用户名: 密码: 验证码:
基于CFD的船舶阻力计算与预报研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
船舶阻力是影响船舶快速性的重要内容之一。阻力性能良好的船舶可以提高运输效率,节约能源,也直接关系到船舶的经济性能。船舶阻力性能评估是船型优化的重要依据,阻力的预报方法也一直是船舶工程届永恒的研究主题之一,因此船舶阻力计算和预报研究同时具有重要的学术意义和工程实用价值。
     本文系统地回顾和总结了船舶阻力理论计算的发展历程和研究进展,详细介绍了当前国内外船舶CFD的发展趋势和阻力预报方法,采用CFD理论计算手段,基于层流、湍流等理论对航行船体的阻力进行了计算和试验验证,对理论计算中获得的船体压阻力、黏性阻力进行了剥离、分析,与模型试验中获得的剩余阻力等各成分进行了比较和分析,对船体壁面粗糙度对阻力影响进行了探讨,提出基于CFD理论的实船阻力预报方法。
     本文创新性地采用了压阻力、黏性摩擦阻力的剥离、分析的方法进行船舶阻力预报研究。研究表明:模型尺度下采用湍流黏性理论模拟计算可以获得与模型试验结果相比相当不错的结果,但模拟计算比较耗时;基于层流黏性理论模拟计算得到的船体黏性阻力不够准确,但计算模拟的时间较短,能捕捉到准确的自由面形状;对模型尺度与实船尺度的渔政船在黏性流计算中的压阻力系数进行比较讨论可知,两者相差不大;高航速工况下基于层流黏性理论计算得到的船体压阻力系数与船模试验得到的船体剩余阻力系数相当;湍流理论计算中粗糙度的加大能够提高船体的阻力结果。
     本文基于CFD进行船舶阻力计算和预报研究,对引领船舶工程领域的广大研究者进行更加深入细致地研究船体阻力预报的新方法具有重要意义。
Ship resistance is one of the important factors which affect ship speed performance. Ship with good performance can not only enhance transportation efficiency and saving energy, but also has connection with ship economic performance. Prediction of ship resistance performance is an important basis of ship hull optimization. The prediction method for ship resistance is an eternal research topic in naval architecture engineering field. Research on calculation and prediction for ship resistance shows great academic significance and practical engineering value.
     This thesis reviews and summarizes recent developing history and research progress for the theoretical calculation of ship resistance systematically. It has a detailed introduction about the ship CFD developing trends and resistance prediction methods. Taking CFD method, we make numerical calculation for sailing ship based on the laminar and turbulence theories. Compare those calculation results to experiment for verification. Ship resistance from theoretical calculation can be divided into pressure force and viscous force, which are analyzed and compared with the residual force and friction force obtained from model ship experiment. Meanwhile, effects of ship hull wall roughness to resistance have been discussed. From those workings, we propose a method for predicting the ship resistance based on CFD theory.
     This thesis creatively divides ship resistance into two components and analyzes them. Put forward a method for research on ship resistance prediction. Research shows that fairly good results compared with model scale ship experiment result can be obtained from turbulence viscous theoretical calculation, but the simulation is time-consuming. It is not accurate enough to adopt laminar viscous model, but the simulation time is short and wave contours can be captured accurately. On the basis of comparing the coefficient of pressure force from model-scale and full-scale ship based on laminar viscous theory, the result shows that they have no great differences. The results obtained from laminar viscous theory simulations at high speed are corresponding to the result from model ship experiment. Enhancement of wall roughness under turbulence viscous theory can increase the ship resistance obviously.
     The research on calculation and prediction for ship resistance bases on CFD theories in this thesis. It shows great significance in leading the researchers to get new methods from doing some more deep and detailed research on ship resistance prediction in naval architecture engineering field.
引文
[1]邵世明,赵连恩,朱念昌.船舶阻力[M].北京:国防工业出版社. 1995.
    [2] Dawson C W. A practical computer method for solving ship wave problems[C]. Proc 2nd Int Conf Numerical Ship Hydrodynamics, Berkeley, USA. 1977: 30-38.
    [3] RAVEN H C. Variations on a theme by Dawson[C]. 17th Symposium on Naval Hydrodynamics, Hague, Netherlands. 1988: 151-171.
    [4] RAVEN H C. A Practical nonlinear method for calculating ship wavemaking and wave resistance[C]. Proc. 19th Symposium on Naval Ship Hydrodynamics, Seoul, Korea. 1992.
    [5] RAVEN H C. Nonlinear ship wave calculation using the RAPID method[C]. 6th Int. Conf on Numerical Ship Hydrodynamics, Iowa City, USA. 1993: 1-19.
    [6] RAVEN H C, Valkhof H H. Application of nonlinear ship wave calculations in design[C], Symposium on Practical Design of Ships and Floating Structures, Seoul, Korea. 1995.
    [7] RAVEN H C. Inviscid calculations of ship wave making capabilities[C], limitations and prospects, 22nd Symposium on Naval Hydrodynamics. 1998.
    [8]蔡荣泉.关于船舶CFD的现状和一些认识[J].船舶. 2002,2(1).
    [9]张楠,沈泓萃,姚惠之.阻力和流场的CFD不确定度分析探讨[J].船舶力学. 2008.12(2): 211-224.
    [10] L. Larsson, B. Regnstrom, L. Broberg, et al. Failures, Fantasies, and Feats in theoretical/Numerical Prediction of Ship Performance[C], 22nd Symposium on Naval Hydrodynamics. 1999.
    [11]刘应中,张怀新,李谊乐,缪国平. 21世纪的船舶性能计算和RANS方程[J].船舶力学. 2001, 5(5): 66-84.
    [12] Hess J L, Smith A M O. Calculation of non-lifting potential flow about arbitrary three-dimensional bodies[C]. Douglas Report No E S 40622. 1962
    [13]陈京普,朱德祥,何术龙.双体船/三体船兴波阻力数值预报方法研究[J].船舶力学. 2006, 10(2).
    [14] Joseph J, Gorski, et al. The Use of a RANS Code in the Design and Analysis of a Naval Combatant[C]. 24th Symposium on Naval Hydrodynamics, Fukuoka, Japan. 2002.
    [15] K.-S. Min, et al. Study on the CFD Application for VLCC Hull-Form Design[C]. 24th Symposium on Naval Hydrodynamics, Fukuoka, Japan. 2002.
    [16] Clarence O.E. Burg, Kidambi Sreenivas, Daniel G. Hyams, et al. Unstructured Nonlinear Free Surface Simulations for the Fully-Appended DTMB Model 5415 Series Hull Including Rotating Propulsors[C]. 24th Symposium on Naval Hydrodynamics, Fukuoka, Japan. 2000.
    [17] Takanori Hino, Kunihide Ohashi. Flow Computations around a Ship With Appendages by an Unstructured Grid Based N-S Solver[C]. The 8th International Conference On Numerical Ship Hydrodynamics, Busan, Korea. 2003.
    [18] P. Bull, et al. Prediction of High Reynolds Number Flow around Naval Vessels[C]. 24th Symposium on Naval Hydrodynamics, Fukuoka, Japan. 2002.
    [19] Jung-Eun Choi, Keh-Sik Min, et al. Study on the Scale Effects on the Flow Characteristics around a Full Slow-Speed Ship[C]. The 8th International Conference on Numerical Ship Hydrodynamics, Korea. 2003.
    [20] D. Hyams, et al. An Unstructured Multielement Solution Algorithm for Complex Geometry Hydrodynamic Simulations[C]. Proceedings of the 23rd Symposium of Naval Hydrodynamics, Val de Reuil, France. 2000.
    [21] C. W. Lin, S. Percival. Free Surface Viscous Flow Computation Around A Transom Stern Ship By Chimera Overlapping Scheme[C]. Proceedings of the 23rd Symposium of Naval Hydrodynamics, Val de Reuil, France. 2000.
    [22] T. Ratcliffe. An Experimental and Computational Study of the Effects of Propulsion on the Free-Surface Flow Astern of Model 5415. Proceedings of the 23rd Symposium of Naval Hydrodynamics, Val de Reuil, France. 2000.
    [23] M. Beddhu, et al. Computation of Nonlinear Turbulent Free Surface Flows Using the Parallel Uncle Code[C]. Proceedings of the 23rd Symposium of Naval Hydrodynamics, Val de Reuil, France. 2000.
    [24]刘应中,缪国平.高等流体力学[M],第二版.上海:上海交通大学出版社. 2002, 12.
    [25]王献孚,周树信,陈泽梁等.计算船舶流体力学[M].上海:上海交通大学出版社. 1991.
    [26] Chi Yang, Francis Noblesse, Rainald Lohner, et, al. Practical CFD Applications to Design of a Wave Cancellation Multihull Ship[C]. Proceedings of the 23rd Symposium ofNaval Hydrodynamics, Val de Reuil, France. 2000.
    [27] Tahara Y, Paterson E P, Stern F. et, al. Flow and Wave Field Optimization of Surface Combatant Using CFD-based Optimization methods[C]. Proceedings of the 23rd Symposium of Naval Hydrodynamics, Val de Reuil, France. 2000.
    [28] Hino T. Shape Optimization of Practical Ship Hull Forms Using Navier-Stokes Analysis[C]. Proceedings of the 7th International Conference on Numerical Ship Hydrodynamics, Nates, France. 1999.
    [29] S. Ju, V. Patel. A Numerical Approach for Predicting the Total Resistance and Nominal Wakes of Full-Scale Tankers[C]. 19th Symposium on Naval Hydrodynamics. 1992.
    [30] S. Abdallah, et al. Investigation on Scale Effect in Ship Viscous Flow by CFD[C]. 19th Symposium on Naval Hydrodynamics. 1992.
    [31] L. Eca, M. Hoekstra. Numerical Calculations of Ship Stern Flows at Full-Scale Renolds numbers[C]. 21st Symposium on Naval Hydrodynamics, Trondheim. 1996.
    [32] L. Eca, M. Hoekstra. Numerical Prediction of Scale Effects in Ship Stern Flows with Eddy-Viscosity Turbulence Models. Proceedings of the 23rd Symposium of Naval Hydrodynamics, Val de Reuil, France. 2000.
    [33] Deng G. B. and Visonneau M. Comparison of Explicit Algebraic Stress models and Second Order Turbulence Closures for Steady Flows around the KVLCC2 Ship at Model and Full Scales[C]. Proc. of Gothenburg 2000-A Workshop on Numerical Ship Hydrodynamics, Chalmers U. of Technology, Gotherburg, Sweden. 2000.
    [34] Abdel-Maksoud M, Hellwig K, Menter F R. Calculation of the Turbulent Flow around a Model and Full Scale VLCC Ship Hull[C]. Proc. of Gothenburg 2000-A Workshop on Numerical Ship Hydrodynamics, Chalmers U. of Technology, Gothenburg, Sweden. 2000.
    [35] P. Bull, et al. Prediction of High Reynolds Number Flow around Naval Vessels[C]. 24th Symposium on Naval Hydrodynamics, Fukuoka, Japan. 2002.
    [36] Jung-Eun Choi, Keh-Sik Min, et al. Study on the Scale Effects on the Flow Characteristics around a Full Slow-Speed Ship[C]. The 8th International Conference on Numerical Ship Hydrodynamics, Korea. 2003.
    [37]王福军.计算流体动力学分析[M].北京:清华大学出版社. 2004.
    [38]韩占忠,王敬,兰小平. FLUENT-流体工程仿真计算实例与应用[M].北京:北京理工大学出版社. 2004.6.
    [39]刘应中.船舶兴波阻力理论[M].北京:国防工业出版社. 2003.
    [40]刘应中,张怀新,李谊乐,缪国平. 21世纪的船舶性能计算和RANS方程[J].船舶力学. 2001, 5(5): 66-84.
    [41]韩端锋.船舶兴波阻力新细长船理论的方法与计算研究[D],博士论文.哈尔滨工程大学. 2002.
    [42]钱成,卢晓平.用薄船理论计算方尾军舰兴波阻力的一种修正方法[J].海军工程大学学报. 1997,1.
    [43]李云波,黄德波.用改进的Noblesse新细长船理论计算船舶兴波阻力时水线积分项的讨论[J].哈尔滨工程大学学报. 2003,2(24).
    [44]黄德波,李云波.一种基于Noblesse的新细长船理论与波陡限制的船舶兴波阻力计算方法[J].船舶力学. 1999,8(3).
    [45]李子如,陈克强.用面元法预报船舶的兴波阻力及波型[J].武汉理工大学学报. 2006,12(30).
    [46]李迎峰.用Guilloton方法计算船舶兴波阻力及改进船型[J].武汉水运工程学院学报. 1985,3.
    [47]毛政良,石艳青.利用Michell积分计算薄船兴波阻力[J].武汉水运工程学院学报. 1989,1.
    [48]陈军,卢晓平.用线性兴波阻力理论计算穿浪双体船的兴波阻力[J].海军工程大学学报. 2002,6[14].
    [49] Sharma S D. Some results concerning the wave-making of a thin ship[J]. Journal of ship research. 1969,3.
    [50] Garrett Birkhoff, et al. Theory of the wave resistance of ships[C]. SNAME. 1954.
    [51]陈京普,朱德祥,刘晓东.兴波阻力数值预报方法研究及其在集装箱船船型优化中的应用[J].水动力学研究与进展. 2006, 21(1).
    [52]李继先.在线性自由面条件下Rankine源与Kelvin源势之关系[J].武汉交通科技大学学报. 1995,19(2).
    [53]李世谟,赵润元,高高.非线性兴波阻力计算[J].武汉交通科技大学学报. 1996,20(5).
    [54]邹早建,罗青山,史一鸣.小水线面双体船阻力预报研究[J].中国造船. 2005,46(1).
    [55]马健,高高.基于NURBS高阶面元法的浅水船舶兴波阻力计算[J].武汉理工大学学报. 2006,30(3).
    [56] Xia F. Numerical calculation of ship flows with emphasis on the free surface potential flow[D], PHD Thesis. Chalmers Univ. of Technology. 1986.
    [57] Ni S Y. Higher order panel method for potential flows with linear of non-linear free surface boundary conditions[D], PHD Thesis. Chalmers Univ. of Technology. 1987
    [58] Kim K J. Ship flow calculation and resistance minimization[D], PHD Thesis. Chalmers Univ. of Technology. 1989
    [59] Jensen G, Bertran V. Soding Hetal. Ship wave resistance calculatiton[D]. Proc of 5th Int. Conf on Numerical ship Hydrodymics. Hiroshima, Japan. 1989: 424-436.
    [60] Musker A J. Stability and accuracy of a non-linear model for the wave resistance problem[D]. Proc of 5th Int. Conf on Numerical ship Hydrodynamics. Hiroshima, Japan. 1989.
    [61] Kim Y H, Lucas T. Nonlinear ship waves. Proc. 18th Symposium Naval Hydrodynamics[D]. Ann Arbor, Michigan USA. 1990: 439-452.
    [62] Kim Y H, Lucas T. Nonlinear effects on high block ship at low and moderate speed[D]. Proc 19th Symposium Naval Hydrodynamics[D]. Seoul, Korea. 1992: 43-52.
    [63]陶晖,顾敏童.小水线面双体船片体的兴波阻力研究[J].造船技术. 2006,1.
    [64] J O Hinze. Turbulence[M]. New York: McGraw-Hill. 1975.
    [65] V Yakhot, S A Orzag. Renormalization group analysis of turbulence: basic theory[J]. J Scient Comput. 1986,1: 3-11.
    [66] W P Jones, B E Launder. The calculation of low-Reynolds-number phenomena with a two-equation model of turbulence[J]. Int J Heat Mass Transfer. 1973.16: 1119-1130.
    [67] B J Daly, F H Harlow. Transport equations in turbulence[J]. Physics Fluids. 1970,13:2634-2649.
    [68]严刚,刘启国,马廷淮.双体船黏性阻力数值计算方法[J].武汉造船. 2000,3.
    [69] S V Patanker, D B Spalding. A calculation pressure for heat, mass and momentum transfer in three-dimensional parabolic flows[J]. Int J Heat Mass Transfer. 1972,15: 1787-1806.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700