. Lett. 1985, 117:185~190
    49 H. Graener, R. Dohlus, I. A. Laubereau, G. R. Fleming, A. E. Siegman, Ultrafast Phenomena V. Berlin: Springer, 1986
    50 X. H. Wang, W. G. Kofron, S. Kong, C. S. Rajesh, D. A. Modarelli, and E. C. Lim. Transient Absorption Probe of Intermolecular Triplet Excimer of Naphthalene in Fluid Solutions: Identification of the Species Based on Comparison to the Intramolecular Triplet Excimers of Covalently-Linked Dimers. J. Phys. Chem. A. 2000, 104:1461~1465
    51 A. Furube, M. Murai, Y. Tamaki, S. Watanabe, and R. Katoh. Effect of Aggregation on the Excited-State Electronic Structure of Perylene Studied by Transient Absorption Spectroscopy. J. Phys. Chem. A, 2006, 110:6465~6471
    52 H. Abramczyk, B. Bro?ek-P?uska, K. Kurczewski, M. Kurczewska, I. Szymczyk, P. Krzyczmonik, T. B?aszczyk, H. Scholl, and W. Czajkowski. Femtosecond Transient Absorption, Raman, and Electrochemistry Studies of Tetrasulfonated Copper Phthalocyanine in Water Solutions. J. Phys. Chem. A, 2006, 110:8627~8636
    53 S. R. Shield and J. M. Harris. Time-Resolved Fluorescence Monitoring of Aromatic Radicals in Photoinitiated Processes. Anal. Chem. 1998, 70:2576~2583
    54 E. Vuorimaa, A. Urtti, R. Sepp?nen, H. Lemmetyinen and . Yliperttula. Time-Resolved Fluorescence Spectroscopy Reveals Functional Differences of Cationic Polymer?DNA Complexes. J. Am. Chem. Soc. 2008, 130:11695~11700
    55 A. D. Cohen, C. Helgen, C. G. Bochet, J. P. Toscano. The Mechanism of Photoinduced Acylation of Amines by N-Acyl-5,7-dinitroindoline as Determined by Time-Resolved Infrared Spectroscopy. Org. Lett. 2005, 7(14):2845~2847
    56 A. G. Merzlikine, S. V. Voskresensky, E. O. Danilov, M. A. J. Rodgers, D. C. Neckers. Observations of Different Triplet Conformations in Time-Resolved Infrared Spectra of Alkyl Phenylglyoxylates. J. Am. Chem. Soc. 2003, 124(49):14532~14533
    57 S. Cianetti, M. Negrerie, M. H. Vos, J.–L. Martin, S. G. Kruglik. Photodissociation of Heme Distal Methionine in Ferrous Cytochrome cRevealed by Subpicosecond Time-Resolved Resonance Raman Spectroscopy. J. Am. Chem. Soc. 2004, 126(43):13932~13933
    58 P. Y. Chan, W. M. Kwok, S. K. Lam, P. Chiu, D. L. Phillips. Time-Resolved Resonance Raman Observation of the 2-Fluorenylnitrenium Ion Reaction with Guanosine to Form a C8 Intermediate. J. Am. Chem. Soc. 2005, 127(23):8246~8247
    59 D. Marcos, L. V. Vadim. Experimental Coherent Laser Control of Physicochemical Process. Chem. Rev. 2004, 104:1813~1859
    60 H. Kano and H. Hamaguchi. Femtosecond Coherent Anti-Stokes Raman Scattering Spectroscopy Using Supercontinuum Generated from a Photonic Crystal Fiber. Appl. Phys. Lett. 2004, 85:4298~4230
    61 T. Siebert, M. Schmitt, and V. Engel. Ground State Vibrational Wave-packet and Recovery Dynamics Studied by Time-resolved CARS and Pump-CARS Spectroscopy. Journal of Raman Spectroscopy. 2006. 37:397~403
    62 D. Wolfgang, Laser spectroscopy Basic Concepts and Instrument. Springer, Berlin, 1995
    63 R. Agarwal, B. S. Prall, A. H. Rizvi, M. Yang, G. R. Fleming. Two-color Three Pulse Photon Echo Peak Shift Spectroscopy. J. Chem. Phys. 2002, 116:6243~6252
    64 C. Scheurer, S. Mukamel, Design Strategies for Pulse Sequences in Multidimensional Optical Spectroscopies. J. Chem. Phys. 2001, 115:4989~5004
    65 A. Abragam, The principles of Nuclear Nagnetism, Oxford University Press, London (1961)
    66 R. H. Dicke. Coherence in Spontaneous Radiation Processes. Phys. Rev. 1954, 93:99~110
    67 Y. Prior. Raman and Fluorescent Scattering by Molecules Embedded in Dielectric Cylinders: Erratum. Appl. Opt. 1980, 19:1741~1751
    68 J. A. Shirley, R. J. Hall, A. C. Eckbreth. Folded BOXCARS for Rotational Raman Studies. Opt. Lett. 1980, 5:380~382
    69 R. L. Abrams, J. F. Lam, R. C. Lind, D. G. Steel, and P. F. Liao, in Optical Phase Conjugation, edited by R. A. Fisher ( Academic, New York, 1983)
    70 H. J. Eichler, P. Gunter, and D. W. Pohl, Laser-Induced Dynamic Gratings (Springer, Berlin, 1986)
    71 S. Williams, R. N. Zare, and L. A. Rahn. Reduction of Degenerate Four-wave Mixing Spectra to Relative Populations I. Weak-field Limit. J. Chem. Phys. 1994, 101:1072~1092
    72胡志云,张振荣,刘晶儒,关小伟,黄梅生,叶锡生用单次脉冲非稳定腔空间增强探测CARS技术测量火焰温度中国激光2004,31:15~18
    73杨仕润,赵建荣,俞刚同时测量氢氧CARS光谱确定火焰温度和氢氧浓度的研究中国激光1999,26:883~888
    74 E. J. Brown, Q. G. Zhang, and M. Dantus, Femtosecond Transient-grating Techniques: Population and Coherence Dyanamics Involving Ground and Excited States. J. Chem. Phys. 1999, 110:5772~5788
    75 P. B. Corkun, C. Rolland, T. Sprinivasan-Rao. Supercontinuum Generation in Gases. Phys. Rev. Lett. 1986, 57:2268~2271
    76 M. Nisoli, S. Stagira, S. D. Silvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, C. Spielmann, F. Krausz. Uniform GaAs Quantum Dots in a Polymer Matrix. Appl. Phys. Lett. 1997, 65:189~191
    77 P. Bejot, Y. Petit, L. Bonacina, J. Kasparian, M. Moret, and J.–P. Wolf. Ultrafast Gaseous "half-wave plate". Opt. Express. 2008, 16:7564~7570
    78 W. Liu, O. Kosareva, I. S. Golubtsov, A. Iwasaki, A. Becker, V. P. Kandidov, and S. L. Chin. Random Deflection of the White Light Beam during Self-focusing and Filamentation of a Femtosecond Laser Pulse in Water. Appl. Phys. B: Lasers Opt. 2002, 75:595~599
    79 A. Brodeur, S. L. Chin. Band-Gap Dependence of the Ultrafast White-Light Continuum. Phys. Rev. Lett. 1998, 80:4406~4409
    80 J. P. R. Symonds, H. Arnolds, D. A. King. Femtosecond Pump/Probe Spectroscopy of CO on Ru{100} from Experimental and Theoretical Perspectives. J. Phys. Chem. B. 2004, 108(38):14311~14315
    81 D. F. Watson, H. S. Tan, E. Schreiber, C. J. Mordas, A. B. Bocarsly. Femtosecond Pump-Probe Spectroscopy of Trinuclear Transition Metal Mixed-Valence Complexes. J. Phys. Chem. A. 2004, 108(16):3261~3267
    82 C. C. Cooksey, P. J. Reid. Femtosecond Pump-Probe Studies of Dichlorine Monoxide in Solution. J. Phys. Chem. A. 2003, 107(29):5508~5514
    83 R. R. Alfano, S. L. Shapiro. Emission in the Region 4000 to 7000 ? Via Four-Photon Coupling in Glass. Phys. Rev. Lett. 1970, 24:584~587
    84 R. L. Fock, C. V. Shank, C. Hirlimann, R. Yen, and W. J. Tomlinso. Femtosecond White-light Continuum Pulses. Opt. Lett. 1983, 8:1~3
    85 N. Bloembergen. The Influence of Electron Plasma Formation on Superbroadening in Light Filaments. Opt. Commun. 1973, 8:285~288
    86 W. L. Smith, P. Liu, and N. Bloembergen. Superbroadening in H2O and D2O by Self-focused Picosecond Pulses from a YAlG: Nd laser. Phys. Rev. A.1977, 15:2396~2403
    87 A. Penzkofer, A. Laubereau, and W. Kaiser. Stimulated Short-Wave Radiation due to Single-Frequency Resonances ofχ(3). Phys. Rev. Lett. 1973, 31:863~866
    88 A. Penzkofer, A. Seilmeier, and W. Kaiser. Parametric Four-photon Generation of Picosecond Light at High Conversion Efficiency. Opt. Commum. 1975, 14:363~367
    89 H. Kano, and H. Hamaguchi. Fabrication of High-efficiency Fresnel-type Lenses by Pinhole Diffraction Imaging of Sol-gel Hybrid Materials. Appl. Phys. Lett. 2004, 85:4289~4291
    90 R. L. Fock, C. V. Shank, C. Hirilimann, R. Yen, and W. J. Tomlinson. Femtosecond White-light Continuum Pulses. Opt. Lett. 1983. 8:1~3
    91 T. F. Albercht, K. Seibert, and H. Kurz. Chirp Measurement of Large-bandwidth Femtosecond Optical Pulses Using Two-photon Absorption. Opt. Commun. 1991, 84:223~227
    92 S. Yamaguchi and H. Hamaguchi. Convenient Method of Measuring the Chirp Structure of Femtosecond White-Light Continuum Pulses. Appl. Spectrosc. 1995, 49:1513~1515
    93 C. Nagura, A. Suda, H. Kawano, M. Obara, and K. Midorikawa. Generation and Characterization of Ultrafast White-Light Continuum in Condensed Media. Appl. Opt. 2002, 41:3735~3742
    94 W. J. Tan, H. Liu, J. H. Si, and X. Hou. Control of the Gated Spectra with Narrow Bandwidth from a Supercontinuum using Ultrafast Optical Kerr Gate of Bismuth Glass. Appl. Phys. Lett. 2008, 93:051109~051111
    95 L. Wang, J. X. Yan, X. H. Chen, Y. X. Weng, S. H. Zhou. Experimental Study on the Chirp of the White-light Continuum Generation in CaF2 and Sapphire. Proc. of SPIE. 2005, 5646:108~112
    96 T. Siebert, M. Schmitt, and V. Engel. Population Dynamics in Vibrational modes during Noon-Born-Oppenheimer Processes: CARS spectroscopy Used as a Mode-Selective Filter. J. Am. Chem. Soc. 2002, 124:6242~6243
    97 M. Schenk and W. Kiefer. Resonance Coherent Anti-Stokes Raman Spectroscopy of Iodine in Solution. J. Chem. Phys. 1996, 105:2177~2182
    98 A. Vierheilig, T. Chen, P. Waltner, W. Kiefer and A. Materny. Femtosecond Dynamics of Ground-state Vibrational Motion and Energy Flow: Polymers of Diacetylene. Chem. Phys. Lett. 1999, 312:349~356
    99 B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer. Development of Simultaneous Frequency- and Time-resolved Coherent Anti-Stokes RamanScattering for Ultrafast Detection of Molecular Raman Spectra. J. Chem. Phys. 2006, 125:044502-1~04502-8
    100 A. Volkmer, L. D. Book, and S. Xie. Time-resolved Coherent Anti-Stokes Raman Scattering Microscopy: Imaging based on Raman Free Induction Decay. Appl. Phys. Lett. 2002, 80:1505~1507
    101 T. Siebert, R. Maksimenka, and V. Engel. The Role of Specific Normal Modes During Non-Born-Oppenheimer Dynamics: the S1-S0 Internal Conversion ofβ-Carotene Interrogated on a Femtosecond Time-scale with Coherent Anti-Stokes Raman Scattering. J. Raman Spec. 2002, 33:844~854
    102 W. Demtroder, 1995 Laser Spectroscopy Basic Concepts and Instrumentation (Springer)
    103 A. Zumbusch, G. R. Holtom, and X. S. Xie. Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering. Phys. Rev. Lett. 1999, 82:4142~4145
    104 J. W. Cheng, V. Andreas, and X. S. Xie. Theoretical and Experimental Characterization of Coherent Anti-Stokes Raman Scattering Microscopy. J. Opt. Soc. Am. B 2002, 19:1363~1375
    105 R. Porter, F. Shan, and T. Guo. Coherent anti-Stokes Raman scattering microscopy with spectrally tailored ultrafast pulses. Rev. Sci. Instrum. 2005, 76:043108-1~043108-5
    106 K. Shi, P. Li, and Z. Liu. Broadband Coherent Anti-Stokes Raman Scattering Spectroscopy in Supercontinuum Optical Trap. Appl. Phys. Lett. 2007, 90:141116~141118
    107 Z. H. Wang, P. Aakoulev, and D.D. Doltt. Watching Vibrational Energy Transfer in Liquids with Atomic Spatial Resolution. Science. 2002, 296:2201~2203
    108 J. Assmann, M, Kling, and B. Abel. Watching Photoinduced Chemistry and Molecular Energy Flow in Solution in Reak time. Angew. Chem. Int. Ed. 2003, 42:2226~2246
    109 M. C. Asplund, M. Lim, and R. M. Hochstrasser. Spectrally Resolved Three Pulse Photon Echoes in the Vibrational Infrared. Chem. Phys. Lett. 2000, 323:269~277
    110 D. E. Thompson, K. A. Merchant, and M. D. Fayer. Two-dimensional Ultrafast Infrared Vibrational Echo Studies of Solute–solvent Interactions and Dynamics. J. Chem. Phys. 2001, 115:317~330
    111 V. Cervetto, R. Pfister, and J. Heibing. Time-resolved Infrared Spectroscopy of Thiopeptide Isomerization and Hydrogen-bond Breaking. J. Phys. Chem.B. 2008, 112:3540~3544
    112 O. F. Mohammed, N. Banerji, B. Lang, E. T. J. Nibbering, and E. Vauthey, Photoinduced Bimolecular Electron Transfer Investigated by Femtosecond Time-resolved Infrared Spectroscopy. J. Phys. Chem. A. 2006, 110:13676~13680
    113 R. Bossart, O.V. Boyarkin, A. A. Makarov, and T. R. Rizzo, Isotopically Selective Collisional Vibrational Energy Transfer in CF3H. J. Chem. Phys. 2007, 126:054302-1~054302-7
    114 G. B. Hadjichristov, P. P.Kircheva, and N. Kirov. Multiplex CARS Spectroscopy of Rochelle Salt Crystal. J. Mol. Struct. 1996: 382:33~37
    115 T. Seeger, J. Jonuscheit, M. Schenk, and A. Leipertz, Simultaneous Temperature and Relative Oxygen and Methane Concentration Measurements in a Partially Premixed Sooting Flame Using a Novel CARS-technique, J. Mol. Struct. 2003: 661:515~524
    116 B. S. Prall, D. Y. Parkinson, and G. R. Fleming. Probing Correlated Spectral Motion: Two-color Photon Echo Study of Nile Blue. J. Chem. Phys. 2005, 123:054515-1~054515-13
    117 T. H. Joo, Y. W. Jia, J. Y. Yu, M. J. Lang, G. R. Fleming. Third-order Nonlinear Time Domain Probes of Salvation Dynamics. J. Chem. Phys. 1996, 104:6089~6108
    118刘海鹏,曾繁涤,刘世俊武汉化工学院学报2001,23:29~33
    119 A. Vierheilig, T. Chen, P. Waltner, W. Kiefer, A. Materny, and A. H. Zewail. Femtosecond Dynamics of Ground-state Vibrational Motion and Energy Flow: Polymer of Diacetylene. Chem. Phys. Lett. 1999, 312:349~356
    120 H. Lee, Y. C. Cheng, and G. R. Fleming. Coherence Dynamics in Photosynthesis: Protein Protection of Excitonic Coherence. Science. 2007, 316:1462~1464
    121 K. Moritsugu, O. Miyashita, and A. Kidera. Vibrational Energy Transfer in a Protein Molecule. Phys. Rev. Lett. 2000, 85:3970~3973
    122 T Brixner, J Stenger, H. M. Vaswani, M Cho, R E Blankenship, G R Fleming. Two-dimensional Spectroscopy of Electronic Couplings in Photosynthesis. Nature 2005, 434:625~627
    123 G. G. Malliaras, V. V. Krasnikov, H. J. Bolink, and G. Hadziioannou. Control of Charge Trapping in a Photorefractive Polymer. Appl. Phys. Lett 1995, 66:1038~1040
    124 J. P. Perchard, and M. Josien, Study of the Vibrational Spectra of Twelve Isotopic species of Monomeric Ethanols, J. Chim. Phys. 1968, 65:1834~1855
    125 J. P. Perchard, and M. Josien, Study of the Vibrational Spectra of Twelve Isotopic Species of Autoassociated Ethanols, J. Chim. Phys. 1968, 65:1856~1867
    126 W. Wu, S. Zhang, Y. Li, J. L. Liu, Y. Qin, Z.–X. Guo, L. Dai, C. Ye, D. Zhu. PVK-Modified Single-Walled Carbon Nanotubes with Effective Photoinduced Electron Transfer. Macromolecules 2003, 36:6286~6288
    127黎威志,阳秀,季兴桥,钟志有,蒋亚东PVK空穴传输层对有机电致发光器件性能的影响发光学报2006,27:719~723
    128张方辉,杨丹,王秀峰,曾金梅基于MEH-PPV/PVK混合发光层的白光PLED发光机理探讨陕西科技大学学报2008,6:45~49
    129马涛,于军胜、李璐、文雯、唐晓庆、蒋亚东基于PVK:NPB掺杂体系的有机电致发光器件的性能发光学报2008,29:809~814
    130锁钒,于军胜,邓静,蒋亚东,汪伟志,刘天西芴-咔唑共聚物/PVK掺杂体系的电致发光特性研究物理学报2007,56:6866~6871
    131李秀芳,邓振波,张元元,时玉萌,王瑞芬铽配合物Tb(o-MBA)3phen与PVK掺杂体系的发光机理发光学报2007,28:39~43
    132张鹏,周印华,刘秀芬,田文晶,李敏,张国PVK:DBVP掺杂体系的能量转移及发光性能的研究物理学报2006,55:5494~5498
    133刘彭义,赵福利,曹玲芳,连加荣,周翔,宋继国,许宁生DCM掺杂PVK体系的超快光谱发光学报2005,26:465~468
    134孙世菊,腾枫,徐征,张延芬,候延冰PVK:TPB掺杂体系稳态光谱的研究光谱学与光谱分析2005,25:217~220
    135腾枫,王元敏,徐征,王永生PVK/BCP体系电致激基复合物的研究光谱学与光谱分析2005,25:75~77
    136瞿述,李宏建,崔昊杨,赵楚军,彭景翠。掺Perylene的PVK薄膜荧光谱及发光机理原子与分子物理学报2003,20:497~500
    137 H.–W. Shin, E.–J. Shin, S. Y. Cho, S.–L. Oh, Y.–R. Kim. Enhanced Energy Transfer within PVK/Alq3 Polymer Nanowires Induced by the Interface Effect of Nanochannels in Porous Alumina Membrane. J. Phys. Chem. C. 2007, 111:15391~15396
    138 J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P, L. Burns, and A. B. Holmes. Light-emitting Diodes Based on Conjugated Polymers. Nature.1990, 347:539~541
    139 M. Yan, L. J. Rothberg, E. W. Kwock, and T. M. miller. InterchainExcitations in Conjugated Polymer. Phys. Rev. Lett. 1995, 75:1992~1995
    140 T. W. Hagler, K. Pakbaz, K. F. Voss, and A. J. Heeger. Enhanced Order and Electronic Delocalization in Conjugated Polymers Oriented by Gel Processing in Polyethylene. Phys. Rev. B. 1991, 44:8652~8666
    141 F. C. D. Schryver, S. D. Feyter, and G. Schweitzer. Femtochemistry. (Wiley-VCH Verlag GmbH, 2001)
    142 D. A. Vanden, W. T. Yip, D. H. Hu, D. K. Fu, T. M. Swager. Discrete Intensity Jumps and Intramolecular Electronic Energy Transfer in the Spectroscopy of Single Conjugated Polymer Molecules. Science. 1997, 277:1074~1077
    143 X. Li, L. E. Sinks, B. Rybtchinski, M. R. Wasielewski. Ultrafast Aggregate-to-Aggregate Energy Transfer within Self-assembled Light-Harvesting Columns of Zinc Phthalocyanine Tetrakis(Perylenediimide). J. Am. Chem. Soc. 2004, 126:10810~10811
    144 K. M. Gaab, and C. J. Bardeen. Anomalous Exciton Diffusion in the Conjugated Polymer MEH?PPV Measured Using a Three-Pulse Pump?Dump?Probe Anisotropy Experiment. J. Phys. Chem. A. 2004, 108:10801~10806
    145 Lee, H.; Cheng, Y. C.; Fleming, G. R. Coherence Dynamics in Photosynthesis: Protein Protection of Excitonic Coherence. Science. 2007, 316:1462~1464
    146 R. Chang, M. Hayashi, S. H. Lin, J. H. Hsu. Ultrafast Dynamics of Excitations in Conjugated Polymers: A Spectroscopic Study. J. Chem. Phys. 2001, 115:4339~4348
    147 L. W. Barbour, M. Hegadorn, J. B. Asbury. Watching Electrons Move in Real Time: Ultrafast Infrared Spectroscopy of a Polymer Blend Photovoltaic Material. J. Am. Chem. Soc. 2007, 129:15884~15894
    148 M. A. T. Silva, I. F. L. Dias, J. L. Duarte, E. Laureto, I. Silvestre, L. A. Cury, P. S. S. Guimar?es. Identification of the Optically Active Vibrational Modes in the Photoluminescence of MEH-PPV Films. J. Chem. Phys. 2008, 128:094902-1~094902-7
    149 D. Y. Kim, J. K. Gray, P. F. Barbara. A Detailed Single Molecule Spectroscopy Study of the Vibronic States and Energy Transfer Pathways of the Conjugated Polymer MEH-PPV. Synth. Met. 2006, 156:336~345
    150 C. Scheurer, S. Mukamel. Design Strategies for Pulse Sequences in Multidimensional Optical Spectroscopies. J. Chem. Phys. 2001, 115:4989~5004
    151 L. D. Book, A. E. Ostafin, N. Ponomarenko, J. R. Norris, N. F. Scherer. Exciton Delocalization and Initial Dephasing. Dynamics of Purple Bacterial LH2. J. Phys. Chem. B. 2000, 104:8295~8307
    152 L. V. Dao, C. Lincoln, M. Lowe, P. Hannaford. Spectrally Resolved Two-colour Three-pulse Photon Echo Studies of Vibrational Dynamics of Molecules. Physica. B. 2003, 327:123~128
    153 S. Mukamel, A. Piryatinski, V. Chernyak. Two-Dimensional Raman Echoes: Femtosecond View of Molecular Structure and Vibrational Coherence. Acc. Chem. Res. 1995, 32:145~154
    154 A. Tokmakoff, A. S. Kwok, R. S. Urdahk, R. S. Francis, M. D. Fayer. Multilevel Vibrational Dephasing and Vibrational Anharmonicity from Infrared Photon echo Beats. Chem. Phys. Lett. 1995, 234:289~295
    155 R. Agarwal, B. S. Prall, A. H. Rizvi, M. Yang, G. R. Fleming Two-color Three Pulse Photon Echo Peak Shift Spectroscopy. J. Chem. Phys. 2002, 116:6243~6252
    156 A. Tokmakoff, M. J. Lang, X. J. Jordanides, G. R. Fleming. The Intermolecular Interaction Mechanisms in Liquid CS2 at 295 and 165 K probed with Two-dimensional Raman Spectroscopy. Chem. Phys. 1998, 233:231~238
    157 B. S. Prall, D. Y. Parkinson, and G. R. Fleming. Probing Correlated Spectral Motion: Two-color Photon Echo Study of Nile Blue. J. Chem. Phys. 2005, 123:054515-1~054515-13
    158 D. S. Larsen, K. Ohta, and G. R. Fleming. Three Pulse Photon Echo Studies of Nondipolar Solvation: Comparison with a Viscoelastic Model. J. Chem. Phys. 1999, 111:8970~8979
    159 A. K. Dharmadhikari, F. A. Rajgara, N. C. S. Reddy. Highly Efficient White Light Generation from Barium Fluoride. Opt. Express. 2004, 12:695~700
    160 A. Salliminia, S. L. Chin R. Vallee. Ultra-broad and Coherent White Light Generation in Silica Glass by Focused Femtosecond Pulses at 1.5 um. Opt. Express. 2005, 13:5731~5739
    161 A. Volkmer, L. D. Book, and X. S. Xie Time-resolved coherent anti-Stokes Raman scattering microscopy: Imaging Based on Raman free induction decay Appl. Phys. Lett. 2002, 80:1505~1507
    162 Y. R. Shen. The principles of Nonlinear Opitcs ( Wiley, New York, 1984)
    163 S. Mukamel. Principles of Nonlinear Optical Spectroscopy (Oxford University Press, New York, 1995)
    164 S. Mukamel, R. F. Loring. Nonlinear Response Function for Time-domainand Frequency-domain Four-wave Mixing. J. Opt. Soc. Am. B. 1986, 3:595~606
    165 Y. J. Yan, S. Mukamel. Photon Echoes of Polyatomic Molecules in Condensed Phases. J. Chem. Phys. 1991, 94:179~190
    166 J. D. Hybl, A. A. Ferro, D. M. Jonas. Two-dimensional Fourier Transform Electronic Spectroscopy. J. Chem. Phys. 2001, 115:6606~6622
    167 L. V. Dao. Spectrally Resolved Femtosecond Nonlinear Spectroscopy of Vibrational Coherence Relaxation in Molecules. J. Luminescence. 2004, 106:243~252
    168 T. Asahi, N. Tamai, T. Uchida, N. Shimo, H. Mashhara. Nonlinear Excited-state Dynamics of a Thin Copper Phthalocyanine Film by Femtosecond Transient Grating Spectroscopy. Chem. Phys. Lett. 1995, 234:337~342
    169 H. Maekawa, K. Ohta, K. Tominaga. Vibrational Population Relaxation of the ?N=C=N? Antisymmetric Stretching Mode of Carbodiimide Studied by the Infrared Transient Grating Method. J. Phys. Chem. A. 2004, 108:9484~9491
    170 J. W. Blatchford, T. L. Gustafsson, A. J. Epstein, D. A. Vanden Bout, J. Kerimo, D. A. Higgins, P. F. Barbara, D.-K. Fu, T. M. Swager, A. G. MacDiarmid. Spatially and Temporally Resolved Emission from Aggregates in Conjugated Polymers. Phys. Rev. B 1996, 54:R3683~R3686
    171 S. Webster, D. A. Smith, D. N. Batchelder, D. G. Lidzey, D. D. C. Bradley. Application of Fluorescence Scanning Near-field Optical Microscopy to the Study of Phase-separated Conjugated Polymers. Ultramicroscopy. 1998, 71:275~279
    172 J. Teetsov, D. A. Vanden Bout. Near-Field Scanning Optical Microscopy (NSOM) Studies of Nanoscale Polymer Ordering in Pristine Films of Poly(9,9-dialkylfluorene). J. Phys. Chem. B. 2000, 104:9378~9387
    173 J. A. DeAro, K. D. Weston, S. K. Buratto, U. Lemmer. Mesoscale Optical Properties of Conjugated Polymers Probed by Near-field Scanning Optical Microscopy. Chem. Phys. Lett. 1997, 277:532~538
    174 K. Ohta, D. S. Larsen, M. Yang G. R. Fleming. Influence of Intramolecular Vibrations in Third-order, Time-domain Resonant Spectroscopies. II. Numerical Calculations. J. Chem. Phys. 2001, 114:8020~8039
    175 B. J. Homoelle, M. D. Edington, W. M. Diffey, W. F. Beck. Stimulated Photon-Echo and Transient-Grating Studies of Protein-Matrix Solvation Dynamics and Interexciton-State Radiationless Decay inαPhycocyanin and Allophycocyanin. J. Phys. Chem. B. 1998, 102:3044~3052
    176 T.-Q. Nguyen, B. J. Schwartz, R. D. Schaller, J. C. Johnson, L. F. Lee, L. H. Haber, R. J. Saykally. Near-Field Scanning Optical Microscopy (NSOM) Studies of the Relationship between Interchain Interactions, Morphology, Photodamage, and Energy Transport in Conjugated Polymer Films. J. Phys. Chem. B. 2001, 105:5153~5160
    177 R. Jakubiak, C. J. Collison, W. C. Wan, L. J. Rothberg, B. R. Hsieh. Aggregation Quenching of Luminescence in Electroluminescent Conjugated Polymers. J. Phys. Chem. A. 1999, 103:2394~2398
    178 X. J. Yang, T. E. Dykstra, G. D. Scholes. Photon-echo Studies of Collective Absorption and Dynamic Localization of Excitation in Conjugated Polymers and Oligomers. Phys. Rev. B. 2005, 71:045203-1~045203-6
    179 G. D. Scholes, D. S. Larsen, G. R. Fleming. Origin of Line Broadening in the Electronic Absorption Spectra of Conjugated Polymers: Three-pulse-echo Studies of MEH-PPV in Toluene. Phys. Rev. B. 2000, 61:13670~13678
    180 D. S. Larsen, K. Ohta, Q. H. Xu, M. Cyrier, G. R. Fleming. Influence of Intramolecular Vibrations in Third-order, Time-domain Resonant Spectroscopies. I. Experiments. J. Chem. Phys. 2001, 114:8008~8015
    181 G. D. Scholes, D. S. Larsen, G. R. Fleming. Origin of Line Broadening in the Electronic Absorption Spectra of Conjugated Polymers: Three-pulse-echo Studies of MEH-PPV in Toluene. Phys. Rev. B. 2000, 61:13670~13678
    182 M. H. Cho, J. -Y. Yu, T. H. Joo, Y. Nagaswa, S. A. Passino, G. R. Fleming. The Integrated Photon Echo and Solvation Dynamics. J. Phys. Chem. 1996, 100:11944~11953
    183 T. Joo, Y. Jia, J. Y. Yu, M. J. Lang, G. R. Fleming. Third-order nonlinear time domain probes of solvation dynamics. J. Chem. Phys. 1996, 104:6089~6108
    184 O. Varnavski, T. Goodson, L. Sukhomlinova, R. Twieg. Ultrafast Exciton Dynamics in a Branched Molecule Investigated by Time-Resolved Fluorescence, Transient Absorption, and Three-Pulse Photon Echo Peak Shift Measurements. J. Phys. Chem. B. 2004, 108:10484~10492
    185 X. J. Yang, T. E. Dykstra, G. D. Scholes. Photon-echo Studies of Collective Absorption and Dynamic Localization of Excitation in Conjugated Polymers and Oligomers. Phys. Rev. B. 2005, 71:045203-1~045203-6
    186 M. H. Cho, J. -Y. Yu, T. H. Joo, Y. Nagasawa, S. A. Passino, and G. R. Fleming. The Integrated Photon Echo and Solvation Dynamics. J. Phys. Chem 1996, 100:11944~11953
    187 A. Vierheilig, T. Chen, P. Waltner, W. Kiefer, A. Materny and A. H. Zewail. Femtosecond Dynamics of Ground-state Vibrational Motion and EnergyFlow: Polymers of Diacetylene. Chem. Phys. Lett. 1999, 312:349~356
    188 L. V. Dao. Spectrally Resolved Femtosecond Nonlinear Spectroscopy of Vibrational Coherence Relaxation in Molecules. J. Luminescence. 2004, 106:243~252
    189 T. W. Hagler, K. Pakbaz, K. F. Voss, J. A. Heeger. Enhanced Order and Electronic Delocalization in Conjugated Polymers Oriented by Gel Processing in Polyethylene. Phys. Rev. B. 1991, 44:8652~8666
    190 J. H. Burroughes, C. D. D. Bradley, A. R. Brown, R. N. Marks. The first polymer LEDs. Nature.1990, 347:539~541
    191 D. Braun, A. J. Heeger. Visible Light Emission from Semiconducting Polymer Diodes. Appl. Phys. Lett. 1991, 58:1982~1984
    192 G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions. Science. 1995, 270:1789~1791
    193 S. E. Shaheen, C. J. Brabec, N. S. Sariciftic, F. Padinger, T. Fromherz, J. C. Hummelen. 2.5% Efficient Organic Plastic Solar Cells. Appl. Phys. Lett. 2001, 78:841~843
    194 R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani. Electroluminescence in Conjugated Polymers. Nature. 1999, 397:121~128
    195 G. J. Denton, N. Tessler, N. T. Harrison, and R. H. Friend. Factors Influencing Stimulated Emission from Poly( p-phenylenevinylene). Phys. Rev. Lett. 1997, 78:733~736
    196 N. T. Harrison, G. R. Hayes, R. T. Phillips, and R. H. Friend. Singlet Intrachain Exciton Generation and Decay in Poly(p-phenylenevinylene). Phys. Rev. Lett. 1996, 77:1881~1884
    197 T. Q. Nguyen, J. S. Benjamin, D. S. Richard, C. J. Justin, F. L. Lynn, H. H. Louis, and J. S. Richard, J. Phys. Chem. B 2001, 105:5153~5160
    198 T. Q. Nguyen, I. B. Martini, J. Liu, and B. J. Schwartz. Controlling Interchain Interactions in Conjugated Polymers: The Effects of Chain Morphology on Exciton?Exciton Annihilation and Aggregation in MEH?PPV Films. J. Phys. Chem. B. 2000, 104:237~255
    199 S. J. Park, A. J. Gesquiere, J. Yu, and P. F. Barbara. Charge Injection and Photooxidation of Single Conjugated Polymer Molecules. J. Am, Chem. Soc. 2004, 126:4116~4117
    200 S. O. Konorov, A. D. Akimov, E. E. Serebryannikov, A. A. Ivanov, M. V. Alfimov, and A. M. Zheltikov. Cross-correlation Frequency-resolved OpticalGating Coherent Anti-Stokes Raman Scattering with Frequency-converting Photonic-crystal Fibers. Phys. Rev. E 2004, 70:057601-1~057601-13
    201 S. Dominique, S. Kummli, M. F. Hans, and L. Samuel. Femtosecond Degenerate Four-wave Mixing of Carbon Disulfide: High-accuracy Rotational Constants. J. Chem. Phys. 2006, 124:144307~114316
    202 V. L. Dao, L. Craig, L. Martin, and H. Peter. Spectrally Resolved Femtosecond Two-color Three-pulse Photon Echoes: Study of Ground and Excited State Dynamics in Molecules. J. Chem. Phys. 2004, 120: 8434~8442
    203 S. P. June, and J. Taiha. Coherent Interactions in Femtosecond Transient Grating. J. Chem. Phys. 2004, 120:5269~5274
    204 V. Artemy, O. Cess, and G. Jan. On the Coherent Vibrational Phase in Polarization Sensitive Resonance CARS Spectroscopy of Copper Tetraphenylporphyrin. J. Chem. Phys. 1997, 106:2589~2598
    205 A. Piryatinski, and J. L. Skinner, Determining Vibrational Solvation-Correlation Functions from Three-Pulse Infrared Photon Echoes. J. Phys. Chem. B. 2002, 106:8055~8063
    206 Y. Q. Yang, Z. Y. Sun, S. F. Wang, and D. D. Dlott. Fast Spectroscopy of Laser-Initiated Nanoenergetic Materials. J. Phys. Chem. B. 2003, 107:4485~4493
    207 M. Yan, L. J. Rothberg, F. Papadimitrakopoulos, M. E. Galvin, T. M. Miller Defect Quenching of Conjugated Polymer Luminsecence. Phys. Rev. Lett. 1994, 73:744~747
    208 S. Mukamel, M. Cho, and G. R. Fleming, Nonlinear response functions for birefringence and dichroism measurements in condensed phases. J. Chem. Phys. 1993, 98:5314~5321
    209 Y. R. Shen, The Principle of Nonlinear Optics (Wiley, New York, 1984)
    210 J. J. Sakurai, Modern Quantum Mechanics, revised (Addison-Wesley, Reading, 1994)
    211 P. H. Vaccaro, in Nonlinear Spectroscopy for Molecular Structure Determination, edited by E. Hirota, R. W. Field, J. P. Maier, ad S. Tsuchiya (Blackwell Scientific, London, 1997)
    212 S. H. Yang, C. C. Wu, C. F. Lee, and M. H. Liu. Synthesis and Luminescence of red MEH-PPV:P3OT Polymer. Displays 2008, 29:214~218
    213 F Massuyeau, H Aarab, L Mihut, S Lefrant, E Faulques, and J Wéry. Optical Properties of Poly(para-phenylene Vinylene) and Single-Walled Carbon Nanotube Composite Films: Effects of Conversion Temperature, Precursor Dilution, and Nanotube Concentrations. J. Phys. Chem. C. 2007,111:15111~15118
    214 S. Madhugiri, A. Dalton, J. Gutierrez, J. P. Ferraris, and K. J. Jr. Balkus. Electrospun MEH-PPV/SBA-15 Composite Nanofibers Using a Dual Syringe Method. J. Am. Chem. Soc. 2003, 125:14531~14538

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700