用户名: 密码: 验证码:
伴矿景天—水稻轮作修复锌镉污染土壤之调控技术及机理初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以超积累植物伴矿景天、镉低积累水稻品种为主要供试植物,通过盆栽试验、田间试验研究了不同氮、磷、钾肥料组分与用量下伴矿景天的生长和锌镉吸收性,以及不同磷修复剂对水稻体内锌、镉积累特征的影响,并通过根际试验初步探讨了养分调控影响伴矿景天锌、镉吸收的机制,主要研究结果如下:
     增施氮肥是伴矿景天地上部干重增加的主要因素,高氮配施低磷(200mg kg-1 N,60 mg kg-1 P,不施K)处理伴矿景天地上部干重最高,达31.2g/盆(1.5 kg土/盆),是不施肥处理的3.15倍。增施钾肥是提高伴矿景天地上部重金属尤其是Cd浓度和吸收量的主要因子,高量钾处理比不施钾处理地上部Cd浓度增加28.1%;低量施磷也可提高伴矿景天的Zn吸取修复效率。综合考虑养分对伴矿景天生长及Zn、Cd吸取效率的影响,本试验条件下低量氮磷肥配施高量钾肥为最佳施肥处理(N1P1K2),种植伴矿景天一季对锌、镉的吸取量分别为11.2mg kg-1和0.12 mgkg-1。
     根际试验结果表明,氮磷钾肥配施能促进超积累植物伴矿景天对的养分吸收,且对伴矿景天生长有明显的促进作用。伴矿景天根际土壤中TOC浓度显著高于非根际土壤,与NH40Ac提取态Zn、Cd浓度相一致,伴矿景天根系对根际土壤中的Zn、Cd有明显的活化作用,肥料的施用更利于根系对Cd的活化,使其由难溶态不断向可交换态和可溶态转化,对Zn的作用不如Cd明显。常规施肥和由养分调控试验结果得出的最佳施肥方案(N1P1K2)均能显著促进伴矿景天地上部生物量的增加,但常规施肥处理时伴矿景天地上部Zn浓度低于N1P1K2处理,其重金属吸取修复效果也不如N1P1K2处理。
     盆栽试验结果显示,将锌镉超积累植物伴矿景天与镉低积累水稻品种中香1号轮作种植于两个重金属不同污染程度的土壤,并向土壤添加钙镁磷肥和磷矿粉时,在轻污染土壤上施用50 g kg-1磷矿粉时伴矿景天地上部的Zn、Cd吸收量分别达到11.5 mg/盆和0.79 mg/盆,效果好于施用4 g kg-1钙镁磷肥处理。在重金属污染土壤上种植伴矿景天使后茬水稻地上部Zn、Cd浓度上升,但钙镁磷肥的施用显著降低了水稻体内Zn、Cd积累量。种植伴矿景天后的土壤重金属提取态结果表明,添加钙镁磷肥稳定调控剂对土壤中水溶态及NH4OAc提取态Zn、Cd的稳定效果明显优于磷矿粉,且在高污染土壤上施用效果更佳。在进行盆栽试验的同时将不同用量的钙镁磷肥施用于种植低积累水稻品种的田间重污染土壤,发现施用钙镁磷肥不仅可增加水稻产量,且可一定程度上降低水稻地上部的Zn、Cd吸收量,对降低水稻稻米的食品安全隐患有良好效果。
Pot experiments and field plot trial were conducted to study the effect of different N, P and K levels on plant growth, Zn and Cd uptake, and the mechanisms of nutrients on rhizosphere effect of hyperaccumulator Sedum plumbizincicola. Meanwhile, different phosphate amendments (calcium magnesium phosphate and rock phosphate) were also adopted to explore the agronomic mesure that enhance the Cd and Zn remediation efficiency by Sedum plant and so as to producing low cadmium rice.
     The results of the orthogonally designed experiment showed that addition of nitrogen fertilizer was the main factor on increasing plant biomass. The treatment of N2P1K0 (200 mg kg-1 N,60 mg kg-1 P, no K) reached the highest dry weight of 31.2 g pot-1, which was 3.15 times of CK (N0P0K0). K application was the main factor of enhancing concentration and uptake of heavy metals especially Cd by Sedum plumbizincicola, shoot Cd concentration in treatments of 160 mg kg-1 K were 28.1% higher than the treatments of no K addition, and the phytoextration efficiency was improved when 60 mg kg-1 P was applied. Combined considering the biomass and total uptake of Zn and Cd by Sedum plumbizincicola, the best treatment was low level N and P, combined with high level K (N1P1K2), the Zn and Cd phytoextraction rate for one season of Sedum plumbizincicola were 11.2 mg kg-1 and 0.12 mg kg-1, respectively.
     In the rhizosphere experiment, the results showed that the urea mainly as NO3-N form in the soil, and the application of P and K enhanced the transformation to NH4-N. The N, P application combined with K increased the absorption for each other. The TOC concentration in the rhizosphere was higher than bulk soil, and results were the same as NH4OAc-extracted Zn and Cd. The root of Sedum plumbizincicola significantly improved the activity of Zn and Cd of the rhizosphere soil, and the addition of fertilizer enhanced the Cd activation, the enhacnce efficiency were higher than that of Zn. The conventional fertilization and the best fertilization scheme (N1P1K2) resulted from the orthogonal experiment significantly both enhanced the biomass of the plant, but the conventional fertilization treatment had lower plant Zn concentration.The treatment 'N1P1K2' had better extraction efficiency for Zn and Cd.
     The zinc and cadmium hyperaccumulator Sedum plumbizincicola and a low cadmium accumulating rice cultivar "Zhongxiang No.1" were adapted, two heavy metal contaminated soils were collected, and calcium magnesium phosphate (Ca-P) and rock phosphate (P-R) were applied in the Sedum plant and rice rotating pot experiment. Meanwhile, a field plot trial was also designed to study the yields of paddy rice and its Zn and Cd concentrations in shoots and grains with different dosages of calcium magnesium phosphate. The results of pot experiment showed that the Zn and Cd uptake amount by Sedum plumbizincicola were 11.5 mg pot-1 and 0.79 mg pot-1 after the addition of P-R, which was better than Ca-P addition. The Zn and Cd concentrations increased in the brown rice after growing the Sedum plant, but the addition of Ca-P significantly decreased the Zn and Cd uptake in rice and stabilized the heavy metals in the soils, which was better than the effect of P-R.
     The results from field plot trial showed that Ca-P could increase rice yields as a kind of P fertilizer and also could reduce the Zn and Cd contents in brown rice by enhancing the stabilization of Zn and Cd in the heavy contaminated soils.
引文
1. 鲍士旦.2000.农业化学分析.北京:中国农业出版社,第3版
    2. 陈翠芳,钟继洪,李淑仪.2007.施硅对白菜地上部吸收重金属镉的抑制效应[J].中国农学通报,24(1):144-147
    3. 陈同斌,韦朝阳,黄泽春等.2002.砷超积累植物蜈蚣草及其对砷的富集特征.科学通报,47(13):1003-1006
    4. 陈英旭,林琦,陆芳等.2000.有机酸对铅、镉植株危害的解毒作用研究.环境科学学报,20(4):467-472
    5. 陈玉成,熊双莲,熊治廷.2004.表面活性剂强化重金属污染植物修复的可行性.生态环境,13(2):243-246
    6. 成杰民,俞协治,黄铭洪.2005.蚯蚓-菌根在植物修复镉污染土壤中的作用.生态学报,25(6):1256-1263
    7. 成杰民,俞协治.2006.蚯蚓在植物修复铜、镉污染土壤中的作用.应用与环境生物学报,12(3):352-355
    8. 仇荣亮,方晓航,汤叶涛等.2004.利用长柔毛委陵菜治理土壤和水体锌、铅、镉污染的方法.中华人民共和国.申请号:200410052108.1
    9. 崔立强,吴龙华,李娜等.2009.水分特征对伴矿景天生长和重金属吸收性的影响.土壤,41(4):572-576
    10.崔玉静,黄益宗,朱永管.2006.镉对人类健康的危害及其影响因子的研究进展.卫生研究,35(5):656-659
    11.崔玉静,赵中秋,刘文菊等.2003.镉在土壤-植物-人体系统中迁移积累及其影响因子.生态学报,23(10):2133-2143
    12.催力拓,耿世刚,李志伟.2006.我国农田土壤镉污染现状及防治对策.现代农业科技,184-185
    13.冯凤玲,成杰民,王德霞.2006.蚯蚓在植物修复重金属污染土壤中的应用前景.土壤通报,37(4):809-814
    14.高翔云,汤志云,李建和等.2006.国内土壤环境污染现状与防治措施.江苏环境科技,19(2):52-55
    15.顾继光,周启星,王新.2003.土壤重金属污染的治理途径及其研究进展.应用基础与工程科学学报,11(2):143-151
    16.黑亮,吴启堂,龙新宪等.2007.东南景天和玉米套种对Zn污染污泥的处理效应[J].环境科学,28(4):258-858
    17.胡霭堂.1995.植物营养学(下册)[M].北京:北京农业大学出版社,42
    18.胡学玉,周米平,汤利等.1995.化肥对大白菜维生素C及硝态氮含量的影响.湖北农学院学报,15(3):180-183
    19.胡钟胜,章钢娅,王广志等.2006.改良剂对烟草吸收土壤中镉铅影响的研究.土壤学报,43(2):233-239
    20.黄益宗,朱永管,胡莹等.2006.玉米和羽扇豆、鹰嘴豆间作对作物吸收积累Pb、Cd的影响.生态学报,26(5):1478-1485
    21.蒋先军,骆永明,赵其国等.2003.镉污染土壤植物修复的EDTA调控机理.土壤学报,40(2):205-209
    22.蓝崇钰,束文圣,刘威.2003.宝山堇菜-一种新的镉超积累植物.科学通报,8(19):2046-2049
    23.李继光,李廷强,朱恩等.2007.氮对超积累植物东南景天生长和镉积累的影响.水土保持学报,21(1):54-58
    24.李佳华,林仁漳,王世和等.2008.几种固定剂对镉污染土壤的原位化学固定修复效果.生态环境,17(6):2271-2275
    25.李佳华,林仁漳,王世和等.2009.改良剂对土壤-芦蒿系统中镉行为的影响.环境化学,28(3):350-354
    26.李金燕.2008.磷影响尿素氮转化的生物化学过程研究[D].吉林农业大学硕士学位论文
    27.李坤陶.2007.重金属超积累植物的研究与利用.生物学通报,42(9):5-7
    28.李娜,吴龙华,骆永明等.2009.收获方式对污染土壤上伴矿景天锌镉吸收性的影响.土壤学报,46(4):725-728
    29.李凝玉,李志安,丁永祯等.2008.不同作物与玉米间作对玉米吸收积累镉的影响,应用生态学报,19(6):1369-1373
    30.李瑞美,王果,方玲.2002.钙镁磷肥与有机物料配施对作物镉铅吸收的控制效果.土壤与环境,11(4):348-351
    31.李小坤,鲁剑巍,李文西等.2007.苏丹草-黑麦草轮作制中钾肥施用对其产量及养分吸收的影响[J].草业科学,24(7):72-76
    32.李玉红,宗良纲,黄耀.2002.螯合剂在污染土壤植物修复中的应用.土壤与环境,11(3):303-306
    33.廖小勇,陈同斌,阎秀兰等.2007.提高植物修复效率的技术途径与强化措施.环境科学学报,27(6):881-893
    34.廖晓勇,陈同斌,谢华等.2004.磷肥对砷污染土壤的植物修复效率的影响:田间实例研究[J].环境科学学报,24(3):654-854
    35.廖自基.1993.微量元素的环境化学及生物效应[M].北京:中国环境科学出版社,301-303
    36.刘玲.2009.连续植物修复对污染土壤锌镉有效性影响及有机调控初探[D].中国科学院南京土壤研究所硕士学位论文,35-38
    37.刘玲,吴龙华,李娜等.2009.种植密度对镉锌污染土壤伴矿景天植物修复效率的影响.环境科学,30(11):3422-3426
    38.刘晓冰,邢宝山,周克琴等.2005.污染土壤植物修复技术及其机理研究.中国生态农业学报,13(1):134-138
    39.刘芷宇,李良谟,施卫明.1997.根际研究法.江苏科学技术出版社,第1版,325
    40.龙新宪,杨肖娥,倪吾钟.2002.重金属污染土壤修复技术研究的现状与展望.应用生态学报,13(6):757-762
    41.卢豪良,严重玲.2007.秋茄Kandelia candel L根系分泌低分子量有机酸及其对重金属生物有效性的影响.生态学报,27(10):4173-418
    42.骆永明.1999.金属污染土壤的植物修复.土壤,31(5):261-265,280
    43.骆永明.2000.强化植物修复的螯合诱导技术及其环境风险.土壤,32(2):57-61,74
    44.马磊,梅凤娴,郑少玲等.2006.不同氮磷钾水平对生菜产量及体内养分的影响.仲恺农业技术学院学报.19(4):13-16
    45.聂发辉,吴彩斌,吴双桃.2006.商陆对镉的富集特征.浙江林学院学报,23(4):400-405
    46.聂俊华,刘秀梅,王庆仁.2004.Pb超富集植物对营养元素N、P、K的响应.生态环境,13(3):306-309
    47.聂俊华,刘秀梅,王庆仁.2004.营养元素N、P、K对Pb超富集植物吸收能力的影响.农业工程学报,20(5):262-265
    48.钱海燕,王兴祥,黄国勤等.2007.钙镁磷肥和石灰对受Cu、Zn污染的菜园土壤的改良作用.农业环境科学学报,26(1):235-239
    49.任慧敏,王金达,曹会聪等.2006.莴笋根际土壤中铅的有效性.环境科学,27(8):1659-1664
    50.宋正国.2005.共存阳离子对土壤镉有效性影响及其机制[D].北京:中国农业科学院农业资源与农业区划研究所,40-46
    51.苏德纯,黄焕忠,张福锁.2002.印度芥菜对土壤中难溶态Cd的吸收及活化.中国环境科学,22(4):342-345
    52.孙琴,倪吾钟,杨肖娥等.2003.磷对超积累植物-东南景天生长和积累锌的影响[J].环境科学学报,23(6):818-824
    53.孙约兵,周启星,郭观林.2007.植物修复重金属污染土壤的强化措施.环境工程学报,1(3):103-110
    54.唐叶涛,仇荣亮,曾晓雯等.2005.一种新的多金属超积累植物-圆锥南芥(Arabis paniculata L).中山大学学报(自然科学版),44(4):135-136
    55.万云兵,仇荣亮,陈志良等.2002.重金属污染土壤中提高植物提取修复功效的探讨.环境污染治理技术与设备,3(4):56-59
    56.王发园,林先贵.2006.丛枝菌根—植物修复重金属污染土壤研究中的热点.生态环境,15(5):1086-1090
    57.王激清,茹淑华,苏德纯.2004.氮肥形态和螯合剂对印度芥菜和高积累镉油菜吸收镉的影响.农业环境科学学报,23(4):625-629
    58.王激清,茹淑华,苏德纯.2004.印度芥菜和油菜互作对各自吸收土壤中难溶态镉的影响[J].环境科学学报,24(5):890-894
    59.王林,周启星,孙约兵.2008.氮肥和钾肥强化龙葵修复镉污染土壤.中国环境科学,28(10):915-920
    60.王学礼,马祥庆.2008.重金属污染植物修复技术的研究进展.亚热带农业研究,4(1):44-49
    61.王艳红,龙新宪,吴启堂.2008.两种生态型东南景天根系分泌物的差异性.生态环境,17(2):751-757
    62.卫泽斌,吴启堂,龙新宪.2005.利用套种和混合添加剂修复重金属污染土壤[J].农业环境科学学报,5:1262
    63.魏树和,周启星,王新等.2004.一种新发现的镉超积累植物龙葵(Solanum nigrum L).科学通报,49(24):2568-2573
    64.魏树和,周启星.2004.重金属污染土壤植物及强化措施探讨.生态学杂志,23(1):65-72
    65.吴龙华,周守标,毕德等.2006.中国景天科植物一新种—伴矿景天.土壤,38(5):632-633
    66.吴龙华,李娜,毕德等.2007.锌镉复合污染土壤的植物修复方法.发明专利受理号:20071002038015
    67.肖鹏飞,李法云,付宝荣等.2004.土壤重金属污染及植物修复研究.辽宁大学学报,31(3):279-283
    68.徐功军.2006.重金属污染土壤植物修复的强化措施研究进展.广东微量元素科学,13(3):1-8
    69.薛生国,陈英旭.2003.中国首次发现的Mn超积累植物—商陆[J].生态学报,5(23):935-937
    70.杨刚,伍钧,唐亚等.2007.不同形态氮肥施用对鱼腥草吸收转运Pb的影响.农业环境科学学报,26(4):1380-1385
    71.杨肖娥,龙新宪,倪吾钟等.2002.东南景天(Sedum alfredii H)-一种新的锌超积累植物.科学通报,47(13):1003-1006
    72.衣纯真,傅桂平,张福锁.1996.不同钾肥对水稻镉吸收和运移的影响[J].中国农业大学学报,1(3):65-70
    73.曾清如,周细红,毛小云.1997.不同氮肥对铅锌矿尾矿污染土壤中重金属的溶出及水稻苗吸收的影响.土壤肥料,(3):7-11
    74.张从,夏立江.2000.污染土壤生物修复技术.北京:中国环境科学出版社
    75.张磊,宋凤斌,崔良.2006.化肥施用对土壤中重金属生物有效性的影响研究.中国生态农业学报,14(4):122-125
    76.张恩和,陈小莉,方子森等.2007.野生羌活种子休眠机理及破除休眠技术研究.草地学报,15(6):509-514
    77.张敬锁,李花粉,张福锁等.1998.不同形态氮素对水稻体内镐形态的影响.中国农业大学学报,3(5):90-94
    78.张学洪,罗亚平,黄海涛等.2006.一种新发现的湿生铬超积累植物-李氏禾.生态学报,26(3):950-953
    79.招启柏,朱卫星,胡钟胜等. 改良剂对土壤重金属(Cd、Pb)的固定以及对烤烟生长影响.中国烟草学报,2009,15(4):26-32
    80.赵其国,周炳中,杨浩.2002.江苏省环境质量与农业安全问题研究.土壤,1:1-8
    81.宗良纲,张丽娜,孙静克等.2006.3种改良剂对不同土壤-水稻系统中Cd行为的影响.农业环境科学学报,25(4):834-840
    82. Acar Y. B., Alshawabkeh A. N.1993. Principles of electrokinetic remediation. Environ Sci Technol, 27(13):2638-2647
    83. Anderson T. A., Guthie E. A., Walton B. T.1993. Bioremediation in the rhizophere. Envion. Sci. Technol,27:2630-2636
    84. Baker A J M, Brooks R R, Pease A J, et al.1983. Studies on copper and cobalt tolerance in three closely related taxa within the genus Silene L. (Caryophyllaceae) from Zaire. Plant and Soil,73(3): 377-385
    85. Baker A J M, McGrath S P, Sidoli C M D, et al.1995. The potential for heavy metal decontamination. Mining Environmental Management,3(3):12-14
    86. Basta N T, Gradwohl R, Snethen K L, et al.2001. Chemical immobilization of lead, zinc and cadmium in smelter-contaminated soils using biosolids and rock phosphate. Journal of Environmental Quality,30:1222-1230
    87. Bogdanovic D, Ubavic M, Cuvardic M.1999. Effect of phosphorus fertilization on Zn and Cd contents in soil and corn plants. Nutrient Cycling in Agroecosystems,54:49-56
    88. Brooks R R, Reeves R D.1977. Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. Journal of Geochemical Exploration,7:49-57
    89. Chaney R. L., Minnie M., Li Y. M., et al.1997. Phytoremediation of soul metal. J. Current Opinion in Biotechnology,8:279-284
    90. Cheng X. T., Wang G, Liang Z. C.2002. Effect of amendments on growth and element uptake of pakchoi in a cadmium, zinc and lead contaminated soil[J]. Pedoshpere,12(3):243-250
    91. Eriksson J. E.1990. Effects of nitrogen-containing fertilizers on solubility and plant uptake of cadmium. Water, Air and Soil Pollution,49:355-368
    92. Ernst W. H. O.2000. Evolution of metal hyperaccumulation and phytoremediation hype. New Phytologist,146:357-358
    93. Ernst WHO.1996. Bioavailability of heavy metals and decontamination of soils by plants. Applied Geochemistry,11:161-167
    94. Fang Han, Xiaoquan Shan, Shuzhen Zhang, et al.2006. Enhanced cadmium accumulation in maize roots-the impact of organic acids. Plant and Soil,289:355-368
    95. Fayiga AO, Ma LQ, Rathinasabapathi B.2008. Effects of nutrients on arsenic accumulation by arsenic hyperaccumulator Pteris vittata L. Environmental and Experimental Botany,62:231-23
    96. Hinsinger P, Gobran G R, Gregory P J, et al.2005. Rhizosphere geometry and heterogeneity arising form root-mediated physical and chemical processes. New Phytologist,168:293-303
    97. Hodson M E, Valsami-Jones E, Cotter-Howells JD.2000. Bonemeal additions as a remediation treatment for metal contaminated soil. Environmental Science and Technology,34(16):3501-3507
    98. Huang J W, Chen J, Berti W R, et al.1997. Phytoremediation of lead-contaminated soils:role of synthetic chelates in lead phytoextraction. Environmental Science and Technology,31(3):800-805
    99. Kaushik RD, Gupta VK, Singh JP. Distribution of Zn, Cd and Cu forms in soils as influenced by phosphorus application. Arid Soil Research and Rehabilitation,1993,7(2):163-171
    100. Krishnamurti G S R, Cieslinski G, Huang P M, et al.1997. Kinetics of cadmium release from soils as influenced by organic acids:Implication in cadmium availability. Journal of Environmental Quality, 26(1):271-277
    101. Kulli B., Balmer M., Krebs R., et al.1999. The influence of nitrilotriacetate on heavy metal up take of lettuce and ryegrass. Journal of Environmental Quality,28:6-10
    102. Kumar P. B. A. N.1995. Rhizofiltration:The use of plants to remove heavy metals from aqueous streams. Environ. Sci. Technol,29:239-245
    103. Lasat M. M.2002. Phytoextraction of Toxic Metals:A Review of Biological Mechanisms. Journal of Environmental Quality,31:109-120
    104. Marchiol L, Assolari S, Sacco P, et al.2004. Phytoextraction of heavy metals by canola (Brassica napus) and radish (Raphanus sativus) grown on multicontaminated soil. Environmental Pollution,132: 21-27
    105. Marques A. P. G C., Oliveira R. S., Rangel A. O. S. S., et al.2006. Zinc accumulation in Solanum nigrum is enhanced by different arbuscular mycorrhizal fungi. Chemosphere,65:1256-1263
    106. Merry RH, Tiller KG, Alston AM.1986. The effects of contamination of soil with copper lead and arsenic on the growth and composition of plants. Plant and Soil,91(1):115-128
    107. Millikan C. R., Hanger B. C., Bjarnason E. N.1968. Effect of phosphorus and zinc levels in the substrate on 65Zn distribution in subterranean clove and flax [J]. Australian J Biol. Sci.,21:619-640
    108. Mitchell L. G, Grant C. A., Racz G. J.2000. Effect of nitrogen application on concentration of cadmium and nutrientions in soil solution and in durum wheat. Canadian Journal of Soil Science, 80(1):107-115
    109. Mohamed A. J., Chen J. H., Zhen F. R., et al.2008. Effect of different N fertilizer forms on antioxidant capacity and grain yield of rice growing under Cd stress. Journal of Hazardous Materials, 5(146):1-5
    110. Muhammad J. H., Wang F.2005. Toxic effect of cadmium on rice as affected by nitrogen fertilizer form. Plant and Soil,277:359-365
    111. Mulligan C N, Yong R N, Gibbs B F.1999. On the use of biosurfactants for the removal of heavy metals from oil-contaminated soil. Environmental Progress,18(1):50-60
    112. Nouri J, Khorasani N, Lorestani B, et al.2009. Accumulation of heavy metals in soil and uptake by plant species with phytoremediation potential. Environmental Earth Sciences,59:315-323
    113. Onyatta J O, Huang P M.2003. Kinetics of cadmium release from selected tropical soils from Kenya by low-molecular-weight organic acids. Soil Science,168(4):234-252
    114. Reeves R D, Brooks R R.1983. Hyperaccumulation of lead and zinc by two metallophytes from mining areas of Central Europe. Environmental Pollution, A31:277-285
    115. Reeves R D.2003. Tropical hyper-accumulators of metals and their potential for phyto-extraction. Plant and Soil,249(1):57-65
    116. Romkens P, Bouwman L, Japenga J, et al.2002. Potentials and drawbacks of chelate-enhanced phytoremediation of soils. Environmental Pollution,116(1):109-121
    117. Schmidt U.2003. Enhancing phytoextraction:the effect of chemical soil manipulation on mobility, plant accumulation, and leaching of heavy metals[J]. Journal of Environmental Quality,32(11/12): 1939-1954
    118. Sneddon I R, Orueetxebarria M, Hodson M E, et al.2006. Use of bone meal amendments to immobilise Pb, Zn and Cd in soil:A leaching column study. Environmental Pollution,144:816-825
    119. Theodoratos P, Papassiopi N, Xenidis A.2002. Evaluation of monobasic calcium phosphate for the immobilization of heavy metals in contaminated soils from Lavrion. Journal of Hazardous Materials, 94:135-146
    120. Tu C., Zheng C. R., Chen H. M.2000. Effect of applying chemical fertilizers on forms of lead and cadmium in red soil[J]. Chemosphere,41:133-138
    121. Vassil A D, Kapulnik Y, Raskin I, et al.1998. The role of EDTA in lead transport and accumulation by Indian mustard, Plant Physiology,117:447-453
    122. Wei S H, Zhou Q X, Koval P V.2006. Flowering stage characteristics of cadmium hyperaccumulator Solanum nigrum L. and their significance to phytoremediation. Science of the Total Environment,369: 441-446
    123. White J P.2001. Phytoremediation assisted by microorganisms, Trends in Plant Science,6(11):502
    124. Whiting S N, Leake J R, Mcgrath S P, et al.2001. Hyperaccumulation of Zn by Thlaspi caerulescens can ameliorate Zn toxicity in the rhizosphere of co-cropped Thlaspi arvense. Environmental Science and Technology,35(15):3237-3241
    125. Willaert G, VerlooM.1992. Effect of various nitrogen fertilizers on the chemical and biological activity of major and trace elements in a cadmium contaminated soil[J]. Pedologie,43:83-91
    126. Wu L. H., Li H., Luo Y. M.2004. Nutrients can enhance phytoremediation of copper-polluted soil by Indian mustard. Environmental Geochemistry and Health,26:331-335
    127. Ye HB, Yang XE, He B, et al.2003. Growth response and metal accumulation of Sedum alfredii to Cd/Zn complex-polluted ion levels. Acta Botanica Sinica,45(9):1030-1036
    128. Zwonitzer JC, Pierzynski GM, Hettiarachchi GM.2003. Effects of phosphorus additions on lead, cadmium and zinc bioavailabilities in a metal-contaminated soil. Water, Air and Soil Pollution,143: 193-209

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700