用户名: 密码: 验证码:
转BADH基因大豆对盐碱土壤磷素转化的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甜菜碱醛脱氢酶(BADH)基因是高等植物合成渗透调节剂甜菜碱的关键基因。将BADH基因导入栽培大豆黒农35培育得到的转BADH基因大豆能够在盐碱土壤中生长正常。转BADH基因大豆田间释放可能对土壤生态系统产生影响,我们假设BADH基因导入改变了根系分泌物的组成、数量,导致与磷素转化有关的功能细菌群落结构和多样性发生变化,并影响根际磷素的转化和生态过程。
     因此,我们选择大豆主产区黑龙江省西部盐碱土壤,以转BADH基因大豆(SRTS)、受体非转基因大豆(HN-35)、野生大豆(YS-21)及当地常规栽培品种抗线王(K)和合丰50(HF-50)为研究材料,大田实验与框栽试验相结合,分析根系分泌物的差异,并采用PCR-DGGE相结合的方法,研究SRTS对根际土壤中与磷素转化过程相关的关键功能菌——有机磷细菌(PMB)和无机磷细菌(PSB)多样性的影响,同时测定磷素转化主要生态指标的变化,分析磷细菌变化与磷素转化生态功能改变之间的联系。该研究揭示了BADH基因导入大豆对土壤磷素转化主要生态过程及磷细菌群落结构和功能影响机理,为转BADH基因大豆的土壤生态安全评价提供研究基础。主要结论如下:
     1.转BADH基因大豆对根系分泌物组成和数量的影响
     SRTS的H+分泌量最多(0.049μmol g-1dry root h-1),显著的高出K、HN-35、Y-21和HF-5014.65%、48.20%、40.43%和63.16%。相比于其它品种大豆,SRTS具有更强的释放H+的能力,从而可以有效的酸化土壤,调节其生境根际土壤的pH值,改善盐碱环境。
     与HN-35相比,SRTS显著改变了根系分泌物中有机酸的种类和数量。SRTS根系分泌物中检测出5种有机酸,HN-35检测出6种有机酸,酒石酸和丙二酸为SRTS根系分泌物中没有的成分,苹果酸是SRTS较HN-35所特有的有机酸成分。柠檬酸为分泌最多的有机酸,SRTS的柠檬酸、乙酸分泌量显著高于其它品种大豆,而SRTS和HN-35草酸和琥珀酸的分泌量差异不显著。从有机酸的总含量来分析,SRTS较其亲本HN-35分泌的有机酸种类少,但是含量显著高于HN-35。
     SRTS与其它品种大豆间氨基酸种类变化不大,但是含量上差异较大。18种氨基酸中均检测到13种,其中天冬氨酸是分泌最多的氨基酸。此外,SRTS根系分泌物中谷氨酸、天冬酰胺、色氨酸、谷氨酰胺、精氨酸、色氨酸、苯丙氨酸、赖氨酸的含量均占有很大的优势,分别显著高出其亲本HN-35102.79%、55.43%、34.28%、33.79%、78.17%、63.29%、117.84%和147.62%。SRTS根系分泌物中氨基酸的含量只有丙氨酸、甘氨酸、缬氨酸、亮氨酸较其亲本HN-35少。SRTS的氨基酸总量显著高于HN-35、Y-21和HF-50,并分别高出37.93%、17.63%和131.68%,和K的差异不显著。
     SRTS与HN-35、K和HF-50在可溶性总糖含量上没有显著差异,只显著高出Y-2178.52%。碳水化合物的组成及含量,在一定程度上存在差异。我们在大豆根系分泌物中均检测到了10种碳水化合物成分,包括:肌醇、赤藓糖醇、丙三醇、核糖醇、果糖、葡萄糖、蔗糖、麦芽糖、阿拉伯糖和半乳糖。从整体来看,趋势较为一致,核糖醇的分泌量最多,蔗糖的分泌量最少。其中赤藓糖醇、丙三醇、果糖、葡萄糖、阿拉伯糖的含量,SRTS显著高于HN-3518.65%、17.26%、136.06%和13.14%。核糖醇、果糖、葡萄糖和半乳糖的含量二者之间无显著差异,SRTS只有肌醇和麦芽糖的含量显著低于HN-35。
     2.转BADH基因大豆对根际土壤磷素有效性的影响
     SRTS对根际土壤速效磷存在一定程度的影响,但其影响具有时期性。SRTS在花期和结荚期对根际土壤速效磷有一定的促进作用,鼓粒期SRTS与HN-35、HF-50的差异不显著,却显著高于Y-21及K,分别高出4.32%和11.15%,成熟期SRTS根际土壤速效磷低于HN-35,但却显著高于其它大豆品种。
     SRTS对根际土壤有机磷有促进作用,从整个生育期土壤有机磷平均水平来看,SRTS显著高于其它品种大豆。从花期到成熟期,SRTS对土壤有机磷的含量均有一定程度的促进。SRTS对根际土壤无机磷的影响具有时期性,在花期对土壤无机磷的活化能力最强,而其它时期SRTS与其它品种大豆无显著差异。
     SRTS对土壤微生物量磷有促进作用,在苗期、结荚期、成熟期SRTS均强于HN-35。SRTS对土壤微生物量碳有促进作用,在苗期、花期、结荚期和成熟期SRTS对根际土壤微生物量碳的促进作用高于同期HN35。SRTS对土壤微生物量C/P有抑制作用。
     3.转BADH基因大豆对根际土壤磷素转化生态功能的影响
     SRTS对根际土壤酸性磷酸酶活性的影响表现为大豆苗期、花期和结荚期对酸性磷酸酶活性有促进作用,鼓粒期和成熟期对酸性磷酸酶活性有抑制作用。SRTS对根际土壤中性磷酸酶活性有显著的促进作用,SRTS中性磷酸酶活性较HN-35、Y-21、K和HF-50分别提高了26.42%、203.92%、14.15%和32.94%。SRTS对根际土壤碱性磷酸酶活性影响较小,除鼓粒期外,其它生育期SRTS根际土壤碱性磷酸酶活性与其亲本非转基因大豆HN-35之间的差异均未达到显著水平。通过相关性分析表明,中性磷酸酶活性对磷素有效性的影响最显著。
     SRTS能够降低根际土壤pH,它直接影响土壤微生物群落的种类、数量和活性等。SRTS提高了有机磷细菌和无机磷细菌的数量,并显著促进了有机磷转化作用强度和无机磷转化作用强度,相关性分析表明,有机磷细菌数量与有机磷转化作用强度,无机磷细菌数量与无机磷转化作用强度均呈显著正相关关系。
     4.转BADH基因大豆对根际土壤磷细菌群落多样性的影响
     SRTS根际土壤有机磷细菌(PMB)的条带数低于HN-35,多样性指数(Dsh)及均匀度指数(Jsh)均要高于其亲本HN-35;SRTS根际土壤无机磷细菌(PSB)的条带数高于HN-35,多样性指数(Dsh)及均匀度指数(Jsh)均要低于其亲本HN-35。主成分分析与Cluster分析结果一致显示,SRTS有机磷细菌和SRTS、HN-35无机磷细菌群落结构相似度较高,与HN-35有机磷细菌差别较大。SRTS的种植抑制了根际土壤中有机磷细菌某些类群的生长(如条带l、m、n、q、u、v、w所代表的PMB类群),也促进了某些类群的生长(如条带a、g、o、p、t所代表的PMB类群)。SRTS的种植抑制了根际土壤中无机磷细菌某些类群的生长(如条带C、K、L所代表的PMB类群),也促进了某些类群的生长(如条带D、F、J、Q、R、S所代表的PMB类群)。根际磷细菌的菌群种类均已在前人文献中记录和归类,本研究中根际有机磷细菌匹配菌株主要属于芽孢杆菌(Bacillus)、假单胞杆菌(Pseudomonas)、肠细菌(Enterobacter)、黄杆菌(Flavobacterium)、和沙门氏菌(Salmonella),其中黄杆菌和沙门氏菌为SRTS根际有机磷细菌所特有的菌群,SRTS缺失条带属于芽孢杆菌、假单胞杆菌和肠细菌。根际无机磷细菌匹配菌株主要属于芽孢杆菌(Bacillus)、假单胞杆菌(Pseudomonas)、肠细菌(Enterobacter)、和柠檬酸细菌(Citrobacter),其中柠檬酸细菌为SRTS根际无机磷细菌所特有的菌群,SRTS缺失条带属于芽孢杆菌(Bacillus)、假单胞杆菌(Pseudomonas)、肠细菌(Enterobacter)。研究结果表明在一定程度上SRTS的种植减少了根际土壤中有机磷细菌群落的多样性,促进了根际土壤中无机磷细菌群落的多样性,改变了磷细菌群落的结构,并且影响了某些磷细菌类群的生长与分布。
Betaine-aldehy dedehydrogenase (BADH) is a key gene during a synthesizing betaine processof higher plants. Transgenic BADH soybean which put base aldehyde dehydrogenase gene (BADH)into the cultivated soybean Heinong35could present a well growth on saline-alkali soil.However,the releasing matters of transgenic soybean with gene BADH probably effect a change of soilecological system. It is speculated that the metabolism of soybean could be influenced by BADH,which changes compositions and quantites of rhizospheric secretion, and effect the diversity offunctional bacteria resulting in the phosphorus converting and ecological process changed.
     In order to approve the hypothesis, western saline-alkali soil of Heilongjiang Province, and5kinds of soybean are utilized, including transgenic soybean with gene BADH, non-transgenicsoybean Heinong (HN-35), wild soybean (YS-21) and cultivated soybean Kangxianwang (K) andHefeng50(HF-50) as materials. The research applies both field experiment and pot experiment toanalyze the variation of rhizospheric secretion. Futhermore, molecular techniques polymerasechain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) technique is employed toinvestigate the variation of functional bacteria diversity, which having relationships with the Pconverting process. The relationships between functional bacteria structure and the variation ofecological function about phosphorus transformation are also discussed. The research wouldinvestigate mechanism of functional bacteria structure and ecological function are influnced bytransgenic soybean with gene BADH, which could provide theorical references for ecologicalsecurity assessment of saline-alkali soil in fulture. The paper drawed an inference followingconclusions from analysis above:
     1.Effects of transgenic BADH soybean on components and content in root exudates
     The H+secretion of SRTS (0.049μmol g-1dry root h-1) was highest, compared with K, HN-35,Y-21and HF-50, SRTS increased H+secretion by14.65%,48.20%,40.43%and63.16%respectively. Compared to other soybean varieties, SRTS had stronger ability to release H+, whichcan effectively acidified soil to adjust the pH of the rhizospheric soil and improve saline-alkalineenvironment.
     Compared with HN-35, SRTS changed compositions and quantites of rhizospheric secretion.Five kinds of oganic acids were detected in SRTS root exudates and six kinds of oganic acids weredetected in HN-35root exudates. Tartaric acid and malonic acid were not ingredients of root exudates, but D-(+)-malic acid was a specific organic acid component of SRTS. Citric acid andacetic acid content of SRTS in root exudates was higher than that of other varieties soybeans. Thecontent of oxalic acid and succinic acid of SRTS and HN-35in root exudates had difference but itwas too small to reach the significant level. We analysis the total content of organic acid,compared with HN-35, SRTS had less type of organic acid than HN-35, but the content wassignificantly higher than that of HN-35.
     Kinds of amino acid in SRTS root exudates were little changed, but the content of it werequite different. Thirteen kinds of amino acid were detected from eighteen kinds of amino, of whichthe aspatic acid secretion was the most. In addition, SRTS increased the content of glutamic acid,asparagine, tryptophan, glutamine, arginine, tryptophan, phenylalanine and lysine in SRTS rootexudates were increased by102.79%、55.43%、34.28%、33.79%、78.17%、63.29%、117.84%and147.62%compared to HN-35. The content of alanine, glycine, valine and leucine of amino acid ofSRTS root exudates were significantly higher than HN-35, Y-21and HF-50, increased by37.93%,17.63%and131.68%respectively, but that of SRTS and K were difference but if was too small toreach the significant level.
     There was not significant differences in total soluble sugar content of SRTS and othersoybean, only increased YS-21by78.52%. To a certain extent, there were differences in thecompounds and content of carbohydrate. Ten kinds of carbohydrate were detected in all soybeanroot exudates, and that included inositol, erythritol, glycerol, glucose, fructose, ribose alcohol,sucrose, maltose, glucose, Arabia sugar and galactose. As a whole, the trend is consisten. Thatsecretion of ribose were highest, secretion of sucrose were least. Compare with HN-35, SRTSincreased content of erythritol, glycerol, fructose, glucose, Arabia sugar by18.65%、17.26%、136.06%and13.14%. There were not significant differences between ribitol, fructose, glucose andgalactose content of SRTS and HN-35, but the content of nositol and maltose in SRTS rootexudates was significantly lower than that of HN-35.
     2. Effects of transgenic BADH soybean on phosphate abailability in rhizospheric soil.
     SRTS had effects on the available phosphorus in rhizospheric soil, but the effect is period,SRTS could promote the content of available phosphorus in the flowering and fruiting period, thatof SRTS and HN-35, HF-50had not difference in seed-filling stage significantly, but significantlyhigher than that of Y-21and K, increased by4.32%and11.15%respectively. Mature SRTSavailable P of rhizospheric soil is lower than that of HN-35, but significantly higher than that ofother varieties soybean.
     SRTS had a promoting effect on soil organic phosphorus. According to the average content oforganic phosphorus SRTS was significantly higher than that of other varieties soybean. SRTSpromote the maturity of organic phosphorus in rhizospheric soil certainly. Effect of SRTS oninorganic phosphorus was period. SRTS had strongest activation ability of inorganic phosphorus inrhizospheric soil during flowering period, and had no significant difference with other species soybean in other periods.
     Compare with HN-35, SRTS had a promoting effect on microbial biomass phosphorus in theseedling, podding and mature period. SRTS could promote the content of microbial biomasscarbon. In the seedling period, flowering period, fruiting period and mature period, SRTS hadhigher capacity of promoting microbial biomass carbon in rhizospheric soil than HN-35. SRTSreduced the microbial biomass C/P in the rhizospheric soil.
     3. Effects of transgenic BADH soybean on ecology function of phosphate transformation inrhizospheric soil.
     Effect of SRTS on the acid phosphatase activity showed that there is a promoting effect on theacid phosphatase activity in the flowering and fruiting period of soybean seedling. In the poddingperiod and mature period, SRTS reduced the activity of acid phosphatase. SRTS had a significantpromoting effect on the activity of neutral phosphatase. Compared with HN-35, Y-21, K and HF-50SRTS, SRTS increased neutral phosphatase activity in rhizospheric soil by26.42%,203.92%,14.15%and32.94%, SRTS had little effect on the activity of alkaline phosphatase in rhizosphericsoil, in addition to podding period, there was not significant difference between SRTS and parentalnon-transgenic soybean HN-35of alkaline phosphatase activity in rhizospheric soil. Thecorrelation analysis showed that, there was the most relation between neutral phosphatase activityand phosphorus availability.
     SRTS could reduce the pH of rhizospheric soil, which directly affect the soil microbialcommunity types, quantity and activity. SRTS increased the number of phosphate-mineralizationbacteria and phosphate-solubilizing bacteria, and promoting the transformation capacity of organicphosphorus and inorganic phosphorus transformation strength intensity, correlation analysisshowed that the quantity of phosphate-mineralization bacteria and organic phosphorustransformation strength, phosphate-solubilizing bacteria and inorganic phosphorus transformationwere significantly positive related.
     4. Effects of transgenic BADH soybean on the biodiversity of phosphate bacteria.
     The diversity analysis indicated that Shannon-Wiener diversity indexes (Dsh) and evennessindexes (Jsh)related to phosphate-mineralization bacteria of SRTS in rhizospheric soils were allhigher than those of near-isogenic counterparts (HN-35), but the number of bands were lower thanHN-35. Shannon-Wiener diversity indexes (Dsh) and evenness indexes (Jsh)related tophosphate-solubilizing bacteria of SRTS in rhizospheric soils were all lower than those ofnear-isogenic counterparts (HN-35), but the number of bands were higher than HN-35. Theprincipal component analysis demonstrated that the compositions of phosphate-mineralizationbacteria communities of in SRTS rhizospheric soil were similar to those of phosphate-solubilizingbacteria in SRTS and HN-35rhizospheric soil, but they were different from thephosphate-mineralization bacteria communities in HN-35rhizospheric soil. SRTS inhibited somegroups of phosphate-mineralization bacteria communities, such as groups represented by bands l, m, n, q, u, v and w, however, promoted the other groups, such as groups represented by band a, g,o, p, t. At the same time, SRTS inhibited some groups of phosphate-solubilizing bacteriacommunities, such as groups represented by bands C, K, L and w, however, promoted the othergroups, such as groups represented by band D, F, J, Q, R, S. In this research,phosphate-mineralization bacteria in rhizospheric soil had been recorded and classitied in theprevious literature, it mainly belong to Bacillus, Pseudomonas, Enterobacter, Flavobacterium andSalmonella, compared to HN-35, Flavobacterium and Salmonella were only belonging to SRTS.Phosphate-solubilizing bacteria mainly belong to Bacillus, Pseudomonas, Enterobacter, andCitrobacter, compared to HN-35, Citrobacter were only belonging to SRTS. Our results indicatedthat SRTS reduced the diversity of PMB, promting the diversity of PSB, changing phosphorusbacteria community structure and affecting the growth and distribution of some groups ofphosphorus bacteria in rhizospheric soil to some extent.
引文
[1]王志春,梁正伟.植物耐盐研究概况与展望[J].生态环境,2003,12(1):106-109.
    [2]马恢,尹江,张希近.冀西北盐碱地马铃薯无性系农艺性状主成分及聚类分析[J].中国马铃薯,2004,77(3):136-138.
    [3] CHEN T H H,MURATA N.Glycinebetaine: an effective protectant against abiotic stress inplants[J].Trends in Plant Science,2008,13:499-505.
    [4] CHEN T H H,MURATA N.Enhancement of tolerance to abiotic stress by metabolicengineering of betaines and other compatible solutes[J].Current Opinion in Plant Biology,2002,5:250-257.
    [5] TAKABE T,RAI V,HIBINO T.Metabolic engineering of glycinebetaine.Netherlands:InAbiotic Stress Tolerance in Plants[J].Toward the Improvement of Global Environment andFood(eds RAI A.&TAKABE T),2006:137-151.
    [6] CHEN T H H,Murata N.Enhancement of tolerance to abiotic stress by metabolic engineeringof betaines and other compatible solutes[J].Current Opinion in Plant Biology,2002,5:250-257.
    [7] WHALLEY W R,RISELEY B,LEEDS-H P B,et al.Structural differences between bulk andrhizosphere soil[J].European Journal of Soil Science,2005,56:353-360.
    [8] WERETILNYK E A,HANSON A D.Betaine aldehyde dehydrogenase from spinach leaves:purification,in vitro translation of the mRNA,and regulation by salinity[J].Arch BiochemBiophys,1989,27(1):56-63.
    [9] NAKAMURA T,NOMURA M,MORI H,et al.An isozyme of betaine aldehyde dehydrogenasein barley[J].Plant Cell Physiol,2001,42(10):1088-1092.
    [10]李莹,张利民.植物甜菜碱及甜菜碱合成酶研究进展[J].杂粮作物,2006,26(30):191-193.
    [11] KATHURIA H,GIRI J,NATARAJA K N,et al.Glycinebetaine-induced water-stresstolerancein codA-expressing transgenic indica rice is associated withup-regulation of severalstress responsive genes[J].Plant BiotechnologyJournal,2009(7):512-526.
    [12] AYERS R S,WESTCOT D W.Water Quality for Agriculture[J].Rome:Food and AgricultureOrganization,1989:13-58.
    [13]左艳婷.耐盐基因胆碱单加氧酶基因和甜菜碱醛脱氢酶基因转化大豆的研究[D].长春:吉林农业大学,2006.
    [14]王加连.转基因生物与生物安全[J].生态学杂志,2006,25(3):314-317.
    [15] KAHL L S.Summary of consultation with Calgene,Inc[J].Concerning Flavr Savr TomotoFDA,1994,91(A):330.
    [16]朱行.世界转基因作物发展近况[J].粮食与油脂,2004,(9):39.
    [17]叶汉英,杨伟华.转基因大豆的发展及其安全性评价[J].油脂工程,2007,(4):45-48.
    [18]乔琦,丁伟,李新海,等.转基因抗旱大豆对土壤酶活性的影响[J].东北农业大学学报,2010,41(12):11-14.
    [19]张新春,庄炳昌,李自超.植物耐盐性研究进展[J].玉米科学,2002,10(1):50-56.
    [20]董钻.大豆产量生理[M].北京:中国农业大学出版社,2000:82-83.
    [21]何万云.黑龙江土壤[J].北京:农业出版社,1992:316-317.
    [22]陈振华,陈利军,武志杰.转基因作物对土壤生物学特性的影响[J].土壤通报,2008,39(4):971-976.
    [23]李孝刚,刘标.转基因植物对土壤生态系统的影响[J].安徽农业科学,2008,36(5):1957-1960.
    [24] DONEGAN K K,PALM C J,FIELAND V J,et al.Changes in levels, species and DNAfingerprints of soil microorganisms associated with cotton expressing the Bacillus thuringiensisvar. kurstaki endotoxin[J].Applied Soil Ecology,1995,2(2):111-124.
    [25]汪海珍,徐建民,谢正苗.转基因作物在土壤环境中的残留及其对土壤生物的影响[J].土壤,2005,37(4):370-374.
    [26]袁一杨,戈峰.转Bt基因作物对非靶标土壤动物的影响[J].应用生态学报,2010,21(5):1339-1345.
    [27] DEEPAK S,SAUL F,STOTZKY G.Transgenic plant: insecticidal toxin in root exudates fromBt corn[J].Nature,1999,402(6761):480-485.
    [28]张丽莉,武志杰,陈利军,等.转基因棉种植对土壤氧化还原酶活性的影响[J].土壤通报,2007,38(2):277-280.
    [29]陈振华,孙彩霞,郝建军,等.土壤酶活性对大田单季种植转Bt基因及转双价棉花的响应[J].植物营养与肥料学报,2009,15(5):1226-1230.
    [30] MOREL J L,HABIB L,PLANTUREUX S,et al.Influence of maize root mucilage on soilaggregate stability[J].Plant and soil,1991,136(1):111-119.
    [31]孙彩霞,张玉兰,缪璐,等.转Bt基因作物种植对土壤养分含量的影响[J].应用生态学报,2006,17(5):943-946.
    [32]刘文娟,刘勇.转Bt基因作物毒蛋白对土壤生态系统的影响[J].中国测试,2009,35(6):91-96.
    [33]邢珍娟,王振营,何康来,等.转Bt基因抗虫玉米根茬和根际土壤中Cry1Ab杀虫蛋白的田间降解动态[J].中国农业科学,2010,43(23):4970-4976.
    [34] HOFFMAN T,GOLZ C,SCHIEDER O.Foreign DNA sequences are received by a wild-typestrain of A. niger after co-culture with transgenic higher plants.Curr Genet,1994,(27):70-76.
    [35] HAN X Z,SONG C Y,Wang S Y,et al.Impact of long-term fertilization on phosphorus statusin black soil[J].Pedosphere,2005,15(3):319-326.
    [36]李春艳,张晓丽,安树杰,等.松材线虫入侵后马尾松根际土壤性质相关分析[J].水土保持研究,2007,14(3):89-91.
    [37]李会娜,刘万学,戴莲,等.紫荆泽兰入侵对土壤微生物、酶活性及肥力的影响[J].中农业科学,2009,42(11):3964-3971.
    [38]张天瑞,皇甫超河,白小明,等.黄顶菊入侵对土壤养分和酶活性的影响[J].生态学杂志,2010,29(7):1353-1358.
    [39]张彦丽,王伟鹏,闫琰,等.施用接种解磷真菌的壮秧剂对水稻秧苗生长特性及磷素吸收的影响[J].中国土壤与肥料,2008,(1):69-72.
    [40]秦芳玲,田中民.同时接种解磷细菌与丛枝菌根真菌对低磷土壤红三叶草养分利用的影响[J].西北农林科技大学学报,2009,37(6):151-157.
    [41]王莉晶,高晓蓉,吕军,等.解磷真菌C2′的分离鉴定及其在土壤中实际解磷效果的研究[J].土壤通报,2009,40(4):771-775.
    [42]李庆召,王定勇,朱波,等.川中紫色土旱坡地磷素的输出特征研究[J].水土保持学报,2004,18(6):97-99.
    [43]周全来,赵牧秋,鲁彩艳,等.磷在稻田土壤中的淋溶和迁移模拟研究[J].土壤,2006,38(6):734-739.
    [44] LIN J S,SHI X Z,LU X X,et al.Storage and spatial variation of phosphorus in paddy soilsof China[J].Pedosphere,2009,19(6):790-798.
    [45]杨皓宇,赵小蓉,曾祥忠,等.不同农作制对四川紫色丘陵区地表径流氮、磷流失的影响[J].生态环境学报,2009,18(6):2344-2348.
    [46]李文西,鲁剑巍,李芳柏,等.苏丹草黑麦草轮作制中施肥制度对土壤生物性质的影响[J].中国科学(生命科学),2011,41(2):160-167.
    [47] HAN X Z,SONG C Y,WANG S Y,et al.Impact of long-term fertilization on phosphorusstatus in black soil[J].Pedosphere,2005,15(3):319-326.
    [48]王道中,郭熙盛.长期施肥对砂姜黑土有机磷组分及其有效性的影响[J].土壤,2009,41(1):79-83.
    [49]王婷婷,王俊,赵牧秋,等.有机肥对设施菜地土壤磷素状况的影响[J].土壤通报,2011,42(1):132-135.
    [50]张艳华,季静,王罡.转基因植物与生物安全性[J].作物杂志,2003,6:4-7.
    [51]刘谦,朱鑫泉.生物安全[M].北京:科学出版社,2001,2.
    [52]绕荣华,吴庆峰,邢永忠.转基因作物的安全性[J].湖北农业科学,2002,5:27-30.
    [53] KAHL L S.Summary of consultation with calgene[J].Concerning Flavr Savr Tomoto FDA,1994,91:330-334.
    [54] CLIVE J.2010年全球生物技术/转基因作物商业化发展态势[J].中国生物工程杂志,2010,31(3):l-12.
    [55]樊龙江,周雪平,胡秉民,等.转基因植物的基因漂流风险[J].应用生态学报,2001,12(4):630-632.
    [56]张永军,吴孔明,彭于发,等.转基因植物的生态风险[J].生态学报,2002,11(11):1951-1959.
    [57] HALL L,TOPINKA K.Pollen flow between herbicideresistant Brassica napus is the cause ofmultiple-resistant Bnapus volunteers[J].Weed Science,2000,48:688-694.
    [58] BECKIE H J,HALL L M.Impact of herbicide-resistant crops as weeds in Canada ProceedingsBrighton Crop Protection Council Conference[J].Weeds,2000,32:135-142.
    [59]张兰,李建科.转基因产品对蜜蜂和雄蜂的影响[J].中国养蜂,2005,56(6):7-9.
    [60] HILBECK A,BAUMGARTNER M,PADRUOT M F,et al.Effects of transgenic Bacillusthuringiensis corn fed preonmortality and development time of immature Chry soperla carnea(N europ tera:Chrysopidae)[J].Environ Entomol,1998,27(2):480-487.
    [61] RIDDICK E W, DIVELY G, BARBOSA P. Effect of a seed mix deployment ofCry3A-transgenic and nontransgenic potato on the abundance of L ebia grand is (Coleptera:Carabidae) and Coleomegillam aculata (Coleopera:Coccinellidae) Ann[J].Entolmol Soc Am,1998,91(5):647-653.
    [62]束春娥,柏立新,孙宏武,等.棉铃虫多代连续取食转基因抗虫棉的抗性演变[J].中国生物防治,2000,17(l):l-5.
    [63] DALTON R.Transgenic corn found growing in Mexico[J].Nature,2001,413-337.
    [64] GAL S B,PISAN T,JOHN N,et al.Agroinfection of transgenic plants leads to viablecauliflower[J].Virology,1992,187:525-533.
    [65]吴奇,彭德良,彭于发.抗草甘膦转基因大豆对非靶标节肢动物群落多样性的影响[J].生态学报,2008,28(6):2622-2628.
    [66] HAMMOND B G,VICINI J L,HARTNELL G F,et al.The feeding value of soybeans fedto rats,chickens,catfish and dairy cattle is not altered by genetic incorporation of glyphosatetolerance[J].The Journal of Nutrition,1996,126(3):717-727.
    [67] BRAKE D G,EVENSON D P.A generational study of glyphosate-tolerant soybeans onmouse fetal,postnatal,pubertal and adult testicular development[J].Food and ChemicalToxicology,2004,42(1):29-36.
    [68]赵志辉,杨立桃,艾晓杰,等.转基因抗草苷膦大豆对大鼠生理代谢的影响及外源基因水平转移研究[J].南京农业大学学报,2006,29(1):77-80.
    [69] APPENZELLER L M,MUNLEY S M,HOBAN D,et al.Subchronic feeding study ofherbicide–tolerant soybean DP-356φ43-5in Sprague–Dawley rats[J].Food and ChemicalToxicology,2008,46:2201-2213.
    [70] ABUD S,SOUZA P I,VIANNA G R,et al.Gene flow from transgenic to nontransgenicsoybean plants in the Cerrado region of Brazil[J].Genetics and Molecular Research,2007,6(2):445-452.
    [71] PADGETTE S R,TAYLOR N B,NIDA D L,et al.The composition of glyphosate-tolerantsoybean seeds is equivalent to that of conventional soybeans[J].The Journal of Nutrition,1996,126(3):702-716.
    [72] YUKUI R,WU X Y,ZHANG H X,et al.Composition and safety analysis of Chinesetraditional fermented soybean paste made by transgenic soybean[J].International Journal ofFood Sciences and Nutrition,2008,12:1-4.
    [73] WANG Z,LIU Z H,WANG H Y.Salinization resistance transgenic soybean reduced bacterialdiversity in rhizosphere[C]. International Conference on Information Technology andAgricultural Engineering,2012,ISBN978-3-642-27536-4:377-384.
    [74]宋丽娟,王宏燕,李传宝,刘佳宾,刘朴方.抗盐碱转基因大豆对根际与非根际土壤氨氧化古菌多样性的影响[J].农业环境科学学报,2012,30(10):2091-2098.
    [75] YU S,ZHANG Y F,ZHOU J,et al.Assessment of biochemical indicators in saline-alkali soilunder transgenic BADH soybean crop in Northeast China[C].2012International Conference ofAgricultural Engineering and Food Engineering,2012,1:416-421.
    [76]刘志华,邵婧鑫,王宏燕.抗盐碱转基因大豆会改变根际氮转化?2011AASRI Conferenceon Information Technology and Economic Development[C].ISBN:978-1-937728-03-8,volume1:355-358.
    [77]申建波,张福锁.根分泌物的生态效应[J].中国农业科技导报,1999,4:21-27.
    [78] NIE M,ZHANG X D,WANG J Q,et al.Rhizosphere effects on soil bacterial abundance anddiversity in the Yellow River Deltaic ecosystem as influenced by petroleum contamination andsoil salinization[J].Soil Biology and Biochemistry,2009,41:2535-2542.
    [79] GRAYSTON S J,CAMPBELL C D.Functional biodiversity of microbial communities in therhizospheres of hybrid larch (Larix eurolepis) and Sitka spruce (Picea sitchensis)[J].TreePhysiology,1996,16:1031-1038.
    [80] BAUDION E,B E,G A.Impact of artificial root exudates on the bacterial communitystructure in bulk soil and maize rhizosphere[J].Soil Biology and Biochemistry,2003,35:1183-1192.
    [81]张福锁,申建波,冯固.根际生态学—过程与调控[M].北京:中国农业大学出版社,2009.
    [82]严小龙,廖红,年海.根系生物学—原理与应用[M].北京:科技出版社,2007.
    [83] JANSEN E S.Barley uptake of N deposited in the rhizosphere of associated pea[J].SoilBiology and Biochemistry,1996,28:159-168.
    [84] WALLEY F L,TOMM G O, M A,et al.Allocation and cycling of nitrogen in analfalfa-bromegrass sward[J].Agronomy Journal,1996,88:834-843.
    [85] VAN DE KRIFT T A J, KUIKMAN P J, MOLLER F, et al. Plant species andnutritional-mediated control over rhizodeposition and root decomposition[J].Plant and Soil,2001,228:191-200.
    [86] KREMER R J,MEANS N E,KIM S.Glyphosate affects soybean root exudation andrhizosphere microorganisms[J]. International Journal of Environmental AnalyticalChemistry.2005,85(15):1165-1174.
    [87] GRAYSTON S J,CAMPBELL C D.Functional biodiversity of microbial communities in therhizospheres of hybrid larch (Larix eurolepis) and Sitka spruce (Picea sitchensis)[J].TreePhysiology,1996,16:1031-1038.
    [88] JONES D L,DARRAH P R.Role of root derived organic acids in the mobilization ofnutrients from the rhizosphere[J].Plant Soil,1994,166:247-257.
    [89] WHALLEY W R,RISELEY B,LEEDS-HARRISON P B,et al.Structural differencesbetween bulk and rhizosphere soil[J].European Journal of Soil Science,2005,56:353-360.
    [90] KREMER R J,MEANS N E,KIM S.Glyphosate affects soybean root exudation andrhizosphere microorganisms[J].International Journal of Environmental Analytical Chemistry,2005,85(15):1165-1174.
    [91] HOFFLAND E,FINDENEGG G R,NELEMANS J A.Solubilization of rock phosphate byrape II Local root exudation of organic acids as a response to P-starvation[J].Plant Soil,1989,113:161-165.
    [92] HAYNES R J.Active ion uptake and maintenance of cationanion balance:A criticalexamination of their role in regulating rhizosphere pH[J].Plant Soil,1990,126:247-264.
    [93] JONES D L,DARRAH P R.Role of root derived organic acids in the mobilization ofnutrients from the rhizosphere[J].Plant Soil,1994,166:247-257.
    [94] MORA M L,ROSAS A,RIBERA A,et al.Differential tolerance to Mn toxicity in perennialryegrass genotypes: involvement of antioxidative enzymes and root exudation ofcarboxylates[J].Plant Soil,2009,320:79-89.
    [95] KREMER R J,MEANS N E,KIM S.Glyphosate affects soybean root exudation andrhizosphere microorganisms[J].International Journal of Environmental Analytical Chemistry,2005,85(15):1165-1174.
    [96] CURTIN D,CAMPBELL C A,JALIL A.Effects of acidity on mineralization:pH-dependenceof organic matter mineralization in weakly acidic soils[J].Soil Biology and Biochemistry,1998,30:57-64.
    [97] PIUTTI E S,LANDRY S D,HARTMANN A,et al.Isolation and characterisation ofNocardioides sp:SP12an atrazine-degrading bacterial strain possessing the gene trzN frombulk-and maize rhizosphere soil[J].FEMS Microbiology Letters,2003,221:111-117.
    [98] MARSCHNER P,YANG C H,LIEBEREI R,et al.Soil and plant specific effects on bacterialcommunity composition in the rhizosphere[J].Soil Biology and Biochemistry,2001,33:1437-1445.
    [99] BAATH E,ANDERSON T H.Comparison of soil fungal/bacterial ratios in a pH gradientusing physiological and PLFA-based techniques[J].Soil Biology and Biochemistry,2003,35:955-963.
    [100] GROZDANOV L,HENTSCHEL U.An environmental genomics perspective on thediversity and function ofmarine sponge-associated microbiota[J]. Current Opinion inMicrobiology,2007,10:215-220.
    [101]陶波,蒋凌雪,沈晓峰,等.抗草甘膦转基因大豆对根际和非根际土壤可培养菌的影响[J].东北农业大学学报,2011,42(1):10-16.
    [102]董蕾,任广明,陈宝等.转DREB基因大豆东农50对土壤氮素转化菌数量及生化强度的影响[J].作物杂志,2011,5:22-26.
    [103] MUYZER G,W E.C.D,U A.G.Profiling pf complex microbial populations by denaturinggradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for16S rRNN[J].Applied Environmental Microbiology,1993,59,695-700.
    [104] GRAMSS,GOIGT K D,KIRSEHE B.Oxidoreductase enzymes liberated by plant rootsand their effects on soil humic material[J].Chemosphere,1999,38:1481-1494.
    [105]弋良朋,马健,李彦.荒漠盐生植物根际土壤酶活性的变化[J].中国生态农业学报,2009,17(3):500-505.
    [106] MUYZER G. DGGE/TGGE a method for identifying genes from naturalecosystems[J].Current Opinion in Microbiology,1995,2,317-322.
    [107]乔琦,丁伟,李新海,等.转基因抗旱大豆对土壤酶活性的影响[J].东北农业大学学报,2010,41(12):11-14.
    [108]徐晓宇,叶庆富,吴伟祥,等.转Bt基因“克螟稻”秸秆还田对稻田厌氧微生物种群和酶活性的影响[J].植物营养与肥料学报,2000,10(1):63-67.
    [109] KENNEDY A C.Bacterial diversity in agro-ecosystems[J].Agriculture,Ecosystems andEnvironment,1999(1-3):65-76.
    [110] ZAK D R,HOLMES W E,WHITE D C,et al.Plant diversity,soil microbialcommunities,and ecosystem function: are there any links?[J].Ecology,2003,84:2042-2050.
    [111] GARBEVA P,VAN VEEN J A,VAN ELSAS J D.Microbial diversity in soil:Selectionof microbial populations by plant and soil type and implications for diseasesuppressiveness[J].Annual Review of Phytopathology,2004,42:243-270.
    [112]卢宝荣,张文驹,李博.转基因的逃逸及生态风险[J].应用生态学报,2003,14(6):989-994.
    [113]郑宇,李玥仁,胡奇勇,等.转基因作物和工程菌对土壤微生物群落影响的浅析[J].江西农业大学学报,2003,25:67-70.
    [114]杨永华.转基因作物对土壤微生物群落的影响及主要研究策略[J].农业生物技术学报,2011,19(1):1-8.
    [115]张福锁,曹一平.根际动态过程与植物营养[J].土壤学报,1992,29(3):239-250.
    [116] HINSINGER P.How do plant roots acquire mineral nutrients? Chemical processesinvolved in the rhizosphere[J].Advances in Agronomy,1998,64:225-265.
    [117] SHEN J,RENGEL Z,TANG C,et al.Role of phosphorus nutrition in development ofcluster roots and release of carboxylates in soil-grown Lupinus albus[J].Plant and Soil,2003,248(1-2):199-206.
    [118] SHEN J,LI H,NEUMANN G,et al.Nutrient uptake,cluster root formation andexudation of protons and citrate in Lupinus albus as affected by localized supply of phosphorusin a split-root system[J].Plant Science,2005,168(3):837-845.
    [119] MARSCHNER H.Mineral nutrition of higher plants[M].Second edition,London:Academic Press,1995.
    [120]刘芷宇.土壤—根系微区养分环境的研究概况[J].土壤学进展,1980,8(3):1-11.
    [121]刘芷宇,施卫明.应用电子探针研究根际和根内营养元素的状况[J].植物生理学报,1988,1(1):23-28.
    [122] ZHANG F S,R MHELD V,MARSCHNER H.Effect of zinc deficiency in wheat on therelease of zinc and iron mobilizing root exudates[J].Journal of Plant Nutrition and SoilScience,1989,152(2):205-210.
    [123] SHEN J,LI H,NEUMANN G,et al.Nutrient uptake,cluster root formation andexudation of protons and citrate in Lupinus albus as affected by localized supply of phosphorusin a split-root system[J].Plant Science,2005,168:837-845.
    [124] ZOBEL R W,ALLOUSH G A,BELESKY D P.Differential root morphology responseto no versus high phosphorus, in three hydroponically grown forage chicorycultivars[J].Environmental and Experimental Botany,2006,57:201-208.
    [125] UREN N C, REISENAUER H M. The role of root exudates in nutrientacquisition.Advances in Plant Nutrition[M].New York:Praeger Publishers,1988.3:79-114.
    [126]张福锁,申建波.根际微生态系统理论框架的初步构建[J].中国农业科技导报,1999,(4):15-20.
    [127] CURL E A,TRUELOVE B.The rhizosphere inWaisel Y,Eshel A.Plant roots:the hiddenhalf[J].Israel:Marcel Dekker,1996:641-669.
    [128] LYNCH J M,WHIPPS J M.Substrate flow in the rhizosphere[J].Plant and Soil,1990,129:1-10.
    [129]张福锁.根分泌物及其在植物营养中的作用[J].北京农业大学学报,1992,8(4):353-357.
    [130]申建波,张福锁.根分泌物的生态效应[J].中国农业科技导报,(4):1999.
    [131] ZENG H L,LI S C,RONG B C,et al.Root release and metabolism of organic acids intea plants in response to phosphorus supply[J].Journal of Plant Physiology,2011,168:644-652.
    [132]周建朝,王孝纯,邓艳红,等.磷胁迫对不同基因型甜菜根系形态及根分泌物的影响[J].中国农学通报,2011,27(2):157-161.
    [133]王光华,周克琴,金剑,等.黑土区高效溶磷真菌筛选及其溶解磷矿粉效果的研究[J].中国生态农业学报,2004,12(3):143-145.
    [134]姚拓,龙瑞军,王刚,等.兰州地区盐碱地小麦根际联合固氮菌分离及部分特性研究[J].土壤学报,2004,41(3):444-448.
    [135]肖同建,杨庆松,冉炜,等.接种菌根真菌的旱作水稻—绿豆间作系统养分利用研究[J].中国农业科学,2010,43(4):753-760.
    [136]黄昌勇.土壤学[M].北京:中国农业出版社,1999:199-203.
    [137]张宝贵,李贵桐.土壤生物在土壤磷有效化中的作用[J].土壤学报,1998,35(1):104-111.
    [138]陆欣.土壤肥料学[M].北京:中国农业大学出版社,2001.
    [139]吕珊兰,杨熙仁,康新茸.土壤对磷的吸附与解吸及需磷量探讨[J].植物营养与肥料学报,1995,1(3-4):29-35.
    [140]吕家珑,张一平,苏仕平.磷运移参数两种确定方法的比较[J].西北农业大学学报,1997,25(6):31-35.
    [141]张新民,李华兴,刘远金.磷酸盐在土壤中吸附与解吸研究进展[J].土壤与环境,2001,10(1):77-80.
    [142]夏汉平,高子勤.磷酸盐在土壤中的吸附[J].土壤通报,1992,23(6):238-287.
    [143]吕家珑,张一平,苏仕平.应用吸附等温斜率推求磷素运移参数初探[J].土壤通报,1998,29(5):214-217.
    [144]何振力,袁可能,朱祖祥.评价土壤磷素植物有效性的物理化学指标[J].土壤学报,1991,28(3):302-308.
    [145]高超,张桃林.太湖地区丘陵旱地土壤磷的吸持解吸特征[J].湖泊科学,2001,13(3):255-261.
    [146]王光火,S J K.石灰性土壤与磷酸盐的反应及吸持态磷的同位素交换性[J].土壤学报,1993,30(4):374-379.
    [147]孙羲.植物营养原理[M].北京:中国农业出版社,1995.
    [148] GUO F M,RUSSELL S Y.Portioning soil phosphorus into three discrete pools ofdiffering availability[J].Soil Science,1998,163(10):822-833.
    [149]尹金来,曹翠玉,史瑞和.徐淮地区石灰性土壤磷素固定的研究[J].土壤学报,1989,26(2):131-137.
    [150] ZHOU W J,ZHANG Y Z,WANG K R,et al.Plant phosphorus uptake in a soybean-citrusintercropping system in the red soil hilly region of South China[J].Pedosphere,2009,19(2):244-250.
    [151] MASASHA U,PRAPIT S,WISIT C.Behavior of phosphorus in paddy soils of Thailand.Ⅱ.Fate of phosphorus during rice cultivation insome representative soils[J].Soil Science plantnutrition,1988,34(2):183-194.
    [152] OBERSON A,FARDEAU J C J,BESSON J M,et al.Soil phosphorus dynamics incropping systems managed according to conventional and biological agriculturalmethods[J].Biology and Fertility of Soils,1993,16(2)111-117.
    [153]赵小蓉,林启美.微生物解磷的研究进展[J].土壤肥料,2001,(3):7-11.
    [154] DEVI G R,GOPALAKRISHNAN P K.Effect of sodium chloride and calcium chloridesalinity on the seeding growth of cowpea[J].Indian Journal of Plant Physiology,1997,2(17):9-80.
    [155]张永波,王秀兰.表层盐化土壤区咸水灌溉试验研究[J].土壤学报,1997,34(1):53-59.
    [156]林启美,赵海英,赵小蓉.4株溶磷细菌和真菌溶解磷矿粉的特性[J].微生物学通讯,2002,29(6):24-28.
    [157]李建东,郑慧莹.松嫩平原盐碱化草地治理及其生物生态机理[M].中国科学技术出版社,1997:139-143.
    [158]陈廷伟.微生物对不溶性无机磷化合物的分解能力及其接种效果[J].微生物,1995,2(5):210-215.
    [159] KUCEY R D,JANZEN H H,LEGETT M E.Microbially mediated increases inplant-available phosphorus[J].Advances in Agronomy,1989,42:199-228.
    [160]尹瑞龄.我国旱地土壤的溶磷微生物[J].土壤,1988,(5):243-246.
    [161]林启美,赵小蓉,孙焱鑫,等.四种不同生态环境中解磷细菌的数量及种群分布[J].土壤与环境,2000,9(1):34-37.
    [162]冯月红,姚拓.土壤解磷菌研究进展[J].草原与草坪,2003,(1):3-7.
    [163] KOSTANDI S F,SOLIMAN M F.The role of calcium in mediatingsmut disease severityand salt tolerance in corn undet chloride and sulphate salinity[J].Journal of phytopathology,1998,146(4):191-195.
    [164]王富民,刘桂芝,张彦,等.高效溶磷菌的分离、筛选及在土壤中溶磷有效性的研究[J].生物技术,1992,2(6):34-37.
    [165] GYANESHWAR P, GUMAR G, PAREKH L J. Effect of buffering on thephosphate-solubilizing ability of microorganisms[J]. Word Journal of Microbiology andBiotechnology,1998,14(5):669-673.
    [166]范丙全,金继运,葛诚.溶磷草酸青霉菌筛选及其溶磷效果的初步研究[J].中国农业科学,2002,35(5):525-530.
    [167]严君,韩晓增,王树起,等.不同形态氮素对种植大豆土壤微生物数量及酶活性的影响[J].植物营养与肥料学报,2010,16(2):341-347.
    [168]王树起,韩晓增,严君,等.低分子量有机酸对大豆磷积累和土壤无机磷形态转化的影响[J].生态学杂志,2009,28(8):1550-1554.
    [169]毛达如,申建波.植物营养研究方法(第二版)[M].北京:中国农业大学出版社,2005.
    [170] MEIER S,ALVEAR M,BORIE F,et al.Influence of copper on root exudates patternsin some metallophytes and agricultural plants[J].Ecotoxicology and Environmental Safety,2012,75:8-15.
    [171] JONES D,DARRAH P.Role of root derived organic acids in the mobilization ofnutrients from the rhizosphere.Plant Soil,1994,166:247-257.
    [172]刘军,温学森,郎爱东.植物根系分泌物成分及作用的研究进展[J].食品与药品,2007,9(3):63-65.
    [173]张振海,陈琰,韩胜芳,等.低磷胁迫对大豆根系生长特性及分泌H+和有机酸的影响[J].中国油料作物学报,2011,33(2):135-140.
    [174] TATAR E,MIHUCZ V G,KMETHY B,et al.Determination of organic acids and theirrole in nickel transport within cucumber plants[J].Microchemical,2000,67(1):73-81.
    [175] SHUI G,LEONQ L P.Separation and determination of organic acids and phenoliccompounds in fruit juices and drinks by high-performance liquid chromatography[J].Journal ofChromatography A,2002,977(1):89-96.
    [176]朱静平,程凯.3种水培植物根系分泌的有机酸对氮循环菌的影响[J].环境工程学报,2011,5(9):2139-2143.
    [177]张俊英,王敬国,许永利.大豆根系分泌物中氨基酸对根腐病菌生长的影响[J].植物营养与肥料学报,2008,14(2):308-315.
    [178]王艳红,龙新宪,吴启堂.两种生态型东南景天根系分泌物的差异性[J].生态环境,2008,17(2):751-757.
    [179]中国科学院上海植物生理研究所.现代植物生理学实验指南[M].北京:科学出版社,1999.
    [180] LISEC J,SCHAUER N,KOPKAL J,et al.Gas chromatography mass spectrometry-basedmetabolite profiling in plants[J].Nature Protocols,2006,1:387-396.
    [181]鲍士旦.土壤农化分析(第三版)[M].北京:中国农业出版社,2000,29-91.
    [182] CARTMILL A D,VALDEZ-AGUILAR L A,BRYANA D L.Arbuscular mycorrhizalfungi enhance tolerance of vinca to high alkalinity in irrigation water[J]. ScientiaHorticulturae,2008,115(3):275-284.
    [183] WU J,JOENGENSEN R G,PAMMERENING B,et al.Measurement of soil microbialbimass by fumigation-extraction: an automated procedure[J].Soil Biology and Biochemistry,1990,22:1167-1169.
    [184] BROOKES P C,POWLSON D S,JENKINSON D S.Measurement of microbial biomassphosphorus in soil[J].Soil Biology and Biochemistry,1982,14:319-329.
    [185]孙国荣,彭永臻,岳中辉.星星草的生长对盐碱土磷素营养的影响[J].草地学报,2004,12(4):337-340.
    [186]丁宁平,周广业.酶活性在评价旱地土壤培肥效果中的作用[J].土壤通报,1990,21(6):269-271.
    [187]庞欣.黄瓜和小麦对磷胁迫的响应和调节[D].北京农业大学,1999.
    [188] FORDE B,LORENZO H.The nutritional control of root development[J].Plant soil,2001,232:51-68.
    [189] ROBINSON D,ANGELA H,BRYAN S,et al.Plant root proliferation in nitrogenrichpatches confers competitive advantage[J].Biological sciences,1999,266(1418):431-435.
    [190] WILLIAMSON LC,RIBRIOUS SP,FITTER AH,et al.Phosphate availability regulatesroot system architecture in Arabidopsis[J].Plant Physiol,2001,126:875-882.
    [191] MORITA S,OKUDA H.Effects of soil water conditons on root development of seedingswith special reference to the branching of primary seminal roots[J].Japanese Journal of Cropscience,1996:185-198.
    [192] JIN X C,WANG S R,PANG Y,et al.Phosphorus fractions and the effect of pH on thephosphorus release of the sediments from different trophic areas in Taihu Lake,china[J].Environmental Pollution,2006,139(2):288-295.
    [193]年海,郭志华,余让才,等.不同来源大豆品种耐低磷能力的评价[J].大豆科学,1998,17(2):108-114.
    [194] SHEN J,RENGEL Z,TANG C,et al.Role of phosphorus nutrition in development ofcluster roots and release of carboxylates in soil-grown Lupinus albus[J].Plant and Soil,2003,248:199-206.
    [195] SHEN J,TANG C,RENGEL Z,et al.Root-induced acidification and excess cationuptake by N2-fixing Lupinus albus grown in phosphorus-deficient soil[J].Plant and Soil,2004,260:69-77.
    [196] SHEN J,L H,N G,et al.Nutrient uptake, cluster root formation and exudation of protonsand citrate in Lupinus albus as affected by localized supply of phosphorus in a split-rootsystem[J].Plant Science,2005,168:837-845.
    [197] NEUMANN G,MASSONNEAU A,MARTINOIA E,et al.Physiological adaptationsto phosphorus deficiency during proteoid root development in white lupin[J].Planta,1999,208:373-382.
    [198] BAIS H P,WEIR T L,PERRY L G,et al.The role of root exudates in rhizosphereinteractions with plants and other organisms[J].Annual Review of Plant Biology,2006,57:233-266.
    [199]朱丽霞,章家恩,刘文高.根系分泌物与根际微生物相互作用研究综述[J].生态环境,2003,12(1):102-105.
    [200] HOFFLAND E,WEI C Z,WISSUWA M.Citrate exudation by lowland rice (Oryza sativaL.) at zinc and phosphorus deficiency[J].Plant and Soil,2006,283:155-162.
    [201] AULAKH M S,WASSMANN R,BUENO C,et al.Characterrization of root exudatesat different growth stages of ten rice (Oryza sativa L)cultivars[J].Plant Biology,3:139-148.
    [202] KIRK G J D,SANTOS E E,FINDENEGG G R.Phosphate solubilization by organicanion excretion from rice grown in aerobic soil[J].Plant and Soil,1999,211:11-18.
    [203] MERTENS E.Pyrophosphate-dependent phosphofructokinase an anaerobic glycolyticenzyme[J].Federation of European Biochemical Societies Letters,1991,285:1-5.
    [204] THEODOROU M E,COMEL F A,DUFF S M,et al.Phosphate starvation–induciblesynthesis of the alpha–subunit of the pyrophosphate dependent phosphofructokinase in blackmustard suspension cells[J].Journal of Biological Chemistry,1992,267:1901-1905.
    [205]刘素萍,王汝贤.根系分泌物中糖和氨基酸对枯萎病菌的影响[J].西北农业大学学报,1998,26:29-34.
    [206]韩丽梅.大豆根茬腐解产物的鉴定及化感作用的初步研究[J].生态学报,2000,20(5):771-778.
    [207]阎飞,杨振明,韩丽梅.植物化感作用(Allelopathy)及其作用物的研究[J].生态学报,2000,20:692-696.
    [208]潘凯,吴凤芝.枯萎病不同抗性黄瓜(Cucumis sativus L.)根系分泌物氨基酸组分与抗病的相关性[J].生态学报,2007,27(5):1945-1950.
    [209]林琳.低温对小麦幼苗根系分泌物及根际土壤理化性状影响的研究[D].河南师范大学,2012,57-58.
    [210] BUCIENE A,SVEDAS A,ANTANAITIS S.Balances of the major nutrients N,P andK at the farm and field level and some possibilities to improve comparisons between actual andestimated crop yields[J].European. Journal of Agronomy,2003,20:53-62.
    [211]胡霭堂.植物营养学[M].北京:北京农业大学出版社,1995:48-53.
    [212]鲁如坤.土壤磷素水平和水体环境保护[J].磷肥与复肥,2003,18(1):4-8.
    [213] WANDRUSZKA R.Phosphorus retention in calcareous soils and the effect of organicmatter on its mobility[J].GeochemiealTransactions,2006,7:6-14.
    [214] HINSINGER P.Bioavailability of soil inorganic P in the rhizosphere as affected byroot-induced chemical changes: a review[J].Plant and Soil,2001,237:173-195.
    [215]王庆仁,李继云,李振声.磷高效基因型小麦对缺磷胁迫的根际适应性反应[J].西北植物学报,2000,20(1):1-7.
    [216]梁宏玲,石磊,徐芳森,等.甘蓝型油菜不同磷效率基因型对土壤难溶性磷吸收利用的差异[J].中国油料作物学报,2007,29(3):297-301.
    [217] MA B,ZHOU Z Y,ZHANG C P,et al.The character of phosphorus concentrations inrhizosphere soil of super-xerophytic shrubs[J].Acta PrataculturaeSinica,2005,16(3):106-110.
    [218] ZHANG J H,ZOU C J,ZHOU Y M,et al.Characteristic of available P in the rhizospheresoil of in pure Juglans mandshurica and Larix gmelinii and their mixed plantation[J].ChineseJournal of Applied Ecology,2002,13(7):790-794.
    [219] KIRK G J D.Modelling root-induced solubilization of nutrients[J].Plant and Soil,2002,245(1):49-57.
    [220] OWEN A G,GODBOID D L,JONES D L.Organic acidmediated P mobilization in therhizosphere and uptake bymaize roots[J].Soil Biology and Biochemistry,2002,34(5):703-710.
    [221]高文星,张莉丽,任伟,等.河西走廊盐渍土不同种植年限苜蓿根际磷含量变异特征[J].草业科学,2008,25(7):54-58.
    [222]张彦东,白尚斌,王政权,等.落叶松根际土壤磷的有效性研究[J].应用生态学报,2001,12(1):31-34.
    [223]薛梓瑜,周志宇,詹媛媛,等.干旱荒漠区旱生灌木根际土壤磷变化特征[J].生态学报,2010,30(2):0341-0349.
    [224]魏勇,张焕朝,张金龙.杨树根际土壤磷的分布特征及其有效性[J].南京林业大学学报(自然科学版),2003,27(5):20-24.
    [225] HINSINGER P. Bioavailabilityofsoil inorganicPin therhizosphereas affected byroot-induced chemical changes: areview[J].Plant andSoil,2001,237:173-195.
    [226] HINSINGER P,CLAUDE P C,CAI T C,et al.Origins of root-mediated pH changes inthe rhizosphere and their responses to environmental constraints:Areview[J].Plant Soil,2003,248:43-59.
    [227] GEORGE,TUMER B L,Gregory P J,et al.Depletion of organic phosphorus fromoxisols in relation to phosphatase activities in the rhizosphere [J].European Journal of SoilScience,2006,57:47-57.
    [228]张彦东.落叶松根际上壤磷的有效性研究[J].应用生态学报.2001,(2):31-35.
    [229] HOU J, YE F G, ZHANG L H. Asummaryof studieson rhizosphere soiloftreesprotection[J].Forest Science and Technology,2006,(1):30-33.
    [230]江玉平.不同烟草品种根际土壤的pH和磷素状况研究[J].土壤通报,1998,29(4):171-172.
    [231] HINSINGER P, GILKES R J. Root-induced dissolution of phosphate rock in therhizosphere of lupins grown in alkaline soils[J].Aust.J.Soil Res,1995,33:477-489.
    [232]马斌,周志宇,张彩萍,等.超旱生灌木根际土壤磷的含量特征[J].草业学报,2004,14:106-110.
    [233]来璐,郝明德,彭令发.土壤磷素研究进展[J].水土保持研究,2003,10(1):65-67.
    [234]李和生,王林权,赵春生.小麦根际磷酸酶活性与有机磷之关系[J].西北农业大学学报,1997,25(2):47-50.
    [235]宋勇春,李晓林,冯固.接种VA菌根真菌对红三叶草利用土壤有机磷的影响[J].草业科学,2000,9(2):38-44.
    [236]陆海明.土壤无机磷组成与生物有效性研究[D].扬州大学博士学位论文,2003.
    [237]来璐,赵小蓉,李贵桐,等.土壤微生物量磷及碳磷比对加入无机磷的响应[J].中国农业科学,2006,39(10):2036-2041.
    [238] WARDLE D A.A comparative assessment of factors which influence microbial carbonand nitrogen levels in soil[J].Biological Reviews,1992,67:321-358.
    [239] IISTEDT U,SINGH S.Nitrogen and phosphorus limitation of microbial respiration in atropical phosphorus-fixing acriso(lultisol)compared with organic compost[J].Soil Biology andBiochemistry,2005,37:1407-1410.
    [240] LUKITO H P,K K,A T.Phosphorus requirement of microbial biomass in a regosol andan andsol[J].Soil Biology and Biochemistry,1998,30:865-872.
    [241] CHAUHAN B S,STEWART J W B,PAUL E.Effect of labile inorganic phosphate statusand organic carbon additions on the microbial uptake of phosphorus in soils[J].CanadianJournal of Soil Science1981,61:373-385.
    [242] KORNBERG A. Inorganic polyphosphate: toward making a forgotten polymerunforgettable[J].Journal of Bacteriology,1995,177:491-496.
    [243] PERERIA H,LEMOS P C,REIS M A M,et al.Model for carbon metabolism inbiological phosphorus removal processes based on in vivo13C-NMR labelingexperiments[J].Water Research,1996,30:2128-2138.
    [244] HU Z R,WENTZEL M C,EKAMA G A.Anoxic growth of phosphate-accumulatingorganisms(PAOs)in biological nutrient removal activated sludge systems[J].Water Research,2002,36:4927-4937.
    [245] KULAVE I S, VAGABOV V M. Polyphosphate metabolism inmicroorganisms[J].Advances in Microbial Physiology,1983,24:81-171.
    [246] BROOKES P C,POELSON D S,JENKINSON D S.Phosphorus in the soil microbialbiomass[J].Soil Biology and Biochemistry,1984,16:169-175.
    [247] PICK U,BENTAL M,CHITLARU E,et al.Polyphosphate-hydrolysis-a protectivemechanism against alkaline stress[J].FEBS Letters,1990,274:15-18.
    [248] ALLISONV J,CONDRONL M,PELTZERD A,et al.Changes in enzyme activities andsoil microbial community composition along carbon and nutrient gradient sat the Franz Josefchrono sequence NewZealand[J].Soil Biological andBiochemistry,2007,39(7):1770-1781.
    [249] FISHERR F,BINKLEY D.Ecology andmanagement of forest soil[M].NewYork:JohnWiley&Sons,2000:282-284.
    [250] OLANDERL P,VITOUSEK P M.Regulation of soil phosphatase and chitinaseactivitybyNandPavailability[J].Biogeochemistry,2000,49(2):175-191.
    [251] ALLISONS D,VITOUSEK P M.Responsesofextracellular enzymes to simple andcomplex nutrient inputs[J].Soil Biology and Biochemistry,2005,37(5):937-944.
    [252]孙彩霞,张玉兰,缪璐,等.转BT基因作物种植对土壤养分含量的影响[J].应用生态学报,2006,17(5):943-946.
    [253] OLANDERLP V. Regulation of soil phosphatase and chitinaseactivity byNandPavailability[J].Biogeochemistry,2000,49(2):175-191.
    [254] ISIK I, GUENTHER S. Fate and effects of insect-resistant Bt crops in soilecosystems[J].Soil Biology and Biochemistry,2008,40:559-586.
    [255] LIU B,ZENG Q,YAN F,et al. Effects of transgenic plants on soil microorganisms[J].Plant and Soil,2005,271:1-13.
    [256] COWGILL S E,BARDGETT R D,KIEZEBRINK D T,et al.The effect of transgenicnematode resistance on non-target organisms in the potato rhizosphere[J].Journal of AppliedEcology,2002,39:915-923.
    [257]邵晶鑫.SRTS对盐碱土氮素转化及AOB多样性的影响[D].哈尔滨:东北农业大学硕士学位论文.2012,41.
    [258] DONEGAN K K,PALM C J,FIELAND V J,et al.Changes in levels, species,and DNAfingerprints of soil microorganisms associated with cotton expressing the Bacillus thuringiensisvar.kurstaki endotoxin[J].Applied Soil Ecology,1995,2:111-124.
    [259] DONEGAN,K K,SEIDLER R J,FIELAND V J,et al.Decomposition of geneticallyengineered tobacco under field conditions:persistence of the proteinase inhibitor I product andeffects on soil microbial respiration and protozoa, nematode and microarthropodpopulations[J].Journal of Applied ecology,1997,34:767-777.
    [260] DUNFIELD K E,GERMIDA J J.Diversity of bacterial communities in the rhizosphereand root interior of field-grown genetically modified Brassica napus[J].FEMS MicrobialEcology,2001,38:1-9.
    [261] DOUVILLE M,GAGNE F,BLAISE C,et al.Occurrence and persistence of Bacillusthuringiensis (Bt) and transgenic Bt corn cry1Ab gene from an aquaticenvironment[J].Ecotoxicology and Environmental Safety,2007,66:195-203.
    [262] FRENCH M,ROBERT J,KREMER P,et al.Bacterial Diversity in Rhizospheres ofNontransgenic and Transgenic Corn[J].Applied and Environmental Microbiology,2005,71(71):4132-4136.
    [263] RASCHE F,VELVIS H,ZACHOW C,et al.Imapct of transgenic potatoes expressinganti-bacterial agents on bacterial endophytes is comparable with the effects of plantgenotype,soil type and pathogen infection[J].Journal of Applied Ecology,2006,(43):555-566.
    [264] LLOBET B E,ROSSELLO-MORA R,AMANN R I.Microbial community compositionof Wadden Sea sediments as revealed by fluorescence in situ hybridization[J].Appl EnvironMicrobiol,1998,64:2692-2696.
    [265] ISIK I, GUENTHER S. Fate and effects of insect-resistant Bt crops in soilecosystems[J].Soil Biology and Biochemistry,2008,40:559-586.
    [266] ANDREW K L,MARK J B,COLIN C,et al.Life in earth: the impact of GM p lants onsoil ecology[J].TRENDS in Biotechnology,2006,24(1):9-14.
    [267] JORQUERA M A,HEMáNDEZ M T,RENGEL Z,et al.Hernández&Zed Rengel&Petra Marschner&María de la Luz MoraIsolation of culturable phosphobacteria with bothphytate-mineralization and phosphate-solubilization activity from the rhizosphere of plantsgrown in a volcanic soil[J].Biol Fertil Soils,2008,44:1025–1034.
    [268] LIU H,WU X Q,REN J H,et al.Isolation and Identification of Phosphobacteria inPoplar Rhizosphere from Different Regions of China[J].Pedosphere,2011,21(1):90–97.
    [269] EMILCE V,LUCCA M E,SINERIZ F.Plant growth promotion traits of phosphobacteriaisolated from Puna Argentina[J].Arch Microbiol,2011,193:489–496.
    [270]虞伟斌,杨兴明,沈其荣,等.K3解磷菌的解磷机理及其对缓冲容量的响应[J].植物营养与肥料学报,2010,16(2):354-361.
    [271]贺梦醒,高毅,胡正雪,等.解磷菌株B25的筛选、鉴定及其解磷能力[J].应用生态学报,2012,23(1):235-239.
    [272]戴沈艳,贺云举,申卫收,等.一株高效解磷细菌的紫外诱变选育及其在红壤稻田施用效果[J].生态环境学报,2010,19(7):1646-1652.
    [273] CAROLYN M, STEVE W, SANDRA Y, et al. Incidence and diversity ofphosphate-solubilising bacteria are linked to phosphorus status in grassland soils[J].SoilBiology&Biochemistry,2012,44:93-101.
    [274]刘晓冰,王光华,金剑,等.作物根际和产量生理研究.[M]北京:科学出版社,2010,111-112.
    [275] SUNDARA R W V B,SINHA M K.Phosphate dissolving mi-croorganisms in therhizosphere and soil[J],India J Agric Sci,1963,33(4):272-278.
    [276] ELLIOTT J M,MATHRE D E,SAND D C.Identification and characterization ofrhizosphere-competent bacteria of wheat[J].Appl Environ Microbiol,1987,53:2793-2799.
    [277]赵小蓉,林启美.微生物解磷的研究进展[J].土壤肥料,2001,(3):7-11.
    [278] PAUL N B,SUNDARA R W V B.Phosphate-dissolving bacteria in the rhizosphere ofsome cultivated legumes[J].Plant and Soil,1971,35:127-132.
    [279] SPERBER J I.Solution of mineral phosphates by soil bacteria[J].Nature,1957,180:994-995.
    [280] LOUW H A,WEBLEY D M.The bacteriology of the root region of the oat plant grownunder controlled pot culture con-ditions[J].J Appl Bact,1959,22(2):216-226.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700