用户名: 密码: 验证码:
海湾扇贝群体遗传学和扇贝科分子系统演化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
群体遗传学和分子系统学是遗传学研究的重要内容。本文对扇贝群体遗传学研究中的主要分子方法同工酶和RAPD标记进行了研究,利用RAPD标记分析了海湾扇贝野生群体、养殖群体和地理亚种群体的遗传结构和遗传分化,探讨了人工养殖对群体遗传多样性的影响;利用数学统计方法研究了海湾扇贝壳性状与生产性能的相关关系,得出了海湾扇贝壳性状对活体重和软体重的回归方程,分析了3个不同养殖群体的生长和产量差异;实验克隆和分析了海湾扇贝、栉孔扇贝等8种扇贝的16S rDNA基因部分序列,结合已有的5个扇贝物种的序列,利用分子数据分析了扇贝科物种的分类地位和系统演化关系。
     实验以海湾扇贝为材料,研究了样品不同保存条件下DNA的提取方法,结果显示,鲜活样品、冷冻样品以及70%乙醇固定样品,都可以方便地获得高质量的DNA,但甲醛固定的样品在本实验中没能获得满意的结果。以获得的样品DNA为模板进行RAPD扩增显示,上述3种方法获得的DNA扩增后的得到稳定的产物,并且样品间电泳检测的结果表现出很好的一致性,而甲醛固定样品的提取物在进行扩增后电泳检测无阳性结果。
     RAPD和同工酶是群体遗传分析中常用标记,实验以野生栉孔扇贝群体为材料,筛选了10个可用于群体分析的RAPD标记,分析显示,多态位点比例为40.74%,群体平均杂合度为0.194;通过对同工酶的筛选,共得到13种酶的22个位点,其中7个为多态位点,多态位点比例和群体平均杂合度分别为31.82%和0.113。实验表明,同一扇贝群体采用RAPD标记分析得到的多态位点比例和平均杂合度均高于同工酶标记分析结果,但两种手段得到的结果所揭示的趋势表现出较好的一致性。
     利用RAPD技术分析了海湾扇贝野生种群、两个不同养殖世代的养殖群体和一个海湾扇贝地理亚种墨西哥湾扇贝养殖群体的遗传结构和群体间的遗传距
    
     刘保志海琦扇贝娜体遗传学和扁贝料分于系挽演化的研究博士学位论丈
    离。研究结果显示,各群体多态位点比例介于31.54%至35.28%之间,平均杂
    合度为0.1248至0.163,野生海湾扇贝群体的群体多态性水平最高。大连养殖
    群体的多态位点比例和平均杂合度均高于莱州养殖群体,但对两群体的壳高和
    体重分析表明两群体无显著差异。通过对群体遗传距离的比较,墨西哥湾扇贝
    和野生海湾扇贝群体间的遗传距离大于海湾扇贝野生群体和养殖群体间的遗传
    距离。实验结果发现,随着人工养殖世代的增加,群体遗传结构发生了改变。
    群体遗传多样性的降低会导致扇贝抗逆性的下降,而人工养殖过程中较高的养
    殖密度和恶化的水质条件,也是造成养殖扇贝较高死亡率的重要原因。
     为了分析海湾扇贝壳性状同体重等经济性状的关系,实验测量了3个养殖
    群体共139个个体样品的壳长、壳高、壳宽、前耳宽、后耳宽等壳性状和活体
    重、壳重和软体重等经济性状,通过计算分析表明,海湾扇贝各性状的相关系
    数均达到极显著水平(尸<0.01)。利用壳性状作为自变量,活体重和软体重作
    为依变量进行多元回归分析,回归关系达到极显著水平(尸<0.01),活体重对
    壳长、壳高的偏回归系数极显著(尸<0.01),对壳宽的偏回归系数达到显著
     (尸<0.05),软体熏对壳长、高、宽的偏回归系数均极显著(尸<0.01),前
    耳和后耳宽度对活体重和软体重的回归系数均不显著。多元回归分析建立的壳
    长(Xl)、壳高(溉)和壳宽(X3)估计活体亚(Y)和软体重(附)的回归方
    程为:
     卜一4 1 .427+7.SOSXI+3.877X2+0.93lX3)不乞一25.771+4.574丫!十2.421X2+0.7llX3。
     通过采用多参数方差分析和新复极差法对海湾扇贝3个养殖群体的壳长、
    壳高和活体重、软体重等经济性状进行了比较分析,结果显示,陵水桥群体各
    性状指标均显著高于其它两群体,棋盘磨群体和大李家群体则没有表现出显著
    差异,说明陵水桥群体的生产性能和预期产量最高。
     165 rDNA基因序列是系统演化研究中有效的分子手段。实验对栉孔扇贝、
    华贵栉孔扇贝、褶纹肋扇贝和长肋日月贝等4种我国沿海分布的扇贝和海湾扇
    贝、墨西哥湾扇贝、虾夷扇贝和欧洲大扇贝等4种外来物种的线粒体DNA的
    165 rDNA基因部分序列进行了扩增,扩增产物转入T载体后进行了序列测
    定。各物种165 rDNA基因部分序列长度在548一642bp之间,物种间表现出较
    高的长度差异,通过序列比对,表现出较高的同源性。
     利用得到的8种扇贝的165 rDNA基因部分序列和文献发表的5种扇贝的
    
    刘保忠
    海沟扁贝群体遗传学和扇贝科分子从统演化的研究
    博士学位论文
    165 rDNA基因部分序列进行了比较,采用邻接法,最大简约法和最大似然法构
    建了扇贝科的分子系统树。系统分析显示,又用NJ和ML方法构建的系统树表
    现出完全相同的拓扑结构,MP法的系统树除了一个物种的分枝位置出现差
    异,其它物种的排列循序跟上述两种方法得到的系统树相同。实验结果显示,
    海湾扇贝和墨西哥湾扇贝以及AqueiPecten opercularis和Chla州lys glabra所在
    属所属的亚科,很可能同栉孔扇贝亚科和扇贝亚科居于平等的分类阶元上。实
    验结果显示,165 rDNA序列所提供的分子数据,在扇贝科的系统演化分析中?
Population genetics and molecular phylogeny are the important contents for research of mollusc genetics. Allozyme and RAPD markers were developed and applied in scallop genetic structure analysis in this dissertation. The population genetic variation and growth difference of bay scallop, Argopecten irradians, were studied by RAPDs and quantitative traits. 16S rDNA genes partial fragments of 8 species of scallop were sequenced and the molecular phylogeny of Pectinidae was analyzed based on the 16S rDNA genes.
    In order to search for the suitable method for the tissue preservation and DNA isolation of marine animals, the adductor muscle of bay scallop (Argopecten irradians) were treated with different ways, such as frozen at -20℃, fixed with 70% ethanol or 10% formaldehyde for more than 10 days. DNA templates about 20 kb were extracted successfully from the fresh, frozen and 70% ethanol fixed tissues. RAPD analysis indicated that PCR products had no obvious distinction among them in the same individual. No usable DNA was gotten from the fixed tissue in formaldehyde. The result suggests that the 70% ethanol is appropriate for tissue preservation andDNA extraction for RAPD analysis.
    To compare genetic markers for the use of population genetics analysis, allozyme electrophoresis and RAPD (Random Amplified Polymorphic DNA) were used to detect the genetic structure of wild Zhikong scallop Chlamys farreri population. A total of 40 individuals from the same species were investigated using 10 arbitrarily selected primers (10 base). 40.74% of 54 RAPD fragments were polymorphic and revealed an average of heterozygosity with 0.194. 13 enzymes (IDH, GPI, PGM, PEP-B, PEP-D, ACP, AK, PK, GOT, SOD, EST) were selected and 22 loci were used for the population genetic analysis, among them 7 loci (Gpi, Pgm, Pep-Bl, Pep-D, Got-2, Est-2, Est-3) were polymorphic which attributed 31.82% of polymorphism.
    
    
    
    The average of heterozygosity was 0.113 and most of the studied loci showed a heterozygote deficiency. RAPDs revealed more genetic variation than isozyme electrophoresis, but the two kinds of markers reflected the consistent trend about the genetic structure of the population.
    Bay scallop, Argopecten irradians, was introduced to China from America in 1982, it has become one of mair) cultured species in the north of China. After culturing for more than decadal generations, its genetic structure might has changed because of the inbreeding. The RAPD markers were used to investigate the population genetic structure and their variation in four populations of A. irradians. Three populations of A. irradians irradians, one wild population was from Massachusetts of America, two cultured populations from Laizhou reared 12th generation and Dalian reared 6th generation respectively, the other cultured population, subspecies A. irradians concentricus, from Qingdao. The value of population polymorphism fluctuated from 31.54% to 35.28%, and the average of heterozygosity varied from 0.1248 to 0.1631, the wild population had the highest level of polymorphisms as well as the average heterozygosity. Dalian population revealed the higher level of polymorphisms and heterozygosity than that in Laizhou population, but there was no significant difference in body weight and shell height between them by statistical method, this result indicated that there had no distinct association between heterozygosity and growth of bay scallop. There was greater genetic distance between the population of wild A. i. irradians and A, i. concentricus (D=0.0093) than that between the wild and two cultured populations of A. i. irradians (D=0.0028, 0.0034). Our data provided some evidences that some genetic variation occurred between the different generations. The lost of genetic diversity usually caused decrease the repellency of scallop. However, the authors think the high cultured density and the deteriorating water environment are still the main reasons that caused high mortality in cultured scallop.
    A total of 139 individuals from three cultured bay scallop, A. irr
引文
1.常亚青、刘小林、相建海等,2002。栉孔扇贝中国种群与日本种群杂交一代的早期生长发育。水产学报,26.385-390。
    2.杜晓东、李广丽、刘志刚等,2002。合浦珠母贝2个野生种群的遗传多样性。中国水产科学,9:100—105,2002。
    3.高天翔,任一平,张秀梅等,2000。日本绒鳌蟹线粒体DNA序列研究Ⅱ.16SrRNA。青岛海洋大学学报,2000,30.482—486。
    4.何田华等,2001。生态与进化研究中的分子方法。科学出版社,北京。
    5.孔晓瑜,刘亚军,喻子牛等,2001。牙鲆、石鲽和川鲽的线粒体16SrRNA基因片断的序列比较研究。青岛海洋大学学报,2001,31:713—717。
    6.李春喜,王志和,王文林,生物统计学(第二版),科学出版社,北京。2001年,89-90。
    7.李刚、金启增、姜卫国等,1985。合浦珠母贝和长耳珠母贝的生化遗传变异。遗传学报,12:204—212,1995。
    8.李红蕾、宋林生、刘保忠等,2002。栉孔扇贝不同种群的遗传结构及其杂种优势。海洋与湖沼,33:188-195。
    9.梁玉波、王立俊、杨波等,2002。不同筏式养殖区海湾扇贝的呼吸代谢。海洋与湖沼,33:97-104。
    10.刘保忠,相建海,张首临,栉孔扇贝同工酶的生化遗传结构分析。《贝类学论文集》,WIII。学苑出版社,1999,p.143.148。
    11.刘小林、常亚青、相建海等,2002。栉孔扇贝壳尺寸性状对活体重的影响效果分析。海洋与湖沼,33:673-678。
    12.刘亚军、喻子牛、姜艳艳等,2002。栉孔扇贝16S rRNA基冈片断序列的多态性研究。海洋与湖沼,33:478—483。
    13.栾云霞,张亚平,岳巧云等,2002。从核糖体RNA基冈序列探讨双尾虫的系统进化。中国科学(C辑),32.536—543。
    14.缪炜,余育和,沈韫芬等,6种累枝虫(Epistylis)rRNA基因18S-ITS1序列及其分子系统发育关系。中国科学(C辑),32:138—146。
    15.齐钟彦,马绣同,王桢瑞等,1989。黄渤海的软体动物,农业出版社,pp.172—174。
    16.庆宁,林岳光,2002。墨吉对虾Penaeus merguiensis线粒体16SrRNA基因序列分析。华南师范大学学报(自然科学版),2002,no.3,63—67。
    17.邱芳,伏健民等,1998。遗传多样性的分子检测。生物多样性,1998,6:143~150。
    18.邱高峰,常林瑞,徐巧婷等,2000。中国对虾16SrRNA基冈序列多态性的研究,动物
    
    学研究,21:35—40。
    19.邱高峰,徐巧婷,王丽卿等,2001。四种绒鳌蟹分子分类与系统发育。动物学报,2001。47:640—647。
    20.宿兵,Kressirer P,Monda K等,1996。中国黑冠长臂猿的遗传多样性及其分子系统学研究—非损伤性DNA序列分析。中国科学,1996,26:414~419。
    21.孙红英、周开亚、景开颜等,2002。从16S rDNA部分序列探讨厚蟹属的系统学位置。南京师大学报(自然科学版),25:15—19。
    22.汪小全,邹喻苹,张大明等,1996。RAPD应用于遗传多样性和系统学研究中的问题。植物学报,38:954—962,1996。
    23.王晨,钱迎倩,马克平,1996。系统学与生物多样性。生命科学,1996,8:1—4。
    24.王义权、周开亚。不同固定剂保存动物组织标本对RAPD反应的影响。动物学杂志,1999,34(1):33-37。
    25.王瑛,陈晓峰,刘伟等,1999。棉铃虫18S核糖体RNA基因的序列分析及其分子系统学。昆虫学报,42:241—247。
    26.王祯瑞,2002。中国动物志:无脊椎动物(第31卷):软体动物门:双壳纲:珍珠贝亚目。科学出版社,北京。2002。
    27.肖武汉、吴春花。福尔马林固定云南鲴的DNA提取及其细胞色素b基因序列分析。动物学研究,1997,18(3):242,252,258,284。
    28.徐凤山.中国海双壳类软体动物.北京:科学出版社,1977.
    29.薛钦昭、Sheila Stiles、张福绥等,1999。海湾扇贝不同种群在磷酸葡萄糖变位酶基因位点的遗传结构与行状。海洋与湖沼,30(4):381—390。
    30.张福绥,何义朝,刘祥生等,1986。海湾扇贝(Argopecten irradians)引种、育苗及试养。海洋与湖沼,17(5):367—374。
    31.张福绥、李淑英、刘祥生等,1986。胶州湾贻贝肥满度的研究。贝类学论文集(Ⅱ)。中国贝类学会编辑,科学出版社,p80-87。
    32.张福绥、马江虎、何义朝等,1991。胶州湾海湾扇贝肥满度的研究。海洋与湖沼,22:97-103。
    33.张福绥,何义朝,亓玲欣等,1994。墨西哥湾扇贝的引种和子一代苗种培育。海洋与湖沼,25(4):372-377。
    34.张福绥,何义朝,亓玲欣等,1997。海湾扇贝引种复壮研究。海洋与湖沼,28(2):146-152。
    35.张福绥,杨红生,1999。栉孔扇贝大规模死亡原因的分析。海洋科学,1999(1):44—47。
    
    
    36.张福绥、何义朝、杨红生,2000。海湾扇贝引种工程极其综合效应。中国工程科学。2:30-35。
    37.张国范,张福绥,1994。中国近海栉孔扇贝分子群体遗传变异。淡水渔业,24(特刊):1—2。
    38.张喜昌、梁玉波、刘仁沿等,2002。海湾扇贝养殖群体遗传多样性的研究。海洋学报,24:107—112。
    39.张亚平,1995。熊超科DNA序列进化及其保护生物学意义。中国科学技术协会第二届青年学术年会论文集。中国科学技术出版社。pp.462-467.
    40.张亚平,O.A.Ryder,1997。熊超科的分子系统发生研究。遗传学报,24:15—22,1997。
    41. Adamkewicz, S. L. & M. G. Harasewych, 1994. Use of random amplified polymorphic DNA (RAPD) markers to assess relationships among beach clams of the genus Donax. MOLECULAR TECHNIQUES AND MOLLUSCAN PHYLOGENY, 1994, pp. 51-60.
    42. Adarnkewiez, S. L. & M. G. Harasewych, 1996. Systematics and bi.ogeography of the genus Donax (Bivalvia: Donacidae) in eastern North America. American Malacological Bulletin, 13: 97-103, Dec 1996.
    43. Adamkewicz S. L., M. G Harasewych, J. Blake et al., 1997. A molecular phylogeny of the bivalve mollusks. Mole. Biol. Evol., 14 (6): 619-629, 1997.
    44. Aderna CM, Comparative study of cytoplasmic actin DNA sequences from six species of Planorbidae (Gastropoda: Basommatophora). JOURNAL OF MOLLUSCAN STUDIES, 68: 17-23 Part 1 FEB 2002.
    45. Advise J.C & Nelson, W. S., 1989. Molecular relationship of the extinct dusky scaside sparrow. Science, 243: 646-648.
    46. Apte S.& J. P.A. Gardner, 2001. Absence of population genetic differentiation in the New Zealand greenshell mussel Perna canaliculus Gmelin 1791 as assessed by allozyme variation. Journal of Experimental Marine Biology and Ecology, 258:173-194, 2001.
    47. Armbruster, G. 1997. Evaluations of RAPD markers and allozyme patterns: Evidence for morphological convergence in the morphotype of Cochlicopa lubricella (Gastropoda: Pulmonata Cochlicopidae). J. Molluscan Stud., 63: 379-388, Aug 1997.
    48. Arnaud-Haond, S., V. Vonau, E Bonhomme et al., 2003. Spat collection of the pearl oyster (Pinetada margaritifera eumingii) in French Polynesia: an evaluation of the potential impact on genetic variability of wild and farmed populations after 20 years of commercial exploitation. Aquaculture, 219: 181-192, 2003.
    
    
    49. Banks, M. A., D. Hedgecock and C. Walters, 1993. Discrimination between closely related Pacific oyster species (Crassostrea) via mitochondrial DNA sequences coding for large subunit rRNA. Mol. Mar. Biol. Biotechnol. 2(3) : 129-136.
    50. Bardakei, F. et al., 1994. Application of RAPD technique in tilapia fish: species and subspecies identification. Heredity, 73: 117-123.
    51. Beardmore, J. A., G. C Mair & R. I. Lewis, 1997. Biodiversity in aquatic systems in relation to aquaculture. Aquaculture Research. 1997, 28: 829-839.
    52. Beaumont A. R. 1982. Variations in heterozyosity at the loci between year classes of Chlamys operations from a Scottish sea-loch. Mar. Biol Letters. Vol2: 5-14.
    53. Beynon, C.M. & D.O.F. Skibinski, 1996. The evolutionary relationships between three species of mussel (Mytilus) based on anonymous DNA polymorphisms. J. Exp. Mar. Biol. Ecol., 1996,203: 1-10.
    54. Blake S. G., N. J. Blake, M. J. Oesterling and J. E. Graves, 1997. Genetic divergence and loss of diversity in two cultured populations of the bay scallop, Argopecten irradians (Lamarck, 1819) . J. Shellfish Res., 16:55-58.
    55. Bonnaud, L, R Boucher-Rodoni and M. Mor.nerot, 1994. Phylogeny of decapod cephalopod on partial 16S rDNA nucleotide sequences. C. R. Acad. Sci. (Sen 3) , 317: 581-588, 1994.
    56. Bonnaud, L., Boucher-Rodoni, R; Monnerot, M., 1996. Relationship of some coleoid cephalopods established by 3' end of the 16S rDNA and cytochrome oxidase Ⅲ gene sequence comparison. AM. MALACOL. BULL., vol. 12: 87-90, Sep 1996.
    57. Bonnaud L., BoucherRodoni R., Monnerot M., Phylogeny of cephalopods inferred from mitochondrial DNA sequences. Mole. Phyl. Evol., 7: 44-54. 1997.
    58. Boore J. L. & W.M. Brown, Mitochondrial genomes and the phylogeny of mollusks, NAUTILUS, 1994,108: 61-78.
    59. Boucher-Rodoni, R. & Bonnaud, L., 1996. Biochemical and molecular approach to cephalopod phylogeny. American Malacological Bulletin, 12: 79-85, Sep 1996.
    60. Boudry, P., S. Heurtebise, B. Collet et al., 1998. Differentiation between populations of the Portuguese oyster, Crassostrea angulata (Lamark) and the Pacific oyster, Crassostrea gigas (Thunberg), revealed by mtDNA RFLP analysis. J. Exp. Mar. Biol. Ecol., 226:279-291,1998.
    61. Boulding, E. G, J. D. G Boom and A. T. Beckenbach, 1993. Genetic variation in one bottlenecked and two wild populations of the Japanese scallop (Patinopecten yessoensis ): Empirical parameter estimates from coding regions of mitochondrial DNA. CAN. J. FISH.
    
    AQUAT. SCI. 1993. 50: 1147-1157.
    62. Brand, E. & A. Kijima, 1990. Comparison of geneic markers between the Chilean scallop Argopecten purpuratus and the Japanese scallop Patinotecten yessoensis. TOHOKU. J. AGRIC. RES. 41:25-35.
    63. Branimir G, D. I Cook, and E. Zouros, 1992. Repeated sequences and Large-size variation of Mitochondrial DNA: A common feature among scallop (Bivalvia: Pectinidae). Mol. Biol. Evol., 9: 106-124.
    64. Bricelj V.M.& M. K. Krause, 1992. Resource allocation and population genetics of the bay scallop, Agopecten irradians, effects of age and allozyme heterozygosity on reproductive output. Mar. Biol. 113 (2) : 253-261.
    65. Brown B. L. & K.T. Paynter, 1991. Mitochonderial-DNA analysis of native and selectively inbred Chesapeake bay oysters, Crassostrea virginica. Mar. Biol. 110 (3) : 343-352 1991.
    66. Caccone A., G Allegrucci, C. Fortunate et al., 1997. Genetic differentiation within the European sea bass (D. labrax) as revealed by RAPD-PCR assays. J. Heredity.88: 316-324.
    67. Canapa A., I., Marota, F. Rollo et al., 1996. Phylogenetic analysis of Veneridae (Bivalvia): Comparison of molecular and palaeontological data. J. Mol. Evol., 43 (5) : 517-522.
    68. Canapa A., M. Barucca, A. Marinelli and E. Olmn, 2000. Molecular Data from the 16S rRNA Gene for the Phylogeny of Pectinidae (Mollusca: Bivalvia). J. Mol. Evol., 50: 93-07.
    69. Canapa A., M. Barucca, V. Caputo, et al., 2000. A molecular analysis of the systematics of three Antarctic bivalves, Italian J. Zool, 67: 127-132 , 2000.
    70. Canapa A., M. Barucca, A. Marinelli et al., 2001. A molecular phylogeny of Heterodonta (Bivalvia) based on small ribosomal subunit RNA sequences. Mol. Phyl. Evol., 21: 156-161.
    71. Caputi N., R. S. Brown and B. F. Phillips, 1995. Predicting catches of the western rock lobster (Panulirus cygnus selective) based on indices of peurulus and juvenile abundance. ICES, Copenhagen (Denmark), 1995, pp.287-293.
    72. Chambers, R.J., C.D. McQuaid, R. Kirby, The use of randomly amplified polymorphic DNA to analyze the genetic diversity, the systematic relationships and the evolution of intertidal limpets, Siphonaria spp. (Pulmonata: Gastropoda), with different reproductive modes. J. Exp. Mar. Biol. Ecol., vol. 227, no. 1, pp. 49-66,1998.
    73. Chew, K. K., 1990. Global bivalve shellfish introductions. World Aquaculture, 21(3) : 9-22.
    74. Clarke, A. H.,Jr. 1965. The scallop superspecies Aequipecten irradians (Lararck). Malacologia. 2: 245-276.
    75. Coleman, A. W. & V. D. Vacquier, 2002. Exploring the phylogenetic utility of ITS sequences
    
    for animals: a test case for Abalone (Haliotis). J. Mol Evol., 54 (2) , 246-257, 2002.
    76. Cope, J. C. W. 1996. The early evolution of the biValvia. pp.361-370 in J. TAYLOR, ed. Origin and evolutionary radiation of the Mollusca. Oxford University Press.
    77. Cope J. C. W., 1997. The early phylogeny of the class Bivalvia. PALAEONTOLOGY, 1997, 40: 713-746.
    78. Cruz P., J. L. Ramirez, G A. Garcia and A. M. Ibarra, 1998. Genetic differences between two populations of catarina scallop (Argopecten ventricosus) for adaptations for growth and survival in a stressful environment. Aquaculture. 166: 321-335.
    79. Daguin C. & P. Borsa, 1999. Genetic characterisation of Mytilus galloprovincialis Lmk. In North West Africa using nuclear DNA markers. J. Exp. Mar. Biol. Ecol., 235 : 55-65.
    80. Dahlgren T. G, J. R. Weinberg and K. M. Halanych, 2000. Phylogeography of the ocean quahog (Arctica islandica): influences of paleoclimate on genetic diversity and species range. Mar. Biol., 137 (3) : 487-495. 2000.
    81. Dan C. M. & S. William, 2001. Arnold Shell Morphologies of Bay Scallops, Argopecten irradians, from Extant and Prehistoric Populations from the Florida Gulf Coast: Implications fpr the Biology of Past and Present Metapopulations. Journal of Archaeological Science (2001) 28, 577-586.
    82. Dan C.M., K.K. Maureen, S.A.William, GL. William, 1997. Systematic relationships among Florida population of Argopecten irradians (Lamarck, 1819) (Bivalvia: Pectinidae). The Nautilus, 110(2) : 31-41.
    83. Dhar A. K., M. A. Pokras, D. K. Garcia et al., 1997. Analysis of genetic diversity in common loon Gavia immer using RAPD and mitochondrial RFLP techniques. Mol. Ecol., 6: 581-586, Jun 1997.
    84. Distel, D.L., 2000. Phylogenetic relationships among Mytilidae (Bivalvia): 18S rRNA data suggest convergence in mytilid body plans. MOLECULAR PHYLOGENETICS AND EVOLUTION, 15 (1) : 25-33,2000.
    85. Dodge H., 1952. A historical review of the mollusks of Linnaeus. Part I. The classes Loricata and Pelecyopoda. Bull. Amer. Museum Nat. History, 100:1-264.
    86. Douris, V., S. Giokas et al., 1998. Phylogenetic analysis of mitochondrial DNA and morphological charactes suggest a need for taxonomic re-evaluation within the Alopiinae (Gasteropoda: Clausiliidae). J. Moll. Stud. 1998,64:81-92.
    87. Durand, P., et al., 1993. Genetic variation in wild and hatchery stocks of black pearl oyster, Pinctada margaritifera, from Japan. Aquaculture, 110: 27-40.
    
    
    88. Eirin-Lopez J. M., A. M. Gonzalez-Tizon, A. Martinez and J. Mendez, 2002. Molecular and evolutionary analysis of mussel histone genes (Mytilus spp.): Possible evidence of an "orphon origin" for H1 histone genes. J. Mole. Evol., 55 (3) : 272-283. SEP 2002.
    89. Elo K., S. Ivanoff, J. A. Vuorinen et al., 1997. Inheritance of RAPD markers and detection of interspecific hybridization with brown trout and Atlantic salmon. Aquaculture, 1997, 152: 55-65.
    90. Fairbrother J. E. & A. R. Beaumont, 1993. Heterozygote deficiencies in a cohort of newly settled Mytilus edulis spat. J. Mar. Biol. Ass. U. K., 73: 647-653.
    91. Felsenstein, J. 1978. Case in which parsimony or compatibility methods will be positively misleading. Syst. Zool., 27: 401-410.
    92. Fevolden, S. E., 1989. Genetic differentiation of the Iceland scallop Chlamys islandica (Pectinidae) in the northern Atlantic Ocean. Mar. Ecol. Prog. Sen 51:77-85.
    93. Foighil D. O., P. M. Gaffiiy and T. J. Hilbish, 1997. The Portuguese oyster Crassostrea angulata is of Asian origin. Journal of Shellfish Research, 16: 329, Jun 1997.
    94. Foighil, D. O., P. M. Gaffhey and T. J. Hilbish, 1995. Differences in mitochondrial 16S ribosomal gene sequences allow discrimination among American Crassostrea virginica (Gmelin) and Asian C. gigas (Thunberg) C. ariakcnsis Wakiya oyster species. J. Exp. Mar. Biol. Ecol., 192:211-220.
    95. Fujio Y. 1982. A correlation of heterozygosity with growth rate in the Pacific oyster, Crassostrea gigas. Tohoku J. Agr. Res. 33:66-75
    96. Fujio, Y & E.Von-Brand, 1991. Differences in degree of homozygosity between seed and sown populations of the Japanese scallop Patinotecten yessoensis. JAP. SOC. SCI. FISH. 1991,57:45-50.
    97. Gaffhey, P. M. & O'Beirn, F. X., 1996. Nuclear DNA markers for Crassostrea species identification. J. Shellfish Res., 15: 510-511, Jun 1996.
    98. Garcia, DK; Faggart, MA; Rhoades, L et al., Genetic diversity of cultured Penaeus vannamei shrimp using three molecular genetic techniques. MOL. MAR. BIOL. BIOTECHNOL., vol. 3, no. 5,pp. 270-280, 1994.
    99. Gardner, J. P. A., R. F. Eyles and A. Pande, 1996. Biochemical-genetic variation in a wild and a cultured population of the greenshell mussel, Perna canaliculus. New Zealand Journal of Marine and Freshwater Research, 30: 435-441, Dec 1996.
    100. Garton D. W., R. K. Koehn and T. M. Scott, 1984. Multiple locus heterozygosity and the physiological energetics of growth in the coot clam, Mulinia lateralis, from a natural
    
    population. Genetics 108:445-455.
    101. Geller J.B., J.T. Carlton and D.A. Powers, 1993. interspecific and intrapopulation variation in mitochomdrial ribosomal DNA sequences of Myiilus spp. (Bivalvia: Molusca). Mole. Mar. Biol. Biotech., 1993 :44-50.
    102. Gosling, E. M., 1988. Evidence for selective mortality in Chlamys varia (L.) transplant experiments. J. Mar. Biol. Assoc. U.K., 68: 251-258.
    103. Goto Y. & G.T. Poppe, 1996. A listing of living mollusca. L'Informatore Piceno, Ancona, Italy, Vol 1,p.912.
    104. Guo X. M., E. F. Susan and F. S. Zhang, 1999. Molluscan aquaculture in China. J. Shellfish. Res. 18:19-31,1999.
    105. Harris, H. 1966. Enzyme polymorphism in man. Proc. Res. Soc. Lond. B 164: 298-310.
    106. Harry, H. W., 1985. Synopsis of the supraspecific classification of living Oysters. Veliger, 1985,28(2) : 121-158.
    107. Harue K.., T. Mutsuyshi, M. Katsuya, et al., 2000. Estimation of body fat content from standard body length and body weight on cultured Red Sea bream. Fisheries science. Tokyo, 2000, 66(2) : 365-371.
    108. Hasegawa M., H Kishino and N. Saitou, 1991. On the maximum likelihood in molecular phylogenetics. J. Mol. Evol., 32: 443-445.
    109. Hasegawa M et al, 1992. Rodently polyphily? Nature, 355: 395.
    110. Hebert, P. D. N., 1992. Introduction to the International Symposium on "The ecological and genetic implication offish introduction" . Can. J. Fish. Aquat. Sci. 48: 5-6.
    111. Hedgecock D., D. J. McGoldrick, D. T. Manahan et al., 1996. Quantitative and molecular genetic analyses of heterosis in bivalve mollusks. J. Exp. Mar. Bio. Ecolo. 203:49-59.
    112. Hedgecock, D. and D. Slly, 1990. Genetic drifts and effective population size hatchery propagated stocks of the Pacific oyster, Crassostrea gigas. Aquaculture, 88: 21-28.
    113. Hedgecock, D., G Li., M. A. Banks and Z. Kain, 1999. Occurrence of the Kumamoto oyster Crassostrea sikamea in the Ariake Sea. Japan. Mar. Biol., 133: 65-68,1999.
    114. Heipel, D. A., J. D. D. Bishop, A .R. Brand and J. P. Thorpe, 1999. Population genetic differentiation of the great scallop Pecten maximus in western Britain investigated by randomly amplified polymorphic DNA. Mar. Ecol. Prog. Ser., 162: 163-171, Feb 1998.
    115. Hillis D. M & C. Moritz, (eds) 1990. Molecular Systemarics. Sinauer, Sunderland, MA, USA.
    116. Hirschfeld, B. M., A. K. Dhar, K. Rask and A. Alcivar-Warren, 1999. Genetic diversity in the eastern oyster (Crassostrea virginica) from Massachusetts using the RAPD technique. J.
    
    Shellfish Res., 18: 121-125, Jun 1999.
    117. Hoeh W. R., M. B. Black, R. Gustafson et al., 1998. Testing alternative hypotheses of Neotrigonia (Bivalvia : Trigonioida) phylogenetic relationships using cytochrome C oxidase subunit I DNA sequences. MALACOLOGIA. 40 (1-2) : 267-278,1998.
    118. Ichiro Nakayama, 1995. Application of genomic DNA analysis on fisheries science. Bull. Natl. Rest. Aquaculture, 24, 1-15.
    119. Karl, S. A. & J. C. Avise, 1993. PCR-based assays of Mendelian polymorphoisms from anonymous single-copy nuclear DNA: Techniques and application for population genetics. Mol. Biol. Evol. 10: 342-361.
    120. Kathleen M. F. and E. Zouros, 1993. Dispersed discrete length polymorphism of mitochondrial DNA in the scallop Placopecten magellanicus (Gmelin). Current Genetics. 23: 265-369.
    121. Kenchington, E. & D. L. Roddick, 1994. Molecular evolution within the phylum Mollusca with emphasis on the class Bivalvia. Can. Tech. Rep. Fish. Aquat. Sci. Rapp. vol. 1, no. 1994.
    122. Kessing B., H. Croom, A.Martin et al., 1989. The simple fool's guide to PCR. University of Hawaii, Honolulu, Hawaii, 23pp.
    123. Kojima S., R. Segawa, T. Kobayashi et al, 1995. Phylogenetic relationships among species of Calyptogena (Bivalvia, Vesicomyidae) collected around Japan revealed by nucleotide-sequences of mitochondrial genes. Mar. Biol. 122 (3) : 401-407 MAY 1995.
    124. Krause, M. K., W. S. Arnold, W. G. Ambrose et al., 1994. Morphological and genetic variation among three populations of calico scallops, Argopecten gibbus. J. Shellfish Res., 13: 529-537,1994.
    125. Kyle C. J. & E.G Boulding, 2000. Comparative population genetic structure of marine gastropods (Littorina spp.) with and without pelagic larval dispersal. Mar. Biol., 137: 835-845. DEC 2000.
    126. Lande R. 1995. Mutation and conservation. Conservation Biology, 9: 782-791.
    127. Lee Y. H. and V. D. Vacquie, 1995. Evolution and systematics in Haliotidae (Mollusca: Gastropoda): inferncs from DNA sequences of sperm lysin. Mar. Biol. 1995,124: 267-278.
    128. Lewontin, R. C. & J. L. Hubby, 1966. A molecular approach to the study of genetic heterozygosity in natural populations. Ⅱ. Amount of variation and degree of heterozygosity in natural populations of Drosophilapseudoobscura. Genetics 54: 595-609.
    129. Littlewood, D. T., 1994. Molecular phylogenetics of cupped oysters based on partial 28S rRNA gene sequences. Molecular Phylogenetics and Evolution 3(3) : 221-229.
    
    
    130. Lou, Yousheng, 1991. Scallops: biology, ecology and aquaculture. Edited by Sandra. E. Shumway. Elseier. pp. 809-824.
    131. Macaranas J. M., P. B. Mather, P. Hoeben et al., 1995, Assessment of genetic variation in wild populations of the redclaw crayfish (Cherax quadricarinatus, von Martens 1868) by means of allozyme and RAPD-PCR markers. MAR. FRESHWAT. RES., 46: 1217-1228, 1995.
    132. Macleod, J. A. A., J. P. Thorpe and N. A. Duggan, 1985. A biochemical genetic study of population structure in queen scallop (Chlamys opercularis ) stocks in the northern Irish Sea. Mar. Biol. 87: 77-82.
    133. Madison W. P, 1996. Molecular approaches and the growth of phylogenetic biology. In Molecular Zoology. Edited by Joan D. Ferraris and Stephen R. Palumbi. 1996. Wiley-liss, Inc. pp.47-61.
    134. Manuel, J. L., S. Burbridge and E. L. Kenchington et al., 1996. Veligers from two populations of scallop Placopecten magellanicus exhibit different vertical distributions in the same mesocosm. Journal of Shellfish Research, 15: 251-257, Jun 1996.
    135. Marelli D.C., K. K. Maureen, S. A. William et al., 1997. Systematic relationships among Florida populations of Argopecten irradians (Larmarck, 1819) (Bivalvia: Pectinidae). The Nautilus, 110: 31-41,1997.
    136. Merrell D.J., 1981. Ecological Genetics. Longman, London. 1981.
    137. Merritt, T. J. S., L. Shi, M. C. Chase et al., 1998. Universal cytochrome b primers facilitate intraspecific studies in molluscan taxa. Mol. Mar. Biol. Biotechnol., 7: 7-11, Mar 1998.
    138. Mindell D. P. & R. L. Honeycutt, 1990. Ribosomal RNA in vertebrates: Evolution and phylogenetic applications. Annu Rev Ecol Syst 21: 541-566.
    139. Morton B. 1996. The evolutionary history of the Bivalvia. pp. 337-359 in J. TAYLOR, ed. Origin and evolutionary radiation of the Mollusca. Oxford University Press.
    140. Muchmore, M. E., G W. Moy, W. J. Swanson et al., Direct sequencing of genomic DNA for characterization of a satellite DNA in five species of eastern Pacific abalone. Mol. Mar. Biol. Biotechnol., 7: 1-6, Mar 1998.
    141. Naciri, Y., Y. Vigouroux, J. Dallas et al., 1995. Identification and inheritance of (GA/TC) sub(n) and (AC/GT) sub(n) repeats in the European flat oyster Ostrea edulis (L.). Molecular Marine Biology and Biotechnology. 4: 83-89,1995.
    142. Paran & R. W. Michelmore, 1993. Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theor. Appl. Genet., 85 (8) : 985-993, FEB 1993.
    
    
    143. Patwary, M. U., E. L. Kenchington, C. J. Bird et al, 1994. The use of random amplified polymorphic DNA markers in genetic studies of the sea scallop Palacopecten magellanicus (GMELIN, 1791) . J. Shellfish. Res. 13: 547-553.
    144. Petuch, E. J., 1987. New Caribbean molluscan faunas. The coastal Education and Research Foundation, Charlottesville, Virginia, 158pp.
    145. Pogson G H. & E. Zouros, 1994. Allozyme and RFLP Heterozygosities as correlates of growth rate in thescallop Placopecten magellanicus: A test of the associative overdominance hypothesis. Genetics 137: 221-231.
    146. Rawson, P. D. & T. J.Hilbish, 1998. Asymmetric introgression of mtDNA among European populations of blue mussels (Mytilus spp.). J. Evolution, 52: 100-108,1998.
    147. Reeb, C. A. and J. C. Avise. 1990. A genetic discontinuity in a continuously distributed species: mitochondrial DNA in the American oyster, Crassostrea virginica. Genetics 124: 397-406.
    148. Reichow, D & M. J. Smith, 1999. Highly Variable Microsatellites in the California Market Squid Loligo opalescens. Mar. Biotechnol., 1: 403-406, 1999.
    149. Rice, E. L., D. Roddick and K. K. Singh, 1993. A comparison of molluscan (Bivalvia) phylogenies based on palaeontological and molecular data. Mol. Mar. Biol. Biotechnol. 1993. 2: 137-146.
    150. Rios, C., J. Canales and J. B. Pena, 1996. Genotype-dependent spawning: Evidence from a wild population of Pectenjacobaeus (L.) (Bivalvia: Pectinidae). Journal of Shellfish Research, vol. 15: 645-651, Dec 1996.
    151. Rios C., S. Sanz, C. Saavedra and J. B. Pen, 2002. Allozyme variation in populations of scallops, Pecten jacobaeus (L.) and P. maximus (L.) (Bivalvia: Pectinidae), across the Almeria-Oran front, Journal of Experimental Marine Biology and Ecology, 267: 223-244, 2002.
    152. Rosenberg G, G M. Davis, G. S. Kuncio et al., 1994. Preliminary ribosomal-RNA phylogeny of Gastropod and Bivalve mollusks,NAUTILUS, 1994,108: 111-121.
    153. Russel P.J., 2001. Genetics. Pearson Education, Inc. 2001.
    154. Saavedra, C & A. Guerra, 1996. Allozyme heterozygosity, founder effect and fitness traits in a cultivated population of the European oyster, Ostrea edulis. Aquaculture, 139: 203-224,1996.
    155. Salvini-Plawen L. and G. Steiner, 1996. Synapomorphies and plesiomorphies in higher classification of mollusca. pp.29-51 in J. TAYLOR, ed. Origin and evolutionary radiation of
    
    the Mollusca. Oxford University Press.
    156. Schneider J. A., 2001. Bivalve systematics during the 20th century. J. Paleontology, 75(6) : 1119-1127,2001.
    157. Schneider, J. A. & D.O. Foighil, 1999. Phylogeny of giant clams (Cardiidae: Tridacninae) based on partial mitochondrial 16S rDNA gene sequences. Mol. Phyl. Evol., 13: 59-66. 1999.
    158. Schroth, W., B. Streit and B. Schierwater, 1996. Evolutionary handicap for sea turtles. Nature, 384: 521-522.
    159. Shaklee J.B.& P. Bentzen, 1998. Genetic identification of stocks of marine fish and shellfish. Bull. Mar. Sci., 62 (2) : 589-621.
    160. Southworth, J., M. Brown, S. Stiles and L. Strausbaugh, 1999. Methodology for the generation of polymorphic molecular tags in the bay scallop, Argopectenirradians, Journal of Shellfish Research, vol. 18, no. 1.
    161. Starobogatov Y. I. 1992. Morphological basis for phylogeny and classification of Bivalvia. Ruthenica 2:1-25.
    162. Steiner G. & M. Muller, 1996. What can 18S rDNA do for bivalve phylogeny? J. Mole. Evol., 43(1) : 58-70,1996.
    163. Stothard J. R. & D. Rollinson, 1996. An evaluation of random amplified polymorphic DNA (RAPD) for the identification and phylogeny of freshwater snails of the genus Bulinus (Gastropoda: Planorbidae). J. Moll. Stud., 1996, 62: 165-176.
    164. Stothard, J. R., A. F. Mgeni, K. S. Alawi et al., 1997. Observations on shell morphology, enzymes and random amplified polymorphic DNA in Bulinus africanus group snails (Gastropoda: Planorbidae) in Zanzibar. J. Molluscan Stud., 63: 489-503, Nov 1997.
    165. Todd, C. D., A. M. Walker, K. Wolff et al., 1997. Genetic differentiation of population of the copepod sea louse Lepeophtheirus salmonis (Kroyer) ectoparasitic on wild and farmed salmonids around the coasts of Scotland: Evidence from RAPD markers. J. Expert. Mar. Biol. Ecol. 1997,210:251-274.
    166. Tyler-Walters, H. and A. R. Hawkins, 1995. The application of RAPD markers to the study of the bivalve mollusc Lasaea rubra. J. Mar. Biol. Ass. U.K., 75: 563-569.
    167. Vaught K.C., 1989. A classification of the living mollusca. In: Abbott R. T., Boss K. J. (eds) American Malacologists, Melbourne, FL, pp.118-120.
    168. Wada K. T., 1986. Genetic selection for shell traits in the Japanese pearl oyster, Pinctada fucata martensii. Aquaculture 57,171-176.
    169. Waller T. R., 1969. The evolution of the Argopecten gibbus stock (Mollusca: Bivalia:
    
    Pectinidae), with emphasis on the Tertiary and Quaternary species of eastern North America. J. Paleontology 43: 1-125.
    170. Waller T. R.,1991. Evolutionary relationship among commercial scallops (Mollusca: Bivalvia: Pectinidae). In: Shumway S. E. (ed) Scallops: Biology, ecology and aquaculture. Elsevier, New York, pp.1-74.
    171. Ward R. D.; N Billing and PDN Hebert, 1989. Comparison of allozyme and mitochondrial DNA variation in population of walleye, Stizostedion vitreum. Can. J. Fish. Aquat. Sci., 46: 2074-2084.
    172. Weeden N. F., F. J. Muehlbauer and G. Ladizinsky, 1992. Extensive conservation of linkage relationships between pea and lentil genetic maps. J. Heredity. 83 (2) : 123-129, 1992.
    173. Wilding, C. S., J. W. Latchford and A. R. Beaumont, 1998. An investigation of possible stock structure in Pecten maximus(L.) using multivariate morphometrics, allozyme electrophoresis and mitochondrial DNA polymerase chain reaction-restriction fragment length polymorphism. J. Shellfish Res., 17: 131-139, Jun 1998.
    174. Williams J. G K., A. R. Kubelik, K. J. Livak et al., 1991, DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl. Acids. Res. Vol. 18, 6531-6535.
    175. Winnepenninckx B., T. Backeljau and R. Dewachter, 1994. Small ribosomal-subunit RNA and the phylogeny of mollusca, NAUTILUS, 1994, 108:98-110.
    176. Winnepenninckx B., T. Backeljau and R. Dewachter, 1996. Investigation of molluscan phylogeny on the basis of 18S rRNA sequences. Mole. Biol. Evol., 13 (10) : 1306-1317, DEC 1996.
    177. Yang Hongsheng, Zhang Tao. Wang Jian et al., 1999. Growth characteristics of Chlamys farreri and its relation with environmental factors in intensive raft-culture areas of Sishiliwan Bay, Yantai. Journal of shellfish research, 1999,18(1) : 71-76.
    178. Yu Zi-niu, et al. Sequence study and potential uses of ribosomal DNA internal transcribed spacers in scallop Chlamys farreri. 中国水产科学,2001, 8(1) : 6-9.
    179. Zhang Y. P. and O. A. Ryder, 1994. Phylogenetic relationships of bears (the Ursidea) inferred from mitochondria] DNA sequences. Mol. Phylogenet Evol., 3: 351-359. 1994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700