用户名: 密码: 验证码:
典型城市黑臭河道治理后的富营养化分析与预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以往对水体富营养化的研究主要集中在海洋、湖泊和水库中,而对于平原河网,尤其是该区域内城市黑臭河道研究的相关报道甚少。黑臭是城市水环境普遍存在的问题。然而,近年来伴随着各项整治措施的实施,城市黑臭河道又出现水华、浮萍泛滥等富营养化次生灾害的新问题。本文即是在这样的背景下,以黑臭问题突出的温州城市河道为研究对象,首次将独立研究的两个概念“黑臭”和“富营养化”联系起来,从调查、评价、机理及预测四方面较为系统地对城市黑臭河道富营养化进行研究,为黑臭河道富营养化及其次生灾害控制理论和富营养化预测管理系统的完善提供参考。本论文研究工作的主要内容和结论如下:
     1.通过资料收集、实地考察、野外监测等方法,对温瑞塘河流域水质因子的空间变化和水体黑臭污染状况进行了调查。结果表明:①所有采样点水体基本上发生黑臭,以鹿城段为最差,整个水域的水质变化没有明显的自净梯度。②缓慢的水流速度、适宜的温度和pH、丰富的营养盐,导致整个区域具备了暴发水华的条件。根据水环境调查结果,选取了列入政府重点整治范围并具有不同黑臭背景且富营养化特征明显的勤奋河、九山外河、小南门河、蝉河、山下河和蒲州横河这6条河道做进一步的研究。
     2.从水质、浮游生物、底泥三方面系统探讨了城市黑臭河道在治理过程中凸显出的水体富营养化特征。结果表明:①典型黑臭河道始终处于富营养化水平,水质因子受生态调水影响较大;②浮游植物种类均以绿藻和硅藻为主,蓝藻和裸藻次之,其他藻类较少,浮游植物种类的组成上具有河流的普遍特征;以绿藻门镰形纤维藻、小球藻、实球藻和四尾栅藻,隐藻门卵形裸藻,硅藻门扭曲小环藻和裸藻门绿色裸藻等耐污种占有优势;伴随着黑臭控制措施的实施,6条河道曾多次爆发水华。③各采样点不同月份的沉积物碱性磷酸酶活性的变化与表层水中TP浓度的变化较为一致,脲酶活性与表层水TN浓度波动幅度较为一致。
     3.引入多元线性回归法和灰色关联度法分析和确定了河道的主要污染物和影响藻类生长的主要因子。得到以下结论:①影响温瑞塘河中叶绿素a主要影响因子排序为:溶解氧1g(DO)、pH值、化学需氧量CODCr、氨氮含量NH3-N、总氮TN、透明度SD、水温WT。由于水体中磷营养盐充足,氮成为温瑞塘河典型黑臭河道藻类生长的主要影响因子,磷污染成为该区域水体富营养化的控制因素。②水中磷营养盐充足,不成为酶活的关键因素。与底泥磷酸酶活性关联最大的水质因子为水温、TN和pH,与底泥脲酶活性关联最大的水质因子为TN、Chla和DO,这也意味着控制底泥微生物活性在一定程度上能影响水体中TN的含量。
     4.构建了典型黑臭河道治理后的富营养化综合评价指标体系,并开展水质状态评价。结果表明:①河道虽经治理,但污染负荷仍很高,处于严重黑臭状态,且水体均处于富营养化状态。评价结果发现,水体发生水华现象的同时也处于黑臭状态,这一结果表明,在后期的治理河道中在加强消除黑臭的同时,也要采取相应的措施以防止水华的暴发。②有机污染程度空间分布呈现:SX>CH>QF>JS>XN>PZ。这一结果表明,生态调水效果对水体中氨氮和有机物的浓度改变明显,但维持时间短,主要同河道外源性污染较大有关。这需要在确定优化的闸门调度方案的同时,加大截污纳管的措施力度才能保证生态调水的有效性和持久性。③生物多样性指数法对小型河流的水质评价结果,同藻密度和优势种群判断的评价标准有一定的差别,温瑞塘河整治工程给水体带来的中度干扰和大量氮磷等营养物质的存在是其主要原因。
     5.初步构建了基于BP神经网络的Chla预测模型和基于ARMA模型的总磷预测模型。结果表明:①采用BP神经网络模型预测温瑞塘河水体富营养化程度是可行的,其预测模型简单易行,预测精度高,可为温瑞塘河水体富营养化程度评价提供建议。②平稳时间序列预报方法适用于预报变化比较缓和、有一定规律的数据序列,然而对于正在实施大规模恢复工程的九山外河也同样适用。③现行的技术手段和管理策略不能达到控磷的目的,政府需要进行宏观调控并加大整治工作力度。
Previous researches about eutrophication are mainly concentrated on the phenomenon in ocean, lake and reservoir, while eutrophication in tidal plain river networks, especially in urban malodorous rivers, has received less attention. Malodorous black is a common problem for urban aquatic environment. In recent years, along with the implementation of river treatment and restoration, some secondary pollution issues such as algal blooms and duckweed flooding break out in urban malodorous rivers. Based on these backgrounds, this dissertation took urban rivers in Wenzhou City, a typical urban malodorous-black river network, as the research object. The research combined the two separated concepts on the first time, namely malodorous-black and eutrophication, and systematically studied the eutrophication evolution in urban malodorous rivers from the aspects of investigation, assessment, mechanism and prediction, hopefully to provide beneficial references for the theory of malodorous-black transforming to secondary eutrophication as well as the forecast and management of eutrophication in urban rivers. The main work and results of this research are as follows:
     1. Through data collecting, field observing and monitoring, the spatial-temporal variation of water quality factors as well as malodorous-black pollution level of the Wenruitang River basin were investigated. The results showed that①almost all the sampling sites had the problem of malodorous-black, especially worst for river section in Lucheng District. No distinct water self-purification gradient was observed in the whole basin;②slow water velocity, abundant nutrients and suitable temperature and pH all contributed to the potential algae bloom in the whole basin. According to the findings of the investigation, six rivers (Qinfen River, Jiushanwai River, Xiaonanmen River, Chan River, Shanxia River and Puzhouheng River) in the key managing region by the local government were selected to be further studied due to their different malodorous-black backgrounds and significant eutrophication characteristics.
     2. This dissertation discussed the evolution pattern of the emerging secondary eutrophication after the implementation of river treatment engineering projects from perspectives of water quality, plankton and sediment.①Typical malodorous rivers were always in a level of abundant nutrients, and ecological water diversion would affect water quality factors significantly.②Chlorella and Bacillariophyceae were predominant phytoplankton species, Cyanobacteria and Euglenophyceae were at second place, other kinds of algae were relatively less. The distribution of phytoplankton in six rivers exhibited general features. The predominant pollution tolerance species were as follows:Ankistrodesmus falcatus, Chlorella, Pandorina, Scenedesmus quadricanda which were classified to Chlorophyta. Cryptomonas ovata, Cyclotella comta and Euglena viridis. Along with the treatment measures of malodorous-black rivers, algae bloom broke out frequently in the six studied rivers.③The temporal variation of alkaline phosphatase activity of sediments from different sampling sites was in accordance with the variation of total phosphorus in surface water, urease activity of sediments was in accordance with total nitrogen in surface water.
     3. A comprehensive assessment index system was established and utilized for evaluating eutrophi cation after the treatment of malodorous river.①Despite the river treatment, pollution load was still very high and all the rivers were in a state of eutrophication. Results indicated that algae bloom could also happen when river was malodorous-black. It means that river treatment should take measures to strengthen the reduction of malodorous-black and prevent algae bloom simultaneously.②The spatial distribution of organic contaminants presented an order like SX>CH>QF> JS>XN>PZ. Ecological water diversion can significantly change the concentrations of ammonium and organic matters in river water, but such change can only maintain a short time due to the exogenous pollution. To solve this problem, it requires optimizing water gates operation scheme, and strengthening sewage collecting at the same time in order to ensure the effectiveness and durability of ecological water diversion.③The result of assessment for small rivers by biodiversity index method was not in accordance with that by algal density and dominant species method. It might be attributed to the interference caused by the treatment engineering and abundant nitrogen and phosphorus existing in rivers.
     4. Multiple linear regression and gray correlation analysis were adopted to determine the major pollutants of the rivers and the main factors causing algae bloom.①The order of the factors influencing Chl-a in Wenruitang River is lg(DO), pH, CODCr, NH3-N, TN, SD and WT. Since phosphorus was very abundant in Wenruitang River, nitrogen would be the key impacting factor of algae growth in typical malodorous-black rivers, phosphorus would be the controlling factor of eutrophication in these rivers.②Phosphorus was not the critical factor for influencing enzyme activity. Water temperature, total nitrogen and pH were most closely related to sediment phosphatase activity. Total nitrogen, Chl-a and DO were most closely related to sediment urease activity. On the other aspect, it indicates that controlling sediment microbial activity might affect the content of total nitrogen in the surface water to some extent.
     5. Prediction models for assessing Chl-a and phosphorus in Wenruitang River were preliminarily constructed.①It is feasible to forecast the eutrophication level of Wenruitang River through a BP neural network model. This model is simple and easy, with high prediction accuracy, and can provide suggestions for evaluating the eutrophication level of Wenruitang River.②ARMA time sequencing model fits to predict data series with mild fluctuation and certain pattern. However, this model can also be applied to Jiushanwai River which was under large scale treatment and restoration then.③Current technical methods and management strategies cannot meet the objective of controlling phosphorus, thus, our government should exercise macro-control and strengthen treatment efforts.
引文
[1]黄民生,陈振楼.城市内河污染治理与生态修复[M].北京:科学出版社,2010:17-21.
    [2]周生贤.2009年中国环境状况公报[R].北京:中华人民共和国环境保护部,2010.
    [3]徐亚同.河流污染状况及治理效果评价的指标体系[J].城市公用事业,2008,22(4):13-16.
    [4]Melnick,J. L,et al. Bull WHO,1978,56(4):499.
    [5]温灼如,张瑛玉,洪陵成,等.苏州水网黑臭警报方案的研究[J].环境科学,1987,8(4):2-8.
    [6]Noblet J,Schweitze L,Ibrahim E,et al. Evaluation of a taste and odor incident on the Ohio River[J]. Water Science and Technology,1999,40(6): 185-193.
    [7]巢亚萍,赵慧.常州运河支流水体黑臭监测调查及防治对策[J].甘肃环境研究与监测,2002,15(3):201-203.
    [8]周文瑞.汾河太原城区段河流黑臭问题研究[D].太原:太原理工大学,2006.
    [9]罗纪旦,方柏容.黄浦江水体黑臭问题研究[J].上海环境科学,1983(5):6-8.
    [10]李相力,张鹏程,于洪存.沈阳市卫工河黑臭现象分析[J].环境保护科学,2003,29(5):27-28.
    [11]熊移民.珠江广州河段水质发黑发臭原因浅析[J].铁道劳动安全卫生与环保,2004,31(3):131-133.
    [12]杨洪芳.上海城区水体黑臭主要影响因子及治理案例比较[D].上海:上海师范大学,2007.
    [13]顾国维,蔡不忒.黄浦江黑臭趋势的初步预测[J].上海环境科学,1983(4):24-26.
    [14]王华东,等,水环境污染概论[M].北京:北京师范大学出版社,1984.
    [15]方宇翘,张国莹,裘祖楠.苏州河水的黑臭现象研究[J].上海环境科 学,1993,12(12):21-26.
    [16]程江,吴阿娜,车越,等.平原河网地区水体黑臭预测评价关键指标研究[J].中国给水排水,2006,22(9):18-22.
    [17]Noblet J,Schweitze L,Ibrahim E,et al. Evaluation of a taste and odor incid ent on the Ohio River[J]. Water Science andTechnology,1999,40(6):185-193
    [18]Song S K,Shon Z H,KimY K,et al. Characteristics of malodor pollutants and aromatic VOCs around an urban valley in Korea[J]. Environmental Monitoring and Asseesment,2009,157:259-275.
    [19]Peter A,Koster O,Scildkeht A,et al. Occurrence of dissolved and particle-bound taste and odor compounds in Swiss lake waters[J]. Water Research, 2009,43(8):2191-2200.
    [20]Muezzinoglu,Aysen. A study of volatile organic sulfur emissions causing urban odors[J]. Chemosphere,2003,51(4):245-252.
    [21]洪陵成.定量测定黑臭水体黑度的探讨[J],水资源保护,1993,2,26-29.
    [22]郝晓明,胡湛波,刘成,等.南宁市竹排冲河道水体黑臭评价模型建立研究[J].华东师范大学学报(自然科学报),2011,1,163-171.
    [23]尹海龙,徐祖信.河流综合水质评价方法比较研究[J].长江流域资源与环境,2008,17(5):729-733.
    [24]蒋火华,朱建平,梁德华,等.综合污染指数评价与水质类别判定的关系[J].中国环境监测,1999,15(6):45-48.
    [25]阮仁良,黄长缨.苏州河水质黑臭评价方法和标准的探讨[J].上海水务,2002,18(3):32-36.
    [26]徐祖信.我国河流综合水质标识指数评价方法研究[J].同济大学学报(自然科学版),2005,33(4):482-488.
    [27]徐祖信.我国河流单因子水质标识指数评价方法研究[J].同济大学学报,2005,33(3):321-325.
    [28]邵占维.温州市温瑞塘河综合整治实施方案(2007-2011)[R].温州:温州市人民政府温瑞塘河综合整治工作委员会办公室,2008.
    [29]沈亦龙.太湖五里湖清淤效果初步分析[J].水利水电工程设计,2005, 24(2):23-25.
    [30]Nariyuki T. The effect of bottom sediment dredging and arrange the aquatic vegetation field use the dredged soil at the lake Sanarul [C]//The 9th International Conference on the Conservation and Management of Lakes. Session 3-1.Shiga(Japan):ILEC,2001:425-428.
    [31]Ogawa H. Water-purification measures within lakes [C]//Proceedings of 6th International Conference on the Conservation & Management of Lakes Ka sumiganrd,95,1995:859-863.
    [32]王英才,刘永定,郝宗杰,等.上海市几条黑臭河道治理效果的比较与分析[J].水生生物学报,2009,33(2):355-359.
    [33]陈彬.加拿大微生物技术在上海市中心城区黑臭河道治理中的应用[J].上海水务,2006,22(3):45-46.
    [34]Lindeman R L. The trophic-dynamic aspect of ecology[J]. Ecology,1942, 23:399-418.
    [35]Vollenweider R A,Marchetti R,Viviani R,et al. Coastal Marine Eutrophic-ation:principles and control[J]. Marine Coastal Eutrophication,1992,1-20.
    [36]Nixon S W. Coastal marine eutrophication:a definition,social causes,and future concerns[J]. Ophelia,1995,41,199-219.
    [37]Sommer S G. Ammonia volatilization in Denmark,1988-1995 [J]. Vand & Jord(in Danish),1998,4,144-146.
    [38]金相灿,屠清英.湖泊富营养化调查规范[M].(第二版).北京:中国环境科学出版社,1990.
    [39]曹承进.三峡水库富营养化分析及水华预警研究[D].上海:华东师范大学,2009.
    [40]Jorgensen F L,Boca Raton. Application of ecology in environmental management [M]. USA:CRC Press,1983:45-52.
    [41]Thomann R V,Mueller J A. Principle of surface water quality modeling and control [M]. New York:Haper & ROV,1987.
    [42]饶群,芮孝芳.富营养化机理及数学模拟研究进展[J].水文,2001,21(2):15-19.
    [43]李小平.美国湖泊宫营养化的研究和治理[J].自然杂志,2002,24(2):63-68.
    [44]Martin J H. Iron deficiency limits phytoplankton growth in Antarctic waters [J]. Global biagechem cycle,1990,6(4):5-12.
    [45]Morton S D,Lee T H. Algae blooms:possible effects of iron[J]. Enviro nmental Science and Technology,1974,8(7):673-674.
    [46]Goldman C R. Molybdenum as a factor limiting primary productivity Ca-stle Lake[J]. Calofornia Science,1990,13(2):1016-1017.
    [47]Buma A G J, Nolting R F,Van Bennekom A J. Metal enrichment experiments in the Weddell-Scotia Seas:effects of iron and manganese on various Plankton communities[J]. Limnological Oceanography,1991,36(8): 1865-1878.
    [48]Shapiro J,Wright D I. Lake restoration by biomanipulation:Round Lake,Minnesota,the first two years [J]. Freshwater Biol,1984,14:371-383.
    [49]付春平,钟成华,邓春光.水体富营养化成因分析[J].重庆建筑大学学报,2005,27(1):128-131.
    [50]高建平,王珊玲.水体富营养化评价和防治的一些进展[J].农村生态环境,1989,9(3):56-30.
    [51]舒金华.我国湖泊富营养化程度评价方法的探讨[J].环境污染与防治,1990,12(2):2-7.
    [52]邹志红,王乐娟.湖泊富营养化趋势的灰色马尔柯夫预测[J].环境科学学报,2009,12(2):427-432.
    [53]郑成德,李志斌.湖泊水体富营养化评价的改性灰色局势决策法[J].湖泊科学,1999,11(1):76-80.
    [54]倪长健.洱海的富营养状态发展趋势的灰色预测[J].成都信息工程学院学报,2001,16(2):117-118.
    [55]胡明星,郭达志.湖泊水质富营养化评价的模糊神经网络方法[J].环境科学研究,1998,11(4):40-42.
    [56]孔庆瑜.武昌东湖水体污染的航空遥感分析[J].湖北大学学报,1990,11,83-88.
    [57]俞立中.GIS技术在洪湖环境演变研究中的应用[J].湖泊科学,1993,5(4):350-357.
    [58]Aizaki M,T Iwakuma,N Takamura. Application of modified Carlson's trophic index to Japanese lakes and relationships to other parameters related to trophic state [J]. Res Rep Natl Inst Environ Stud Jpn,1981,23:13-31.
    [59]张远,郑丙辉,富国,等.河道型水库基于敏感性分区的营养状态标准与评价方法研究[J].环境科学学报,2006,26(6):1016-1021.
    [60]郑丙辉,张远,富国,等.三峡水库营养状态评价标准研究[J].环境科学学报,2006,26(6):1022-1030.
    [61]Gorham P R. Toxic waterblooms of blue-green Algae[J]. Can Vet J.1960, 1(6):235-245.
    [62]Carlson D M,Beasley V R,Gorham P R,et al. Apparent blue-green algae poisoning in swine subsequent to ingestion of a bloom dominated by Anabaen a spiroides [J]. J Am Vet Med Assoc,1983,182(4):413-414.
    [63]Zehnder A. The effect of certain antibiotics on the growth of green algae [J]. Experientia,1951,7(3):99-100.
    [64]秦伯强,杨柳燕,陈非洲,等.湖泊富营养化发生机制与控制技术及其应用[J].科学通报,2006,51(16):1857-1866.
    [65]秦伯强,胡维平,刘正文,等.太湖水源地水质净化的生态工程试验研究[J].环境科学学报,2007,27(1):5-12.
    [66]UNEP,苏玲译.水体富营养化[J].世界环境,1994,42(1):23-26.
    [67]陈隆吉,陈才明.温瑞塘河整治中水环境问题的探讨[J].科技资讯,2005,27:151-152.
    [68]谭天,陈锡平,徐晓东,等.温州城市河道生态调水控制性工程设置与效果分析[J].浙江水利科技,2007,149(1):26-29.
    [69]诸战诞.温瑞塘河综合治理工作的实施与思考[J].浙江水利科技,2001,4,65-67.
    [70]何志平.温瑞塘河(温州段)文化空间布局专题规划研究[R].温州:温州市城市规划设计研究院,2007.
    [71]郑建海.2010年温州市环境状况公报[R].温州:温州市环境保护 局,2010.
    [72]严子俊,刘焕强,孙海罗,等.温州市不同功能区地表径流污染特征研究[J].环境科学与技术,2012,35(61):203-208.
    [73]Ping Lu,Kun Mei,Yujin Zhang,et al. Spatial and temporal variations of nitrogen pollution in Wen-Rui Tang River watershed, Zhejiang, China[J]. Environ Monit Assess,2011,180:501-520.
    [74]纪晓亮,朱元励,梅琨,等.典型平原河网温瑞塘河地区的氮磷营养盐时空分布[J].浙江农业科学,2012,11,1571-1574.
    [75]徐建,曾思育,张天柱.基于不确定性分析框架的动态环状河网水质模型——以温州市温瑞塘河为例[J].水科学进展,2005,6(4):574-580.
    [76]刘慧霞,李军,李延成,等.温瑞塘河水环境社会压力的网格化分析[J].黑龙江农业科学,2010(12):52-56.
    [77]顾君.生态调水对温瑞塘河温州市区段水环境影响的研究[D].华东师范大学,2012.
    [78]国家环境保护局编委会.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002.
    [79]Chapman D,Kimstach V. Water Quality Assessments:A Guide to the Use of Biota,Sediments and Water in Environmental Monitoring [M]. London:E & FN Spon,1996.
    [80]方宇翘,裘祖楠,张国莹,等.城市河流中黑臭现象的研究[J].中国环境科学,1993,13(4):256-262.
    [81]潘琇,王亮,刘恩玲,等.温州市温瑞塘河流域地表径流污染负荷的调查与评价[J].现代农业科技,2007,18,189-190.
    [82]张俊凯.温瑞塘河调水报告[R].温州:温州市水利局,2009.
    [83]胡鸿钧,魏印心,李荛英,等.中国淡水藻类[M].上海:上海科学技术出版社,1980.-94
    [84]章宗涉,黄祥飞.淡水浮游生物研究方法[M].北京:科学出版社,1991.
    [85]韩茂森,束蕴芳主编,中国淡水生物图谱[M].北京:科学出版社,1995.
    [86]嘉陵江出口段三类水体蓝绿硅藻优势种变化机理[J].生态环境学.2009,18(1):51-56.
    [87]顾胜,李思悦,张全发.汉江堵河流域地表水质时空变化特征[J].长江流域资源与环境,2009,18(1):41-46.
    [88]徐华山,徐宗学,唐芳芳等.漳卫南运河流域水质时空变化特征及其污染源识别[J].环境科学,2012,18(1):359-370.
    [89]Li S Y,Zhang Q F. Spatial characterization of dissolved trace elements and heavy metals in the upper Han River (China) using multivariate statistical techniques[J]. Journal of Hazardous Materials,2010,176(1-3):579-588.
    [90]李艳云,王作敏.大辽河口和辽东湾海域水质溶解氧与COD、无机氮、磷及初级生产力的关系[J].中国环境监测,2006,26(3):70-72.
    [91]张运林,秦伯强,陈伟民等.太湖水体透明度的分析、变化及相关性分析[J].海洋湖沼通报,2003,1(2):30-36.
    [92]Megand R. Light,secchidiscand trophic taste[J]. Limnol & Oceanogr,1980, 25(2):373-377.
    [93]万蕾,朱伟.重污染河道中浮游植物初级生产力特征[J].生态环境学报,2010,19(1):34-39.
    [94]Lorenzen M W.Use of Chlorophyll-secchidisc relationship [J]. Limnol &Oce anogr.1980,25(2):371-372.
    [95]黄东,李晖,赵晓健.水质监测中CODCr、CODMn、BOD的关系[J].污染防治技术.2010,23(5):93-94.
    [96]谢建华,刘海静,王爱武.浅析氨氮、总氮、三氮转化及氨氮在水污染评价及控制中的作用[J].内蒙古水利,2011,135(5):34-36.
    [97]孙金水,王伟,雷立.深圳湾海域氮磷营养盐变化及富营养化特征[J].北京大学学报(自然科学版),2010,46(6):960-964.
    [98]Redfield A C. The biological control of chemical factors in the environm ent [J].Am Sci,1958,46:561-600.
    [99]曲丽梅,姚德,丛巫福.辽东湾氮磷营养盐变化特征及潜在性富营养化评价[J].环境科学,2006,27(2):263-267.
    [100]Bulgakov N G, Levich A. The nirtogen:phosphorus ratio as a factor regulating phytoplankton community structure:nutrient ratios [J]. Archiv fur Hydrobiologie,1999,146(1):3-22.
    [101]胡春华,周文斌,王毛兰,等.鄱阳湖氮磷营养盐变化特征及潜在性富营养化[J].湖泊科学,2010,22(5):723-728.
    [102]张晟,郑坚,刘婷婷,等.三峡水库入库支流水体中营养盐季节变化及输出[J].环境科学,2009,30(1):58-63.
    [103]赵联芳,朱伟,莫妙兴.沉水植物对水体pH值的影响及其脱氮作用[J].水资源保护,2008,24(6):63-67.
    [104]黄岁樑,臧常娟,杜胜蓝,等.pH、溶解氧、叶绿素a之间相关性研究-非养殖水体[J].环境工程学报,2011,5(8):1681-1688.
    [105]Salmaso N,Morabito G,Buzzi F et al. Phytoplankton as an indicator of the water quality of the deep lakes south of the Alps [J]. Hydrobiologia,2006, 563,167-187.
    [106]Crossetti LO,Bicudo CED. Phytoplankton as a monitoring tool in a tropical urban shallow reservior (Garcas Pond):the assemblage index application [J]. Hydrobiologia,2008,610:161-173.
    [107]Marchetto A,Padedda BM,Marinani M,et al. A numerical index for evaluat ing phytoplankton response to changes in nutrient levels in deep mediterranean reservoirs[J]. J Limnol,2009,69(1):106-12.
    [108]王孟,邬红娟,马经安.长江流域大型水库富营养化特征及成因分析[J].长江流域资源与环境,2004,13(5):477-481.
    [109]洪松,陈静生.中国河流水生生物群落结构特征探讨[J].水生生物学报,2002,26(3):296-305.
    [110]杨士建.骆马湖富营养化发生机制与防治途径初探[J].水资源保护,2004,3,26-28.
    [111]阮仁良.上海水环境研究[M].北京:科学出版社,2000.
    [112]曹承进,秦延文,郑丙辉,黄民生.三峡水库主要入库河流氮营养盐特征及其来源分析[J].环境科学,2008,29(1):1-6.
    [113]Hasler A D,Jones E. Demonstration of the antagonistic action of large aquatic plants on algae and rotifers[J]. Ecology.:359-364.
    [114]Zhou Y Y. Vertical variations in kinetics of alkaline phosphatase and P pecials in sediments of a shallow Chinese eutrophic lake(Lake Donghu). Hydrobi ologia,2001,450,90-98.
    [115]Koester S K,Partricia R, Warren R M,et al. Monitoring early cellular respon Ses in apoptosis is aided by the mitochondrial membrane protein specific monoclonal antibody APO2.7[J]. Cytometry,1997,29(4):306-312.
    [116]黄文钰,吴延根,舒金华.中国主要湖泊水库的水环境问题与防治建议[J].湖泊科学,1998,10(3):83-90.
    [117]金相灿等.中国湖泊环境(第二册)[M].北京:海洋出版社,1995.
    [118]刘靖.北京城市河湖水体富营养化与蓝藻水华研究[D].北京:清华大学,2005.
    [119]荆红卫,华蕾,孙成华等.北京城市湖泊富营养化评价与分析[J].湖泊科学.2008,20(3):357-363.
    [120]Wolfgang Hardle, Leopold Simar,陈诗一(译).应用多元统计分析(第二版)[M].北京大学出版社,2011.
    [121]朱宁,赵肖肖,唐庆华.多元正态性检验三种方法的比较及SAS程序设计[J].苏州大学学报(自然科学版),2012,28(3):20-25.
    [122]王海军.长江中下游中小型湖泊预测湖沼学研究[D].北京:中国科学院研究生院,2007.
    [123]陈杨.瑶湖水体营养化现状及其与环境因子关系的研究[D].江西:华东交通大学,2012.
    [124]高慧璇.应用多元统计分析[M].北京:北京大学出版社,2005.
    [125]何晓群,刘文卿.应用回归分析[M].中国人民大学出版社,2007.
    [126]赵德峰.北京市河湖富营养化成因分析及治理技术的研究[D].北京:北京工业大学,2005.
    [127]Zhou Y Y,Li J Q,Zhang Mi. Temporal and spatial variations in kinetics of alkaline phosphatase in sediments of a shallow Chinese eutrophic lake (Lake Donghu) [J]. Water Research,2002,36(8):2084-2090.
    [128]Huan X W.,Ya C Q.,Xiang W S.,et al. Iron and phosphorus effects on the growth of Cryptomonas sp.(Cryptophyceae) and their availability in sediments from the Pearl River Estuary,China[J]. Estuarine Coastal and Shelf Science.2007, 73(3-4):501-509.
    [129]Lazarova V,Manem J. Biofilm characterization and activity analysis in water and wastewater treatment[J]. Water Research.1995,29 (10):2227-2245.
    [130]Sayler G S,Puziss M,Silver M. Alkaline phosphatase assay for freshwater sediments:application to perturbed sediment systems[J]. Applied and Environme ntal Microbiology.1979,38(5):922-927.
    [131]Degobbis D,Maslaowska E H,Orio AA,et al. The role of alkaline phosph-atase in the sediments of Venice Lagoon on Nutrient regeneration[J].Estuar Coast Shelf Sci,1986,22(4):425-437.
    [132]Guan S Y,Zhang D S,Zhang Z M. Soil Enzymes and Their Methodology. [M].Beijing China:China agriculture Press,1986.
    [133]X. Haziyefu. Soil Enzymes Activities. Beijing,China:Science Press,1980.
    [134]邓聚龙.灰预测与回决策[M].武汉:华中科技大学出版社,2002.
    [135]王小艺,赵晓平,刘载文,等.基于灰色理论的湖库水体富营养化预测方法研究[J].计算机仿真,2008,28(1):17-19.
    [136]Reichardt W. Catalytic mobilization of phosphate in lake water and by Cyanophyta [J]. Hydrobiolgia,1971,38:377-94.
    [137]Wynne D,Kaplan B & T Berman. Phosphatase activities in lake Kinneret phytoplankton [A]. In:Chrost,R.J.(edtior),Microbial enzyes in aquatic environme nts[C]. Springer-Verlag,New York,1991.220-226.
    [138]陆书玉,栾胜基,朱坦.环境影响评价[M].北京:高等教育出版社,2001.
    [139]朱灵峰,王燕,王阳阳,等.基于单因子指数法的海浪河水质评价[J].江苏农业科学,2012,40(3):326-327.
    [140]姜雅萍.基于水质标识指数法的湖泊富营养化评价方法研究[D].上海:同济大学,2007.
    [141]况琪军,马沛明,胡征宇,等.湖泊富营养化的藻类生物学评价与治理研究进展[J].安全与环境学报,2005,5(2):87-91.
    [142]Gao X L,Song J M. Phytoplankton distributions and their relationship with the environment in the Changjiang Estuary,China[J]. Marine Pollution Bulletin, 2005,50:327-335.
    [143]沈韫芬,章宗涉,龚循矩,等.微型生物监测新技术[M].北京:中国建筑 工业出版社,1990.
    [144]Huston M A. Biological diversity:The coexistence of species on changing landscapes [M]. Cambridge:Cambridge Universit y Press,1994.
    [145]刘冬燕,林文鹏,赵敏.苏州河浮游植物群落结构特征[J].长江流域资源与环境,2009,18(10):914-918.
    [146]姜雪芹,禹娜,毛开云,等.冬季上海市城区河道中浮游植物群落结构及水质的生物评价[J].华东师范大学学报,2009,2,78-87.
    [147]沈会涛,刘存歧.白洋淀浮游植物群落及其与环境因子的典范对应分析[J].湖泊科学,2008,20(1):773-779.
    [148]张丹.不同水质类别城市河道浮游生物群落结构分析及其多样性的研究[D].华东师范大学,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700