用户名: 密码: 验证码:
BAIP-Ti(IV)配合物催化D,L-丙交酯开环聚合及PDLLA的静电纺丝研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚乳酸(polylactide,PLA)是一种具有优良生物相容性和生物降解性的热塑性聚酯材料。近年来许多研究都集中于聚乳酸的合成及应用上,其中尤以丙交酯(lactide,LA)的开环聚合以及在医药和组织工程领域的应用为国内外研究的热点。目前辛酸亚锡(Sn(Oct)_2)用于催化丙交酯(LA)开环聚合合成聚乳酸是最为广泛的催化剂,但辛酸亚锡有其自身的缺点,如在高于100℃时易分解或在微量水的影响下易发生水解反应,所产生的副产物在丙交酯的开环聚合过程中不可避免地发生副反应。此外,辛酸亚锡作为催化剂易于失活而影响催化效率,同时也可使得聚乳酸的分散度增加,影响聚乳酸的力学性能。所以获得热稳定、对水惰性的高活性金属催化剂催化丙交酯开环聚合是近年来研究的热点。
     本研究合成了一种新颖的热稳定、高活性的双(烷氧-亚胺芳氧)基钛(Ⅳ)[BAIP-Ti(Ⅳ)]配合物,用于催化D,L-丙交酯的开环聚合。采用各种结构分析手段表征了钛(Ⅳ)配合物的结构,探讨了用该配合物催化D,L-丙交酯(D,L-LA)开环聚合的动力学及机理,同时对获得的聚(D,L-丙交酯)(PDLLA)进行了力学测试及细胞生物相容性的初步评价。进而对获得的低分散度的PDLLA进行了纺丝研究,考察了PDLLA的样品浓度、流量以及真空冷冻干燥条件对纺丝直径分布及形貌的影响。最后以小鼠胚胎成骨细胞株(MC3T3-E1细胞)为模型,用扫描电镜(SEM)观察在PDLLA纤维材料表面的生长情况,探讨了成骨细胞在PDLLA微纳米丝支架材料上的生长情况。本研究的内容和结论如下:
     1.以3,5-二叔丁基水杨醛,乙醇胺以及钛酸四乙酯为原料,合成了BAIP-Ti(Ⅳ)配合物,表征了它的结构。
     ①配合物的合成:以3,5-二叔丁基水杨醛和乙醇胺为原料,经过氨醛缩合反应得到希夫碱,再与钛酸四乙酯进行醇交换反应,经重结晶后得到BAIP-Ti(Ⅳ)配合物。
     ②采用元素分析(EA)、傅立叶变换红外光谱(FTIR)、核磁共振波谱(NMR)、多晶粉末衍射(XRD)、X射线荧光衍射(XRF)、热重/差热分析(TG/DSC)以及单晶衍射等方法对该配合物的结构进行了表征,结果表明Ti原子与两个烷氧-亚胺芳氧基以四个O-Ti共价键和两个N→Ti配位键成键,显示该配合物是以Ti原子为中心的双配基配合物。
     2.以BAIP-Ti(Ⅳ)配合物为催化剂催化D,L-丙交酯开环聚合,成功制备了PDLLA。研究了不同的聚合条件对PDLLA的分子量和分散度的影响,并考察了D,L-丙交酯开环聚合的动力学及机理。
     ①考察了单体与催化剂的浓度比、聚合温度与时间对D,L-丙交酯单体开环聚合的影响,得到的最佳反应条件是:[M]/[Ti]=2000,聚合温度160℃,聚合时间16h,获得分子量分布(M_w/M_n)为1.17,数均分子量(Mn)为8.8×10~4g/mol的聚乳酸。
     ②动力学表明该配合物在130℃以上能有效地催化D,L-丙交酯开环聚合,该聚合反应对D,L-丙交酯单体浓度和催化剂浓度的反应级数分别为2级和1级,表观活化能(ΔEa)和频率因子(A)分别为76.63kJ/mol和2.91×10~(11)。其表观活化能与辛酸亚锡[Sn(Oct)_2]催化L-丙交酯开环聚合的活化能70.90kJ/mol接近。表明BAIP-Ti(Ⅳ)配合物催化D,L-丙交酯开环聚合反应是较易进行的聚合反应,且BAIP-Ti(Ⅳ)配合物与Sn(Oct)_2一样对D,L-丙交酯开环聚合有着较高的催化活性。
     ③通过苄醇封端得到的活化钛(Ⅳ)醇聚合物的~1HNMR图分析,表明D,L-丙交酯单体的开环机理为配位-插入机理,金属烷氧基Ti-O键是引发D,L-丙交酯单体的酰氧键断裂开环而非烷氧基断裂开环聚合的活性中心,从而实现链的增长。
     ④在各聚合温度下,单体转化率与数均分子量(M_n)呈线性关系,窄分子量分布(M_w/M_n=1.10-1.25)的聚乳酸,BAIP-Ti(Ⅳ)配合物显示出具有“活性”可控聚合的倾向。
     3.采用FTIR,~1HNMR,~(13)C NMR以及TG/DSC对BAIP-Ti(Ⅳ)配合物合成的聚乳酸(Ti-P)进行了结构表征、热稳定性和力学测试的研究,并对其拉伸断裂面的微观形貌进行了SEM观察。
     ①~1HNMR和~(13) CNMR研究表明,该Ti-P聚乳酸在本质上是属于无规的聚合物,在~(13)C NMR中δ=69.4ppm处无明显iss序列结构吸收峰的存在,表明聚合过程中无明显的分子内酯交换反应的发生。同时,由isi(δ=5.16ppm)和sis(δ=5.23ppm)与其他几组信号(δ=5.17,5.20和5.21ppm)的强度比值(Pr),即选择性系数Pr为0.64,表明该配合物催化D,L-丙交酯开环聚合显示出杂同立构选择性开环聚合的特征,并显示出可控聚合倾向的行为。
     ②通过~(13)C NMR图中四元立构序列的次甲基碳和六元立构序列羰基碳信号强度的研究,发现D,L-丙交酯在聚合过程中等规加成的概率为Pi=0.58,表明BAIP-Ti(Ⅳ)基钛(Ⅳ)配合物催化D,L-丙交酯开环聚合存在中等程度的等规加成立构选择性。
     ③以辛酸亚锡合成的聚乳酸(Sn-P)和BAIP-Ti(Ⅳ)配合物合成的聚乳酸(Ti-P)做对比,TG/DSC分析表明分子量接近分散度不同的Ti-P比Sn-P有着更稳定的热性能和较高的玻璃化转变温度(Tg),这与Ti-P中几乎不存在支化的聚乳酸或对热不稳定基团的因素有关。
     ④拉伸和压缩试验表明Ti-P比Sn-P具有更好抗压和抗拉的力学性能。Ti-P材料拉伸断裂面的SEM显示,其断裂面清晰光滑,无明显的凹槽或突起,也无明显的丝状断裂层面,显示出明显脆性断裂的特征。
     4.以Sn-P为对比,考察了Ti-P材料和Sn-P的亲/疏水性能和降解性能。其中,用静态水接触角和吸水率评价材料的亲/疏水性,体外实时降解试验评价材料的降解性能,评价指标为失重率和pH值的变化。
     ①Ti-P材料比Sn-P材料有较高的接触角和较低的吸水率,可能是分散度小的Ti-P材料表面的-COOH和-OH等活性基团比Sn-P材料少,使其亲水性降低。
     ②体外降解实验表明,Ti-P材料比Sn-P材料的失重率进入快速增长区和降解液pH值进入陡降区的时间比Sn-P延迟,两种材料都明显呈现酸致自催化降解现象。这是由于Ti-P材料的分散度比Sn-P材料低,Ti-P材料中亲水性的酸性羧基基团的浓度也较低,导致Ti-P材料的酸致自催化明显好于Sn-P材料。
     5.从MC3T3-E1细胞在玻璃空白、Ti-P和Sn-P材料表面的细胞形态,F-肌动蛋白的分布情况、增殖活力以及增殖速率等指标的测定进行了生物相容性的初步评价,结果表明:
     ①MC3T3-E1细胞在Ti-P、Sn-P以及玻片材料上培养48h后,MC3T3-E1细胞在三种材料上都能良好的铺展开。
     ②通过激光共聚焦显微镜观察MC3T3-E1细胞在Ti-P、Sn-P以及盖玻片材料上F-肌动蛋白的分布情况表明,培养48h的MC3T3-E1细胞在三种材料上均显示出较好的细胞黏附和铺展状态。
     ③MC3T3-E1细胞在Ti-P、Sn-P以及玻片上增殖活力以及增殖速率的测定,结果表明细胞在Ti-P材料上的增殖趋势与在Sn-P材料上相似,但显著高于玻片对照组细胞的增殖活力,而Sn-P材料和Ti-P材料之间细胞的增殖活力间不存在显著性差异。
     6.用制备的数均分子量为8.8×10~4g/mol,分子量分布(M_w/M_n)为1.17的Ti-P进行静电纺丝研究,考察了纺丝条件对纤维直径及形貌的影响。并以MC3T3-E1细胞为细胞模型,初步考察了以Ti-P作为纤维支架材料的细胞生物相容性的研究,结果表明:
     ①在0.8kv/cm电场强度下,Ti-P电纺浓度为0.20g/ml、流速为0.8ml/h时,可得到大多数纤维直径分布在1.1-1.7μm之间的微米纤维丝。
     ②经过真空冷冻干燥8h后,可以得到直径主要分布在500-900nm之间的纳米纤维丝,占整个纳米丝直径分布的74%。
     ③通过MC3T3-E1细胞在Ti-P纤维丝上的培养研究,发现细胞能很好地黏附于Ti-P纤维丝上并正常生长,培养5天后部分细胞产生明显的细胞基质分泌物。结果证明Ti-P经过真空冷冻干燥后的纳米纤维丝对MC3T3-E1细胞显示出良好的生物相容性,并显示出重要的生物学特征。
     综上所述,本文以合成的BAIP-Ti(Ⅳ)配合物为催化剂对D,L-丙交酯的开环聚合显示出可控聚合的行为,合成的Ti-P比Sn-P显示出较好的理化性能,并对成骨细胞显示出良好的生物相容性。
Polylactide (PLA) is one kind of thermoplastic polyester materials with good biocompatibility and biodegradability and widely used in the fields of biologic medicine and tissue engineering. Recently, people play more attentions to the synthesis and applications of PLA. Thereofore, it has drawn more attentions for ring-opening polymerization (ROP) of the lactide and its applications in medicine and tissue engineering. The tin(Ⅱ) bis(2-ethylhexanoate)(Sn(Oct)2) was widely employed as the initiator for ROP of lactide to produce PLA. However, it is important to note that Sn(Oct)2could be decomposed over100℃and hydrolyzed in presence of a little water. Subsequently, some side reactions would be take place during ROP of lactide. The results were that the (Sn(Oct)2) as initiator was inactivation for ROP of lactide and its catalytical activation was decreased. Therefore, it made molecular weight distributions of PLA broaden and the mechanics strength of PLA material was also decreased. So it was needed to develop new thermal stabilitable metal catalyst with insensitive property in presence of water to produce PLA by the method of ROP of lactide.
     In the thesis, a thernmal stabilitable and higher reactive catalyst, bis(alkoxy-imine-phenoxy) titanium (Ⅳ)[BAIP-Ti(Ⅳ)] complex, was synthesed and characterizaed by all kinds of methods to ROP for D,L-lactide. Experimental results revealed that the BAIP-Ti(Ⅳ) complex could efficiently catalyze the ROP of D,L-lactide, and the kinetic and mechanism of ROP reactions were studied. The mechanical test and biocompatibility of the obtained poly(D,L-lactide)(PDLLA) were assyed and preliminary estimated, repectively. In the electraspun experiments of the PDLLA, we studied the influencing factors of variations in diameter distribution and morphology of the PDLLA fibers, such as concentration and feed rate of PDLLA solution, and the duration of the vacuum freeze-drying. As well, the cultivation and growth of the MC3T3-E1cells on the of macro-and nanao-structure PDLLA fiber as scaffold materials was studied. The main works and results were included as follows:
     1. BAIP-Ti(Ⅳ) complex was synthesized with the3,5-di-tert-butylsalicylaldehyde, ethanolamine and tetraethyl titanate as react reagents, and its structure was characterizaed.
     ①Preparation of BAIP-Ti(IV) complex:the Schiff base was synthezed through the condensation reaction between3,5-di-tert-butylsalicylaldehyde and ethanolamine. Then the Schiff base reacted with tetraethyl titanate following the alcohol exchange protocol, and the BAIP-Ti(IV) complex was obtained by the method of recrystallization.
     ②The BAIP-Ti(IV) complex was structurally characterized by element analysis(EA), fourier transform infrared spectrometry (FTIR), nuclear magnetic resonance spectrometer(NMR), X-ray fluorescence spectroscopy(XRF) and thermal gravity analysis/differential scanning calorimeter (TG/DSC) methods. The X-ray diffraction results showed that the titanium ion was bonded with two3,5-di-tert-butylsalicylaldehyde-co-ethanolamine ligands in O,N,O-tridentate mode, and there were four O-Ti covalent bonds and two N→Ti coordiantion bonds. It indicated that the center of titanium ion in the complex was closed by double ligands.
     2. The poly(D,L-lactide)(PDLLA) was produced by ROP of D,L-lactide in bulk phase with the BAIP-Ti(IV) complex as catalyst. We studied the molecular weights and polydispersity index (PDI) under different experimental factors, and the kinetic and mechanisim of ROP for D,L-lactide were also studied.
     ①The ROP of D,L-lactide could affected by the molar ratio of D,L-lactide to complex ([M]0/[Ti]0, M=D,L-lactide monomer,[Ti]=titanium (IV) complex), polymerization temperature and duration time. In our study, we had gained the polylactide with maximum number average molecular weight (Mn=8.80×104g/mol) at [M]0/[Ti]0molar ratio of2000/1for a16h duration at160℃
     ②The kinetic studies showed that the ROP of D,L-lactide could be performed over130℃and the polymerization reaction was the second-order on D,L-lactide monomer concentration and the first-order on catalyst concentration, and the values of apparent activation energy (△Ea=76.63kJ/mol) and frequency factor (A=2.9×1011) were obtained according to the Arrhenius equation. And the values of apparent activation energy (△Ea=76.63kJ/mol) was closed to the that (△Ea=70.9kJ/mol) of ROP of L-LA with Sn(Oct)2as catalyst. The results showed that the the ROP of D,L-lactide catalyzed by the BAIP-Ti(IV) complex was a facile reaction and the BAIP-Ti(IV) complex had the higher catalytical activation with the Sn(Oct)2as catalyst.
     ③The mechanism study by1H NMR spectrum of poly(D,L-lactide) with terminal benzyl ester group and the BAIP-Ti(IV) complex revealed that the polymerization proceeded through the traditional activated monomer mechanism and the acyl-oxygen bond cleavage mode of monomer.
     ④The D,L-lactide polymerization results at different temperature showed that a linear relationship between Mn and rac-lactide monomer conversion and the narrow molecular distributionlow (MW/Mn=1.10-1.25) of the PDLLA at160℃implied the highly controlled and "living" character of the polymerization process.
     3. The PDLLA was chanracterizaed by fourier transform infrared spectrometry (FTIR), nuclear magnetic resonance spectrometer (1H NMR and13C NMR), and thermal gravity analysis/differential scanning calorimeter (TG/DSC) methods. The mechanical property of PDLLA was perfomed from the tension and compression experiments, and the tension fracture face morphology of PDLLA was chanracterizaed by the scanning electron microscopy (SEM).
     ①The results from1H NMR and13C NMR of PDLLA showed that that the PDLLA (Ti-P) was essential atactic polymer. There was the methine protons resonance absorption peak in iss stereosequence at69.4ppm, and it indicatd that no intermolecular transesterification took place in ROP of lactide with BAIP-Ti(IV) complex as catalyst. And the proportionality (Pr) of intensities of isi (δ=5.16ppm) and sis (δ=5.23ppm) steresquences to the intensities of other steresquences was0.64, the results showed the complex showed a hetereotactic and well-controlled selectional manner for ROP of D,L-lactide.
     ②From the study of the intensities of methenyl carbon with tetrad stereosequences and carbonyl carbon with hexad stereosequences in the13C NMR of PDLLA and the probability(P1=0.58) of isotactic addition reaction, it revealed that there was moderate stereoselectivity of isotactic addition reactions with BAIP-Ti(IV) complex as catalyst for ROP of D,L-lactide.
     ③In contrast to the Sn-P (the PDLLA with Sn(Oct)2as catalyst), the Ti-P (the PDLLA with BAIP-Ti(IV) complex as catalyst), in spite of similar Ma and different PDI and the TG/DSC analysis showed that the Ti-P polymer was more thermal stable and higer glass transition temperature (Tg) than Sn-P polymer, which indicated that there was few branched polylactide and thermally unstable groups.
     ④The results of tension and compression experiments showed that the properties of tension and compression of Ti-P polymer was stronger than that of Sn-P polymer.and the SEM of Ti-P fracture face morphology showed that fracture face was smooth, and no apparente gab and claw could be observed. As well, there was no the distinct silkiness and fracture deck in the SEM. Therefore, it revealed that the Ti-P material showed the chanracter of brittleness fracture.
     4. In contrast to the Sn-P material, the surface hydrophilicity/hydrophobicity and degradation of Ti-P materoal were investigated The evaluating indicators of surface wettability were mainly static water contact angle and water absorption ratio, while the evaluating indicators of degradation behavior were pH value changes and the weight loss ratio.
     ①The results showed that static water contact angle of Ti-P materoal was higher than that of Sn-P material, while the water absorption ratio was smaller than that of Sn-P material. So hydrophilicity of Ti-P material was lower than that of Sn-P materal due to the lower number of carboxyl and hydroxyl on the surface of Ti-P materoal.
     ②The dgradable experimental results of Ti-P and Sn-P materials in vitro revealed that the interval time of quickly grew weight loss and sudden depressed degradable pH value of Ti-P was longer than that of Sn-P, and there was obvious acid catalyzed auto-accelerating degradation. The PDI value of Ti-P material was lower than that of Sn-P material and the fewer number of hydrophilicity group on the surface of Ti-P material decrease the concentration of carboxyls, which made the lower auto-accelerating degradation of Ti-P material than that of Sn-P material.
     5. The biocompatibility of MC3T3-E1cell on the surface of glass, Ti-Pmaterial and Sn-P material were investigated, respectively. The MC3T3-E1cell was estimated by means of morphology, the distribution of F-actin, proliferation. The results revealed:
     ①All MC3T3-E1cells had spread on three materials, such as glass, Ti-Pand Sn-P material after48h cultivation.
     ②The F-actin morphology of MC3T3-E1cells spread on glass, Ti-Pand Sn-P material was observed by the method of laser confocal microscopy. The results showed that MC3T3-E1cells had adhered and apread the three materials well after48h cultivation.
     ③The proliferation vigor and speed of MC3T3-E1cells on the surface of glass, Ti-P and Sn-P material were assayed. The result proved that proliferation tendency of MC3T3-E1cells on Ti-P material was similar to that of Sn-P material, however, the proliferation vigor of MC3T3-E1cells on the two materials was notable higer than that of glass, and there wasn't significant difference between Ti-P and Sn-P material.
     6. The electraspun of PDLLA (Ti-P) with8.8×104g/mol molecular weight and low PDI (1.17) was studied. In the study, we investigated that the experimental factors could affect on fiber diameter distribution and morphology. As the studied model, the biocompatibility of MC3T3-E1cell on the Ti-P fibers was investigated. The results revealed:
     ①The miacrofibers could obtained at0.8kv/cm electric field strength,0.20g/ml concentration of Ti-P solution and0.8ml/h feed rate, the diameter distribution of these fibers was range from1.1to1.7μm
     ②The nanofibers could obtained under cryodesiccate at vaccum for8h, and their diameter distribution was range from500to900nm and these fiber was about74%in total diameter distribution.
     ③The MC3T3-E1cells were found that they could adhere to the surface of the Ti-P fibers when MC3T3-E1cells were cultured on the surface of the Ti-P fibers. However, there was visible extracellular matrix (ECM) on the surface of MC3T3-E1cell after5days cultivation. It revealed that the Ti-P fibers after cryodesiccate at vaccum were good biocompatibility to MC3T3-E1cells and these MC3T3-E1cells had showed important biologic feature.
     In conclusion, the BAIP-Ti(IV) complex had showed that controlled manner for ROP of D,L-Lactide. The physical and chemical properties of Ti-P polymer were gooder than that of Sn-P polymer and the Ti-P polymer was biocompatibility for the adhesion and proliferation of osteoblast.
引文
[1]Vilay V, Mariatti M, Ahmad Z, Pasomsouk K, Todo M. Improvement of microstructures and properties of biodegradable PLLA and PCL blends compatibilized with a triblock copolymer[J]. Materials Science and Engineering A,2010,527(26):6930-6937.
    [2]齐春燕.含新型瞵亚胺配体的锂、镁、铝、锡(II)和锌配合物的合成、表征及其催化环酯开环聚合研究[D].安徽:中国科学技术大学,2006:5-6.
    [3]Liao HT, Wu CS. Preparation and characterization of ternary blends composed of polylactide, poly(ε-caprolactone) and starch [J]. Materials Science and Engineering A,2009,515(1-2):207-214.
    [4]Feng J, Sui J, Cai W, Wan J. Preparation and characterization of magnetic multi-walled carbon nanotubes-poly(1-lactide) composite[J]. Materials Science and Engineering B,2008,150(3):208-212.
    [5]Moraes CM. Benzocaine loaded biodegradable poly-(D,L-lactide-co-glycolide) nanocapsules:factorial design and characterization [J]. Materials Science and Engineering B,2009,165(3):243-246.
    [6]Idage BB, Idage SB, Kasegaonkar AS, Jadhav RV. Ring opening polymerization of dilactide using salen complex as catalyst[J]. Materials Science and Engineering B,2010,168(1-3):193-198.
    [7]高勤卫,李明子,董晓.聚乳酸立构选择性聚合的研究进展[J].现代化工,2007,27(10):20-24.
    [8]胡玉山,白东仁,张政仆,王咏梅,何炳林.聚乳酸合成的最新进展[J].离子交换与吸附,2000,16(3):280-288.
    [9]汪朝阳,赵耀明.生物降解材料聚乳酸合成史略[J].化学通报,2003,66(9):641-644.
    [10]Kulkarni BK, Pani KC, Neuman C. Polylactic acid for surgical implant[J]. Archives of Surgery,1966,93(6):839-843.
    [11]Mecerreyes D, Dahan D, Lecomte PH. Ring-opening metathesis polymerization of new a-norbornenyl poly(ε-caprolactone) macromonomers[J]. Journal of Polymer Science Part A: Polymer Chemistry,1999,37(14):2477-2455.
    [12]Dechy-Cabaret O, Martin-Vaca B, Bourissou D. Controlled Ring-Opening Polymerization of Lactide and Glycolide[J].Chememical Review,2004,104(12):6147-6176.
    [13]Tang Z, Chen X, Liang Q, Bian X, Yang L, Piao L. Strontium-based initiator system for ring-opening polymerization of cyclic esters [J]. Journal of Polymer Science Part A:Polymer Chemistry,2003,41(13):1934-1941.
    [14]于翠萍,李希,沈之荃.丙交酯开环均聚合[J].化学进展,2007,19(1):136-144.
    [15]Bhaw-Luximon A, Jhurry D. Anionic polymerization of D,L-lactide initiated by lithium diisopropyllamide[J]. Polymer,2001,42(24):9651-9656.
    [16]Stolt M, Marcro AS. Use of monocarboxylic iron derivatives in the ring opening polymerization of L-lactide[J]. Macromolecules,1999,32(20):6412-6417.
    [17]Eguiburu JL, Jose M, Berridi F. Functionalization of poly(L-lactide) macromonomers by ring-opening polymerization of L-lactide initiated with hydroxyethyl methacrylate-aluminium alkoxides[J]. Polymer,1995,36(1):173-179.
    [18]Kricheldorf HR, Berl M, Scharnagl N. Poly(lactones).9. Polymerization mechanism of metal alkoxide initiated polymerizations of lactide and various lactones[J]. Macromolecules,1988,21(2):281-286.
    [19]Chisholm MH, Gallucci JC. Ring-opening polymerization of L-lactide by organotin(IV) alkoxides, R2Sn(OPri)2:Estimation of the activation parameters[J]. Polyhedron,2007,26(15):4436-4444.
    [20]Chen L, Jia L, Cheng F, Wang L. Synthesis, characterization of sodium and potassium complexes and the application in ring-opening polymerization of L-lactide [J]. Inorganic Chemistry Communications,2011,14(1):26-30.
    [21]Amassa AJ, N'Goalaa KLR, Tighea BJ, Schue F. Polylactic acids produced from L-and D,L-lactic acid anhydrosulfite:stereochemical aspects[J]. Polymer,1999,40(18):5073-5078.
    [22]Kasperczyk J, Bero M. Stereoselective polymerization of racemic D,L-lactide in the presence of butyllithium and butylmagnesium. Structural investigations of the polymers[J]. Polymer,2000,41(1):1-395.
    [23]Huan Y, Tsai YH, Chung W, Lin CS, Wang W, Huang JH, Dutta S, Lin CC. Synthesis and structural studies of lithium and sodium complexes with O, O,O-tridentate bis(phenolate) ligands:effective catalysts for the ring-opening polymerization of L-lactide [J]. Inorganic Chemistry,2010,49(20):9416-9425.
    [24]Huang CA, Ho CL, Chen CT. Structural and catalytic studies of lithium complexes bearing pendant aminophenolate ligands[J]. Dalton Transactions,2008,37(26):3502-3510.
    [25]Lian B, Thomas CM. Magnesium complexes based on an amido-bis(pyrazolyl) ligand: Synthesis, crystal structures, and use in lactide polymerization [J]. Polyhedron,2007,26(14):3817-3824.
    [26]Chisholm MH, Phomphrai K. Conformational effects in βdiiminate ligated magnesium and zinc amides. Solution dynamics and lactide polymerization[J]. Inorganica Chimica Acta,2003,350(1):121-125.
    [27]Cheng M, Attygalle AB, Lobkovsky EB, GW Coates. Single-site catalysts for ring-opening polymerization:synthesis of heterotactic poly (lactic acid) from rac-lactide[J]. Journal of American Chemical Society,1999,121(49),11583-11584.
    [28]Huang Y, Hung WC, Liao MY, Tsai T, Peng YL, Lin CC. Ring-opening polymerization of lactides initiated by magnesium and zinc complexes based on N,N,O-tridentate ketiminate ligands:activity and stereoselectivity studies[J]. Journal of Polymer Science:Part A: Polymer Chemistry,2009,47(9):2318-2329.
    [29]Chisholm MH, Eilerts NW, Huffillan JC. Molecular design of single-site metal alkoxide catalyst precursors for ring-opening polymerization reactions leading to poly oxygenates.1. Polylactide formation by achiral and chiral magnesium and zinc alkoxides,(η3-L)MOR, Where L=trispyrazolyl-and trisindazolylborate ligands [J]. Journal of American Chemical Society,2000,122(48):11845-11854.
    [30]Tsai YH, Lin CH, Lin CC. Tridentate anilido-aldimine magnesium and zinc complexes as efficient catalysts for ring-opening polymerization of ε-caprolactone and L-lactide[J]. Journal of Polymer Science:Part A:Polymer Chemistry,2009,47(17):4927-4936.
    [31]Wang L, Ma H. Highly Active magnesium initiators for ring-opening polymerization of rac-Lactide[J]. Macromolecules,2010,43(6):6535-6537.
    [32]Ejfler J, Kobylka M, Jerzykiewicz LB, Sobota P. Highly efficient magnesium initiators for lactide polymerization [J]. Daltron Transactions,2005,34(14):2047-2050.
    [33]Arnold PL, Casely IJ, Turner ZR, Bellabarba R, Tooze RB. Magnesium and zinc complexes of functionalised, saturated N-heterocyclic carbene ligands:carbene lability and functionalisation, and lactide polymerisation catalysis[J]. Daltron Transactions,2009,38(35):7236-7247.
    [34]Zhong Z, Schneiderbauer S, Dijkstra PJ, Westerhausen M, Feijen J. Single-site calcium initiators for the controlled ring-opening polymerization of lactides and lactones[J]. Polymer Bulletin,2003,51(2-3):175-182.
    [35]Zhong Z, Ankone MJK, Dijkstra PJ, Birg C. Calcium methoxide initiated ring-opening polymerization of ε-caprolactone and L-lactide[J]. Polymer Bulletin,2001,46(1):51-55.
    [36]Chen HY, Tang HY, Lin CC. Ring-opening polymerization of L-lactide catalyzed by a biocompatible calcium complex[J]. Polymer,2007,48(8):2257-2262.
    [37]Piao L, Deng M, Chen X, Jiang L, Jing X. Ring-opening polymerization of L-caprolactone and L-lactide using organic amino calcium catalyst[J]. Polymer,44(8):2331-2336.
    [38]Chisholm MH, Gallucci J, Phomphrai K. Lactide polymerization by well-defined calcium coordination complexes:comparisons with related magnesium and zinc chemistry[J]. Chemical Communications,2003,4(1):48-49.
    [39]Bero M, Kasperczyk J. Coordination polymerization of lactides.3. Copolymerization of L,L-lactide and ε-caprolactone in the presence of initiators containing zinc and aluminum[J]. Makromolekulare Chemie,1993,194(3):907-912.
    [40]Sosnowski S, Gadzinowski M, Slomkowski S. Synthesis of bioerodible poly(ε-caprolactone) latexes and poly(D,L-lactide) microspheres by ring-opening polymerization [J]. Journal of Bioactive and Compatible Polymers,1994,9(4):345-366.
    [41]Vanhoorne P, Dubois P, Jerome R, Teyssie P. Macromolecular engineering of polylactones and polylactides.7. Structural analysis of copolyesters of ε-caprolactone and L-or D,L-lactide initiated by triisopropoxyaluminum[J]. Macromolecules,1992,25(1):37-44.
    [42]Duda A, Penczek S. On the difference of reactivities of various aggregated forms of aluminum triisopropoxide in initiating ring-opening polymerizations [J]. Macromolecular Rapid Communications,1995,16(1):67-76.
    [43]Penczek S, Duda A, Biela T. Factors affecting "livingness" in polymerization initiated with aluminum alkoxides[J]. Polymer Preprints,1994,35(2):508-509.
    [44]Zhong Z, Dijkstra PJ, Feijen J. Controlled and sereoselective plymerization of lctide:knetics, slectivity, and mcrostructures [J]. Journal of American Chemical Society,2003,25(37):11291-11298.
    [45]Bhaw-Luximon A, Jhurry D, Spassky N. Controlled polymerization of D,L-lactide using a Schiff s base al-alkoxide initiator derived from2-hydroxyacetophenone[J]. Polymer Bulletin,2000,44(1):31-38.
    [46]Nomura N, Ishii R, Akakura M, Aoi K. Stereoselective ring-opening polymerization of racemic lactide using aluminum-achiral ligand complexes:exploration of a chain-end control mechanism[J]. Journal of American Chemical Society,2002,124(21):5938-5939.
    [47]Wu J, Pan X, Tang N, Lin CC. Synthesis, characterization of aluminum complexes and the application in ring-opening polymerization of L-lactide[J]. European Polymer Journal,2007,43(12):5040-5046.
    [48]Tang Z, Gibson VC. Rac-Lactide polymerization using aluminum complexes bearing tetradentate phenoxy-amine ligands[J]. European Polymer Journal,2007,43(1):150-155.
    [49]Kowalski A, Libiszowski J. Kinetics and mechanism of ε-caprolactone and L,L-lactide polymerization coinitiated with zinc octoate or aluminum acetylacetonate:The next proofs for the general alkoxide mechanism and synthetic applications [J]. Polymer,2007,48(14): 3952-3960.
    [50]Schwach G, Coudane J. Influence of polymerization conditions on the hydrolytic degradation of poly(D,L-lactide) polymerized in the presence of stannous octoate or zinc-metal [J]. Biomaterials,2002,23(14):993-1002.
    [51]Korhonen H, Helminen A, Seppala JV. Synthesis of polylactides in the presence of-initiators with different numbers of hydroxyl groups[J].Polymer,2001,42(18):7541-7549.
    [52]Kricheldorf HR, Kreiser-Saunders I. Polylactones48. Sn(Oct)2-Initiated polymerizations of lactide:a mechanistic study. Macromolecules,2000,33(3):702-709.
    [53]Kowalski A, Libiszowski J, Duda A. Polymerization of D,L-lactide initiated by tin(Ⅱ) butoxide[J]. Macromolecules,2000,33(6):1964-1971.
    [54]Kricheldorf HR, Lee SR, Bush S. Polylactones36. Macrocyclic polymerization of lactides with cyclic Bu2Sn initiators derived from1,2-ethanediol,2-mercaptoethanol, and l,2-dimercaptoethane[J]. Macromolecules,1996,29(5):1375-1381.
    [55]Kowalski A, Duda A, Penczek S. Kinetics and mechanism of cyclic esters polymerization initiated with tin(Ⅱ) octoate:polymerization of L,L-dilactide[J]. Macromolecules,2000,33(20):7359-7370.
    [56]Dove AP, Gibson VC, Marshall EL, Rzepa HS, White AJP, Williams DJ. Synthetic, structural, m echanistic, and computational studies on single-site β-diketiminate tin(Ⅱ) initiators for the polymerization of rac-Lactide[J]. Journal of American Chemical Society,2006,128(10):9834-9843.
    [57]Nimitsiriwat N, Gibson VC, Marshall EL, White AJP, Daleb SH. Tert-butylamidinate tin(Ⅱ) complexes:high activity, single-site initiators for the controlled production of polylactide[J]. Dalton Transactions,2007,36(37):4464-4471.
    [58]Nimitsiriwat N, Gibson VC, Marshall EL, Elsegood MRJ. Bidentate salicylaldiminato tin(Ⅱ) complexes and their use as lactide polymerisation initiators [J]. Dalton Transactions,2009,38(1):3710-3715.
    [59]Pietrangelo A, Hillmyer MA, Tolman WB. Stereoselective and controlled polymerization of D,L-lactide using indium(Ⅲ) trichloride [J]. Chemical Communications,2009,45(19):2736-2737.
    [60]Pietrangelo A, Knight SC, Gupta AK, Yao LJ, Hillmyer MA, Tolman WB. Mechanistic study of the stereoselective polymerization of D,L-Lactide using indium(Ⅲ) halides[J]. Journal of American Chemical Society,2010,132(33):11649-11657.
    [61]Hu M, Wang M, Zhang P, Wang L. Preparation and structure of an enantiomeric water-bridged dinuclear indium complex containing two homochiral N atoms and its performance as an initiator in polymerization of rac-lactide[J]. Inorganic Chemistry Communications,2010,13(8):968-971.
    [62]Douglas AF, Patrick BO, Mehrkhodavandi P. A highly active chiral indium catalyst for living lactide polymerization[J]. Angewandte Chemie International Edition,2008,47(12):2290-2293.
    [63]Ziemkowska W, Kochanowski J. Synthesis, structures and ε-caprolactone polymerization activity of aluminum N,N'-dimethyloxalamidates[J]. Journal of Organometallic Chemistry,2010,695(8):1205-1209.
    [64]Vora A, Singh K, Webster DC. A new approach to3-miktoarm star polymers using a combination of reversible addition-fragmentation chain transfer (RAFT) and ring opening polymerization (ROP) via "Click" chemistry [J]. Polymer,2009,50(13):2768-2774.
    [65]Gowda R, Chakraborty D. Copper acetate catalyzed bulk ring opening polymerization of lactides[J]. Journal of Molecular Catalysis A:Chemical,2011,349(1-2):86-93.
    [66]Bhunora S, Mugo J, Bhaw-Luximon A. The use of Cu and Zn salicylaldimine complexes as catalyst precursors in ring opening polymerization of lactides:ligand effects on polymer characteristics [J]. Applied Organometallic Chemistry,2011,25(2):133-145.
    [67]Chena LL, Dinga LQ, Zenga C, Longa Y. Bulk solvent-freemelt ring-opening polymerization of Z-lactide catalyzed by Cu(Ⅱ) and Cu(Ⅱ)-Nd(Ⅲ) complexes of the Salen-type Schiff-base ligand[J]. Applied Organometallic Chemistry,2011,25(4):310-316.
    [68]John A, Katiyar V, Pang K, Shaikh MM, Nanavati H, Ghosh P. Ni(Ⅱ) and Cu(Ⅱ) complexes of phenoxy-ketimine ligands:Synthesis, structures and their utility in bulk ring-opening polymerization (ROP) of Z-lactide Alex[J]. Polyhedron,2007,26(15):4033-4044.
    [69]Schwach G, Coudane J, Engel R, Vert M. Zn lactate as initiator of D,L-lactide ring opening polymerization and comparison with Sn octoate[J]. Polymer Bulletin,1996,37(6):771-776.
    [70]Gowda RR, Chakraborty D. Zinc acetate as a catalyst for the bulk ring opening polymerization of cyclic esters and lactide[J]. Journal of Molecular Catalysis A:Chemical,2010,333(1-2):167-172.
    [71]Jensen TR, Schaller CP, Hillmyer MA, Tolman WB. Zinc N-heterocyclic carbene complexes and their polymerization of D, D,L-lactide [J]. Journal of Organometallic Chemistry,2005,690(24-25):5881-5891.
    [72]Huang BH, Lin CN, Hsueh ML, Athar T, Lin CC. Well-defined sterically hindered zinc aryloxides:excellent catalysts for ring-opening polymerization of ε-caprolactone and L-lactide[J]. Polymer,2006,47(19):6622-6629.
    [73]Liu Z, Gao W, Zhang J, Cui D, Wu Q, Mu Y. Bis(imino)aryl NCN pincer aluminum and zinc complexes:synthesis, characterization, and catalysis on L-lactide polymerization[J]. Organometallics,2010,29(22):5783-5790.
    [74]Drouin F, Oguadinma PO, Whitehorne TJJ, Robert E. Lactide polymerization with chiral/-diketiminate zinc complexes[J]. Organometallics,2010,29(9):2139-2147.
    [75]Dong Q, Ma X, Guo J, Wei X, Zhou M, Liu D. Synthesis, characterization of a novel zinc diamine-bisphenolate complex and its application as an initiator for ring-opening polymerization of rac-lactide[J]. Inorganic Chemistry Communications,2008,11(6):608-611.
    [76]Chen HY, Tang HY, Lin CC. Ring-opening polymerization of lactides initiated by zinc alkoxidesderived from NNO-Tridentate ligands[J]. Macromolecules,2006,39(11):3745-3752.
    [77]Williams CK, Breyfogle LE, Choi SK, Nam W, Young VG. A highly active zinc catalyst for the controlled polymerization of lactide[J]. Journal of American Chemical Society,2003,125(37):11350-11359.
    [78]Ejfler J, Szafert S, Mierzwicki K, Jerzykiewicz LB, Sobota P. Homo-and heteroleptic zinc aminophenolates as initiators for lactide polymerization [J]. Dalton Transactions,2008,37(46):6556-6562.
    [79]Simic V, Girardon V, Spassky N, Hubert-Pfalzgraf LG, Duda A. Ring-opening polymerization of lactides initiated with yttrium tris-isopropoxyethoxide[J]. Polymer Degradation and Stability,1998,59(1-3):227-229.
    [80]Miao W, Li S, Zhang H, Cui D, Wang Y, Huang B. Mixed ligands supported yttrium alkyl complexes:synthesis, characterization and catalysis toward lactide polymerization [J]. Journal of Organometallic Chemistry,2007,692(17):4828-4834.
    [81]Miao W, Li S, Cui D, Huang B. Rare earth metal alkyl complexes bearing N,O,P multidentate ligands:synthesis, characterization and catalysis on the ring-opening polymerization of L-lactide[J]. Journal of Organometallic Chemistry,2007,692(17):3823-3834.
    [82]Zi G, Xiang L, Liu X, Wang Q, Song H. Synthesis, structure, and reactivity of yttrium complexes with chiral biaryldiamine-based N4-ligands[J]. Inorganic Chemistry Communications,2010,13(3):445-448.
    [83]Zhang F, Zhang J, Song H, Zi G. Synthesis, structure, and catalytic activity of organoyttrium complexes with chiral binaphthyl-based amidate ligands [J]. Inorganic Chemistry Communications,2011,14(1):72-74.
    [84]Mun SD, Lee J, Kim SH. Titanatranes containing tetradentate ligands with controlled steric hindrance[J]. Journal of Organometallic Chemistry,2007,692(16):3519-3525.
    [85]Umare PS. Catalytic ring-opening polymerization of L-lactide by titanium biphenoxy-alkoxide initiators [J]. Journal of Molecular Catalysis A:Chemical,2007,268(1-2):235-43.
    [86]Kim Y, Verkade JG. A tetrameric titanium alkoxide as a lactide polymerization catalyst [J]. Macromolecular Rapid Communications,2002,23(15):917-921.
    [87]Kim E, Shin E, Yoo IK. Characteristics of heterogeneous titanium alkoxide catalysts for ring-opening polymerization of lactide to produce polylactide[J]. Journal of Molecular Catalysis A:Chemical,2009,298(1-2):36-39.
    [88]Krauzy-Dziedzic K, Ejfler J, Szafert S, Sobota P. Titanium and zirconium benzofuranoxides. crystal structures and catalytic properties [J]. Dalton Transaction,2008,37(19):2620-2626.
    [89]Jones MD, Davidson MG, Kociok-Kohn G. New titanium and zirconium initiators for the production of polylactide[J]. Polyhedron,2010,29(2):697-700.
    [90]Chmura AJ, Davidson MG, Frankis CJ, Jones MD, Lunnb MD. Highly active and stereoselective zirconium and hafnium alkoxide initiators for solvent-free ring-opening polymerization of rac-lactide[J]. Chemical Communications,2008,44(11):1293-1295.
    [91]Dobrzynski P, Kasperczyk J, Janeczek H. Synthesis of biodegradable glycolide/L-lactide copolymers using iron compoundsas initiators [J]. Polymer,2002,43(9):2595-2601.
    [92]王小莺,廖凯荣,全大萍,伍青.乙酰丙酮铁催化丙交酯开环聚合的研究[J].高分子学报,2005,(1):113-118.
    [93]王小莺,廖凯荣,全大萍,伍青.醇铁化合物引发丙交酯开环聚合的研究[J].中山大学学报(自然科学版),2005,44(5):42-46.
    [94]Wang X, Liao K, Quan D, Wu Q. Bulk ring-opening polymerization of lactides initiated by ferric alkoxides[J]. Macromolecules2005,38(11):4611-4617.
    [95]O'Keefe BJ, Monnier SM, Hillmyer MA, Tolman WB. Rapid and controlled polymerization of lactide by structurally characterized ferric alkoxides[J]. Journal of American Chemical Society,2001,123(2):339-340.
    [96]Ding L, Jin W, Chu Z, Chen L. Bulk solvent-free melt ring-opening polymerization (ROP) of L-lactide catalyzed by Ni(Ⅱ) and Ni(Ⅱ)-Ln(Ⅲ) complexes based on the acyclic Salen-type Schiff-base ligand[J]. Inorganic Chemistry Communications,2011,14(8):1274-1278.
    [97]Jin WJ, Ding LQ, Chu Z. Controllable bulk solvent-free melt ring-opening polymerization (ROP) of1-lactide catalyzed by Ni(Ⅱ) and Ni(Ⅱ)-Ln(Ⅲ) complexes based on the Salen-type Schiff-base ligand[J]. Journal of Molecular Catalysis A:Chemical,2011,337(1-2):25-32.
    [98]张金超,李晓新,许善锦.稀土离子对体外培养的成骨细胞增殖、分化和功能表达的影响[J].自然科学进展,2004,14(4):404-409.
    [99]Zhang L, Shen Z, Yu C, Fan L. Characteristics and mechanism of L-lactide polymerization by lanthanide2,6-dimethylaryloxide[J]. Journal of Molecular Catalysis A:Chemical,2004,214(2):199-202.
    [100]Zhang L, Shen Z, Yu C, Fan L. Ring-opening polymerization of D,L-lactide by rare earth2,6-dimethylaryloxide[J]. Polym International,2004,53(8):1013-1016.
    [101]Yu C, Zhang L, Tu K, Shen Z. Ring-opening Polymerization of D,L-lactide by the single component rare earth tris(4-tert-butylphenolate)s[J]. Polymer Bulletin,2004,52(5):329-337.
    [102]Fan L, Xiong YB, Xu H, Shen ZQ. L-Lactide homopolymerization and L-lactide-ε-caprolactone block copolymerization by lanthanide tris(2,4,6-trimethylphenolate)s[J]. European Polymer Journal,2005,41(7):1647-1653.
    [103]Deng X, Yuan M, Li X, Xiong C. Polymerization of lactides and lactones VII. Ring-opening polymerization of lactide by rare earth phenyl compounds [J]. European Polymer Journal,2000,36(6):1151-1156.
    [104]Yuan M, Li X, Xiong C, Deng X. Polymerization of lactides and lactones5. Ring-opening polymerization of ε-caprolactone and D,L-lactide by rare earth2-methylphenyl samarium[J]. European Polymer Journal,1999,35(12):2131-2138.
    [105]Wang Q, Xiang L, Song H, Zi G. Synthesis, structure, and catalytic activity of binuclear lanthanide complexes with chiral NOBIN-based N,N,O-ligands[J]. Journal of Organometallic Chemistry2009,694(5):691-696.
    [106]Lassalle VL, Ferreira ML. Lipase-catalyzed synthesis of polylactic acid:an overview of the experimental aspects[J]. Journal of Chemical Technology and Biotechnology,2008,83(11):1493-1502.
    [107]Huijser S, Staal BBP, Huang J, Duchateau R, Koning CE. Topology characterization by MALDI-ToF-MS of enzymatically synthesized poly (lactide-co-glycolide)[J]. Biomacromolecules,2006,7(9):2465-2469.
    [108]Albertsson AC, Varma IK. Recent developments in ring opening polymerization of lactones for biomedical applications [J]. Biomacromolecules,2003,4(6):1466-1486.
    [109]Kricheldorf HR, Kreiser-Saunders I. Polylactones48. SnOct2-initiated polymerizations of lactide:a Mechanistic study [J]. Macromolecules,2000,33(3):702-709.
    [110]Dugah DT, Skelton BW, Delbridge EE. Synthesis and characterization of new divalent lanthanide complexes supported by amine bis(phenolate) ligands and their applications in the ring opening polymerization of cyclic esters[J]. Dalton Transactions,2009,38(8):1436-1445.
    [111]Luo Y, XuP, Lei Y, Zhang Y, Wang Y. Synthesis, characterization and Z-lactide polymerization behavior of bis(amidinate) rare earth metal amide complexes [J]. Inorganica Chimica Acta,2010,363(13):3597-3601.
    [112]Fu C, Zhang B, Ruan C, Hu C, WangY. Improved hydrolytic stability of poly(D,L-lactide) with epoxidized soybean oil[J]. Polymer Degradation and Stability,2010,95(4):485-490.
    [113]Bagno A, Piovan A. Human osteoblast-like cell adhesion on titanium substrates covalently functionalized with synthetic peptides[J]. Bone,2007,40(3):693-699.
    [114]Zinger O, Anselme K, Denzer A, Habersetzer P. Time-dependent morphology and adhesion of osteoblasticc ells ontitanium model surfaces featuring scale-resolved topography [J]. Biomaterials,2004,25(14):2695-2711.
    [115]Guehennec LL. Osteoblastic cell behaviour on different titanium implant surfaces[J]. Acta Biomaterialia,2008,4(3):535-543.
    [116]Rosa AL, Beloti MM. TAK-778enhances osteoblast differentiation of human bone marrow cells cultured on titanium[J]. Biomaterials,2003,24(17):2927-2932.
    [117]李叔妮.磺酰胺及其希夫碱过渡金属配合物的合成、表征和晶体结构[D].西安.西北大学,2008,6.
    [118]Khan NH, Pandya N. Influence of chirality of V(V) Schiff base complexes on DNA, BSA binding and cleavage activity [J]. Journal of Medicinal Chemistry,2011,46(10):5074-5085.
    [119]Qiao X, Ma ZY. Study on potential antitumor mechanism of a novel Schiff Base copper(II) complex:synthesis, crystal structure, DNA binding, cytotoxicity and apoptosis induction activity [J]. Journal of Inorganic Biochemistry,2011,105(5):728-737.
    [120]Golcu A, Turner M, Demirelli H, Wheatley RA. Cd(II) and Cu(II) complexes of polydentate Schiff base ligands:synthesis, characterization, properties and biological activity[J].Inorganica Chimica Acta,2005,358(6):1785-1797.
    [121]Lin CC, Wang GR, Liu CY. A novel monolithic column for capillary electrochromatographic separation of oligopeptides[J]. Analytica Chimica Acta,2006,572(2):197-204.
    [122]Mallik R, Hage DS. Development of an affinity silica monolith containing human serum albumin for chiral separations [J]. Journal of Pharmaceutical and Biomedical Analysis,2008,46(5):820-830.
    [123]Bruno P, Luz F, Elisabete O, Laura R. Synthesis, characterization and spectroscopic studies of two new schiff-base bithienyl pendant-armed15-crown-5molecular probes [J]. Inorganic Chemistry Communications,2009,12(2):79-85.
    [124]Sathisha MP, Shetti UN, Revankar VK, Pai KSR. Synthesis and antitumor studies on novel Co(Ⅱ), Ni(Ⅱ) and Cu(Ⅱ) metal complexes of bis(3-acetylcoumarin)thiocarbohydrazone[J]. European Journal of Medicinal Chemistry,2008,43(11):2338-2346.
    [125]Kannan S, Ramesh R. Synthesis, characterization, catalytic oxidation and biological activity of ruthenium (Ⅲ) Schiff base complexes derived from3-acetyl-6-methyl-2H-pyran-2,4(3H)-dione[J]. Polyhedron,2006,25(16):3095-3103.
    [126]Rotondo A, Bruno G, Brancatelli G. A phenyl-salicyliden-imine as a suitable ligand to build functional materials [J]. Inorganica Chimica Acta,2009,362(1):247-252.
    [127]De Clercq B, Lefebvre F, Verpoort F. Immobilization of multifunctional Schiff base containing ruthenium complexes on MCM-41[J] Applied Catalysis A:General,2003,247(2):345-364.
    [128]Niu HJ, D HuangY, Bai XD, Li X. Novel poly-Schiff bases containing4,4'-diamino-triphenylamine as hole transport material for organic electronic device[J].Materials Letters,2004,58(24):2979-2983.
    [129]Gupta KC, Sutar AK. Catalytic activities of Schiff base transition metal complexes[J]. Coordination Chemistry Reviews,2008,252(12-14):1420-1450.
    [130]Youssef NS, El-Zahany E. Synthesis and characterisation of new Schiff base metal complexes and their use as catalysts for olefin cyclopropanation[J]. Inorganica Chimica Acta,2009,362(6):2006-2014.
    [131]Kasumov VT, Medjidov AA, Yayli N. Spectroscopic and electrochemical characterization of di-tert-butylated sterically hindered Schiff bases and their phenoxyl radicals [J]. Spectrochimica Acta Part A,2004,60(13):3037-3047.
    [132]Cukurovali A, Yilmaz I, Gur S, Kazaz C. Synthesis, antibacterial and antifungal activity of some new thiazolylhydrazone derivatives containing3-substituted cyclobutane ring[J]. European Journal of Medicinal Chemistry,2006,41(2):201-207.
    [133]Kaya I, Yildrnm M, Kamaci M. European. Synthesis and characterization of new polyphenols derived from o-dianisidine:the effect of substituent on solubility, thermal stability, and electrical conductivity, optical and electrochemical properties [J]. Polymer Journal,2009,45(5):1586-1598.
    [134]Gama A. A study of substituent effects on the enantioselective trimethylsilylcyanation of benzaldehyde catalyzed by chiral Schiff base-titanium (Ⅳ) complexes [J]. Tetrahedron: Asymmetry,2005,16(6):1167-1174.
    [135]Stephanos JJ, Jackson LM, Addison AW. Copper(Ⅱ) Schiff-base complexes and apoglobin stability[J]. Journal of Inorganic Biochemistry,1999,73(3):137-144.
    [136]Arunachalam S, Padma Priya N, Jayabalakrishnan C, Chinnusamy V. Synthesis, spectral characterization, catalytic and antibacterial studies of new Ru(Ⅲ) Schiff base complexes containing chloride/bromide and triphenylphosphine/arsine as co-ligands[J]. Spectrochimica Acta Part A,2009,74(2):591-596.
    [137]Komatsu H, Ochiai B, Hino T, Endo T. Thermally latent reaction of hemiacetal ester with epoxide controlled by Schiff-base-zinc chloride complexes with tunable catalytic activity [J]. Journal of Molecular Catalysis A:Chemical,2007,273(1-2):289-297.
    [138]Silva AR, Budarin V. Chiral manganese(Ⅲ) Schiff base complexes anchored onto activated carbon as enantioselective heterogeneous catalysts for alkene epoxidation[J]. Carbon,2005,43(10):2096-2105.
    [139]Ramesh R, Maheswaran S. Synthesis, spectra, dioxygen affinity and antifungal activity of Ru(Ⅲ) Schiff base complexes[J]. Journal of Inorganic Biochemistry,2003,96(4):457-462.
    [140]Prabhakaran R, Huang R, Natarajan K. X-ray crystallographic investigation and biological activities of Ru(Ⅲ) complexes containing Schiff base and triphenyl phosphine/arsine[J]. Inorganica Chimica Acta,2006,359(10):3359-3362.
    [141]Kulkarni A, Patil SA, Badami PS. Synthesis, characterization, DNA cleavage and in vitro antimicrobial studies of La(Ⅲ), Th(Ⅳ) and Vo(Ⅳ) complexes with Schiff bases of coumarin derivatives [J]. European Journal of Medicinal Chemistry,2009,44(7):2904-2912.
    [142]Furuyama R, Saito J. Ethylene and propylene polymerization behavior of a series of bis(phenoxy-imine)titanium complexes[J]. Journal of Molecular Catalysis A:Chemical,2003,200(1-2):31-42.
    [143]Ishii S, Saito J, Mitani M. Highly active ethylene polymerization catalysts based on titanium complexes having two phenoxy-imine chelate ligands[J]. Journal of Molecular Catalysis A: Chemical,2002,179(1-2):11-16.
    [144]Zaher D, Tomov AK, Gibson VC, White AJP. Titanium complexes bearing bidentate benzimidazole-containing ligands and their behavior in ethylene polymerization [J]. Journal of Organometallic Chemistry,2008,693(26):3889-3896.
    [145]Mingos DMP, Vilar R, Rais D. Recent studies on alkynyl complexes of the Group11and12metals[J]. Journal of Organometallic Chemistry,2002,641(1-2):126-133.
    [146]Perez Y, Del Isabel H, Isabel S. Polymerization of ε-caprolactone using bulky alkoxo-titanium complexes and structural analysis of [Ti(OBorneoxo)2Cl2(thf)2][J]. Journal of Organometallic Chemistry,2006,691(13):3053-3059.
    [147]Sheldrick GM. Program for empirical absorption correction of area detector data, University of Gottingen, Germany,1997.
    [148]Sheldrick GM. SHELXS-97, Program for the crystal ctructure colution, University of Gottingen, Germany,1997.
    [149]Sheldrick GM. SHELXL-97, Program for the refinement of crystal structure, University of Gottingen, Germany,1997.
    [150]Abbott PH, Adams MJ. Strategies for X-ray fluorescence spectra interpretation[J]. Laboratory Automation and Information Management,1995,31(2):115-221.
    [151]张有杰,李念平.有机波谱教程.湖北武汉:华中师范大学出版社,1990,56.
    [152]金斗满,朱文祥.配位化学研究方法.北京:科学出版社,1996,134.
    [153]戴安邦.配位化学.北京:科学出版社,1987,87.
    [154]祝心德,党元林,王成刚.2,4-二羟基苯甲醛缩硫脲及其配合物的合成与生物活性研究[J].无机化学学报,1997,13(1):68-72.
    [155]黄泰山,姚志扬.呋喃醛双缩二氨基硫脲腙的合成和结构测定[J].结构化学,1996,15(3):235-238.
    [156]程建平,林秋月,朱文忠,胡瑞定,王娜.缬氨酸Schiff碱和N,N,-杂环碱三元配合物的合成、晶体结构及与BSA的作用[J].化学学报,2008,66(23):2597-2603.
    [157]孙文彬.1,2-丙二胺基类Salen稀土配合物的合成、结构及性能研究[D].黑龙江:黑龙江大学,2009:1-2.
    [158]孙凡红Schiff碱及其配合物的合成、晶体结构和性质研究[M].河南:河南大学,2009:1-2.
    [159]Annunziata S, Margherita DR, Marina L, Consiglia T, Arrigo S, Claudio P. Synthesis, crystal structure and application in regio-and stereoselective epoxidation of allylic alcohols of a titanium binaphthyl-bridged Schiff base complex[J]. Journal of Molecular Catalysis A: Chemical,2005,235(1-2),253-259.
    [160]Veli TK, Ahmet B, Fevzi K, Mehmet A, Ibrahim U, Canan K. Synthesis, structure, spectroscopic and redox properties of copper(Ⅱ)-N-3,5-But2-phenylsalicydinine complexes: Crystal and molecular structure of bis(N-3,5-But2-phenylsalicydininato) copper(Ⅱ)[J]. Polyhedron,2006,25(5):1133-1141.
    [161]Donald JD, Cesar GO, Damon RB. Synthesis and structural characterization of iron(Ⅲ) salen complexes possessing appended anionic oxygen donor ligands[J]. Inorganica Chimica Acta,2004,357(7):2143-2149.
    [162]Karuppasamy S, Eringathodi S, Mallayan P. Synthesis, structures, spectral and electrochemical properties of copper(Ⅱ) complexes of sterically hindered Schiff base ligands[J]. Inorganica Chimica Acta,2009,362(1):199-207.
    [163]Wu J, Yu TL, Chen CT, Lin CC. Recent developments in main group metal complexes catalyzed/initiated polymerization of lactides and related cyclic esters [J]. Coordination Chemistry Reviews,2006,250(5-6):602-626.
    [164]Che CM, Huang JS. Metal complexes of chiral binaphthyl Schiff-base ligands and their application in stereoselective organic transformations [J]. Coordination Chemistry Reviews,2003,242(12):97-113.
    [165]Chmura AJ, Davidson MG, Jones MD, Lunn MD, Mahon MF. Group4complexes of amine bis(phenolate)s and their application for the ring opening of cyclic esters [J]. Dalton Transactions,2006,35(7):887-889.
    [166]Zhang C, Wang ZX. Aluminum and zinc complexes supported by functionalized phenolate ligands:synthesis, characterization and catalysis in the ring-opening polymerization of ε-caprolactone and rac-lactide[J]. Journal of Organometallic Chemistry,2008,693(19):3151-3158.
    [167]Umare PS, Antony R, Gopalakrishnan K. Synthesis of low molecular weight polyethylene waxes by a titanium BINOLate-ethylaluminum sesquichloride catalyst system [J]. Journal of Molecular Catalysis A:Chemical,2005,242(1-2):141-150.
    [168]Xu TQ, Gao W, Mu Y, Ye L. Titanium(IV) complexes with monocyclopentadienyl and phenoxy-alkoxo ligands:Synthesis, structures and catalytic properties for ethylene polymerization[J]. Polyhedron,2007,26(13):3357-3362.
    [169]Ejfler J, Kobylka M. Titanium complexes supported by bis(aryloxo) ligand:Structure and lactide polymerization activities [J]. Journal of Molecular Catalysis A:Chemical,2006,257(1-2):105-111.
    [170]Grafov A, Vuorinen S, Repo T. New Sn(IV) and Ti(Ⅳ) bis(trimethylsilyl)amides in D,L-lactide polymerization, SEM characterization of polymers [J]. European Polymer Journal,2008,44(11):3797-3805.
    [171]Weyhermuller T, Paine TK, Bothe E, Bill E, Chaudhuri P. Complexes of an aminebis(phenolate)[O,N,O]donor ligand and EPR studies of isoelectronic, isostructural Cr(Ⅲ) and Mn(Ⅳ) complexes[J]. Inorganica Chimica Acta,2002,337(13):344-356.
    [172]Warda SA, Dahlke P, Wocadlo S, Massa W, Friebel C. Copper(11) complexes with tridentate O,N, O-chelate dianions and additive monodentate donor ligands I. Crystal structures and EPR results of urea adducts of N-salicylidene-a-aminoacidato-copper(Ⅱ) compared with N-salicylideneglycinato-thiourea-copper (Ⅱ)[J]. lnorganica Chimica Acta,1998,268(1):117-124.
    [173]Mitra A, DePue LJ, Struss JE, Patel BP, Parkin S, Atwood DA. Mononuclear schiff base boron halides:synthesis, characterization, and dealkylation of trimethyl phosphate[J]. Inorganic Chemistry,2006,45(23):9213-9224.
    [174]Jammi S, Punniyamurthy T. Synthesis, structure and satalysis of tetranuclear copper(II) open cubane for henry reaction on water[J]. European Journal of Inorganic Chemistry,2009,2009(17):2508-2511.
    [175]Cucciolito ME, Del Litto R, Roviello G, Ruffo F. O,N, O-tridentate ligands derived from carbohydrates in the V(IV)-promoted asymmetric oxidation of thioanisole[J]. Journal of Molecular Catalysis A:Chemical,2005,236(1-2):176-181.
    [176]Wei P, Atwood DA, Borates C. Synthesis, reactivity, and cation formation[J]. Inorganic Chemistry,1998,37(19):4934-4938.
    [177]Darensbourg DJ, Karroonnirun O. Stereoselective ring-opening polymerization of rac-lactides catalyzed by chiral and achiral aluminum Half-Salen Complexes [J]. Organometallics,2010,29(21):5627-5634.
    [178]Chen HY, Tang HY, Lin CC. Ring-opening polymerization of1-lactide catalyzed by a biocompatible calcium complex[J]. Polymer,2007,48(8):2257-2262.
    [179]Yu TL, Wu CC, Chen CC, Huang BH, Wu J, Lin CC. Catalysts for the ring-opening polymerization of ε-caprolactone and L-lactide and the mechanistic study[J]. Polymer,2005,46(16):5909-5917.
    [180]Hyon SH, Jamshidi K, Ikada Y. Synthesis of polylactides with different molecular weights [J]. Biomaterials,1997,18(22):1503-1508.
    [181]Kricheldorf HR, Berl M, Scharnagl N. Poly(lactones).9. Polymerization mechanism of metal alkoxide initiated polymerizations of lactide and various lactones[J]. Macromolecules,1988,21(2):286-293.
    [182]罗彦凤.聚(D,L-乳酸)的改性及体外降解和细胞相容性研究[D].重庆:重庆大学,2003:9-11.
    [183]Dove AP, Gibson VC, Marshall EL, White AJP, Williams DJ. A well defined tin(II) initiator for the living polymerisation of lactide[J]. Chemical Communications,2001,37(3):283-284.
    [184]Ma H, Melillo G, Oliva L, Spaniol TP, Englerta U. Aluminium alkyl complexes supported by[O,S,S,O]type bisphenolato ligands:synthesis, characterization and living polymerization of rac-lactide[J]. Dalton Transactions,2005,34(4):721-727.
    [185]Wang J, Cai T, Yao Y, Zhang Y, Shen Q. Ytterbium amides of linked bis(amidinate): synthesis, molecular structures, and reactivity for the polymerization of L-lactide [J]. Dalton Transaction,2007,26(45):5275-5281.
    [186]Wu JC, Huang BH, Hsueh ML, Lai SL, Lin CC. Ring-opening polymerization of lactide initiated by magnesium and zinc alkoxides[J]. Polymer,2005,46(23),9784-9792.
    [187]Chen HY, Huang BH, Lin CC. A highly efficient initiator for the ring-opening polymerization of lactides and ε-caprolactone:a kinetic study[J]. Macromolecules,2005,38(13):5400-5405.
    [188]Casado R, Contel M, Laguna M. Organometallic Gold(Ⅲ) Compounds as catalysts for the addition of water and methanol to terminal alkynes[J]. Journal of American Chemical Society,2003,125(39):11925-11935.
    [189]Pack JW, Kim SH, Park SY, Lee YW, Kim YH. Effects of pressure and temperature on the kinetics of L-lactide polymerization in supercritical chlorodifluoromethane[J]. Macromolecules,2004,37(10):3564-3568.
    [190]Allen SD, Moore DR, Lobkovsky EB. Structure and reactivity of mono-and dinuclear diiminate zinc alkyl complexes [J]. Journal of Organometallic Chemistry,2003,683(1):137-148.
    [191]Hormnirun P, Marshall EL, Gibson VC, White AJP, DJ Williams. Remarkable Stereocontrol in the polymerization of racemic lactide using aluminum initiators supported by tetradentate aminophenoxide ligands[J]. Journal of American Chemical Society,2004,126(9):2688-2689.
    [192]Chen HY, J Zhang, CC Lin, JH Reibenspies. Efficient and controlled polymerization of lactide under mild conditions with a sodium-based catalyst[J]. Green Chemistry,2007,9(9):1038-1040.
    [193]傅献彩.物理化学.北京:高等教育出版社,2006,192.
    [194]Pang X, Chen X, Du H, Wang X, Jing X. Enolic Schiff-base aluminum complexes and their application in lactide polymerization [J]. Journal of Organometallic Chemistry,2007,692(1):5605-5613.
    [195]Witzke DR, Naragan R, Kolstad JJ. Reversible kinetics and thermodynamics of the homopolymerization of L-lactide with2-ethylhexanoic acid tin(Ⅱ) salt[J]. Macromolecules,1997,30(23):7075-7085.
    [196]张健.活化能与频率因子的相关分析[J].锅炉制造,1996,2(4):5-8.
    [197]Grala A, Ejfler J, Jerzykiewicz LB, Sobota P. Chemoselective alcoholysis of lactide mediated by a magnesium catalyst:an efficient route to alkyl lactyllactate. Dalton Transaction,2011,40(16):4042-4044.
    [198]Sarazin Y, Liu B, Roisnel T, Maron L, Carpentier JF. Solvent-free alkaline-earth metal cations:metal... fluorine interactions and ROP catalytic activity [J]. Journal of American Chemical Society,2011,133(23):9069-9087.
    [199]Chamberlain BM, Cheng M, Moore DR, Ovitt TM. Polymerization of lactide with zinc and magnesium-βdiiminate complexes:stereocontrol and mechanism[J]. Journal of American Chemical Society,2001,123(14):3229-3238.
    [200]Gong F, Cheng X, Wang S, Wang Y, Gao Y, Cheng S. Biodegradable comb-dendritic tri-block copolymers consisting of poly(ethyleneglycol) and poly(L-lactide):Synthesis, characterizations, and regulation of surface morphology and cell responses [J]. Polymer,2009,50(13):2775-2785.
    [201]Kipping M, Krahl F, Doring AP, Adler HJ, Kuckling D. Synthesis and characterization of particles consisting of a biodegradable poly(L-lactide) core and a functional hydrophilic shell [J]. European Polymer Journal,2010,46(2):313-323.
    [202]Suriano F, Coulembier O, Dubois P. Synthesis of brush-like copolymers using carbohydrates as initiators:benefits of organic catalysts for the ROP of lactones[J]. Reactive and Functional Polymers,2010,70(10):747-754.
    [203]Collins S. Polymerization catalysis with transition metal amidinate and related complexes[J]. Coordination Chemistry Reviews,2011,255(1-2):118-138.
    [204]Cho J, Baratian S, Kim J, Yeh F, Hsiao BS, Runt J. Crystallization and structure formation of poly(L-lactide-co-meso-lactide) random copolymers:a time-resolved wide-and small-angle X-ray scattering study[J]. Polymer,2003,44(3):711-717.
    [205]Li S, Tenon M, Garreau H, Braud C.Enzymatic degradation of stereocopolymers derived from L,L-, D,L-and meso-lactides[J]. Polymer Degradation and Stability,2000,67(1):85-90.
    [206]吴之中,张政朴,鲁格.聚乳酸的合成降解及在骨折内固定材料的应用[J].高分子通报,2000,(1):73-79.
    [207]李香.希夫碱钛配合物的合成、表征及催化D,L-丙交酯开环聚合的研究[M].重庆:重庆大学,2011:35-136.
    [208]Kricheldorf HR, Kreiser-Saunders I, Boettcher C. Polylactones:31. Sn(ll)octoate-initiated polymerization of L-lactide:a mechanistic study[J]. Polymer,1995,36(6):1253-1259.
    [209]Brizzolara D, Cantow HJ, Diederichs K, Keller E, Domb AJ. Mechanism of the stereocomplex formation between enantiomeric poly(lactide)s[J]. Macromolecules,1996,29(1):191-197.
    [210]Ovitt M, Coates GW Stereochemistry ring-opening polymerization of meso-lactide synthesis of syndiotactic poly(lactic acid)[J]. Journal of American Chemical Society,1999,121(16):4072-4073.
    [211]魏志勇,刘炼,张辉,齐民.环烷氧锡引发z-丙交酯的开环聚合[J].高分子材料与工程,2007,23(2):92-95.
    [212]Eguiburu JL, Fernandez-Berridi MJ, Roman JS. Ring opening polymerisation of Z-lactide initiated by oxyethyl methacrylate-aluminium trialkoxides Part2. End groups exchange[J]. Polymer,2000,41(17):6439-6445.
    [213]Wei Z, Liu L, Qu C, Qi M. Microstructure analysis and thermal properties of L-lactide/ε-caprolactone copolymers obtained with magnesium octoate[J]. Polymer,2009,50(6):1423-1429.
    [214]Ovitt TM, Coates GW. Stereochemistry of lactide polymerization with chiral catalysts:New opportunities for stereocontrol using polymer exchange mechanisms [J]. Journal of American Chemical Society,2002,124(7):1316-1326.
    [215]Thakur KAM, Kean RT, Hall ES, Kolstad JJ, LindgrenTA, Doscotch MA. High-resolution13C and1H solution NMR study of poly(lactide)[J]. Macromolecules,1997,30(8):2422-2428.
    [216]Chabot F, Vert M, Chapelle S. Granger, P. Configurational structures of lactic acid stereocopolymers as determined by13C{H} NMR[J]. Polymer,1983,24(1):53-59.
    [217]Tang Z, Chen X, Yang Y, Pang X, Sun J, Zhang X, Jing X. Stereoselective polymerization of rac-lactide with a bulky aluminum/Schiff base complex[J].Journal of Polymer Science:Part A:Polymer Chemistry,2004,42(23):5974-5982.
    [218]Kasperczyk JE. HETCOR NMR study of poly(rac-lactide) and poly(meso-lactide)[J]. Polymer,1999,40(19):5455-5458.
    [219]Coudane J, Ustariz-Peyret C, Schwach G, Vert M. More about the stereodependence of DD and LL pair linkages during the ring-opening polymerization of racemic lactide [J]. Journal of Polymer Science Part A:Polymer chemistry,1997,35(9):1651-1658.
    [220]Darensbourg DJ, Karroonnirun O. Stereoselective ring-opening polymerization of rac-Lactides catalyzed by chiral and achiral aluminum Half-Salen complexes[J]. Organometallics,2010,29(21):5627-5634.
    [221]Chisholm MH, Iyer SS, McCollum DG, Pagel M. Microstructure of poly(lactide). phase-sensitive HETCOR spectra of poly(meso-lactide), poly(rac-lactide), and atactic poly(lactide)[J]. Macromolecules,1999,32(4):963-972.
    [222]Chamberlain BM, Cheng M, Moore DR, Ovitt TM. Polymerization of lactide with zinc and magnesium β-diiminate complexes:stereocontrol and mechanism [J]. Journal of American Chemical Society,2001,123(14):3229-3238.
    [223]Jeong JH, An YH, Kang YK, Nguyen KQT, Lee H, Novak BM. Synthesis of polylactide using a zinc complex containing (S)-N-ethyl-N-phenyl-2-pyrrolidinemethanamine[J]. Polyhedron,2008,27(1):319-324.
    [224]Kang YK, Nguyen QT, Lee RE, Lee H, Jeong JH. Synthesis and X-ray crystal structure of dichloro [N-{6-methyl-2-pyridyl)methyl}-(S)-1-phenylethylamine]zinc(Ⅱ) and its catalytic application to rac-lactide polymerization[J]. Bulletin of the Korean Chemical Socirty,2009,30(1):257-260
    [225]Hou X, Choy KL, Yan J. Deposition of biodegradable poly (D,L-lactic acid) films using aerosol-assisted method[J]. Surface and Coatings Technology,2008,202(21):5175-5179.
    [226]Viljanmaa M, Sodergard A, Tormalo P. Adhesion properties of lactic acid based hot melt adhesives and their storage stabilityin different packaging applications [J]. International Journal of Adhesion and Adhesives,2002,22(6):447-457.
    [227]Kaihara S, Matsumura S, Mikos AG, Fisher JP. Synthesis of poly(L-lactide) and polyglycolide by ring-opening polymerization [J]. Nature protocols,2007,2(11):2767-2771.
    [228]Hutmacher DW. Scaffold design and fabrication technologies for engineering tissues-state of the art and future perspectives [J]. Journal of Biomaterials Science-Polymer Edition,2001,12(1):107-124.
    [229]杨子彬.基础医学卷—生物医学工程学.黑龙江:黑龙江科学技术出版社,2000:396-397.
    [230]Kari H, Jukka V. Effect of catalyst and polymerization conditions on the preparation of low molecular weight lactic acid polymers[J]. Macromoleculars,1997,30(3):373-379.
    [231]朱莉芳,闫玉华.聚乳酸的合成与降解机理[J].生物骨科材料与临床研究,2006,3(1):42-47.
    [232]李玉宝.生物医学材料.北京:化学工业出版社,2003,265-269.
    [233]Jiang HL, Zhu KJ. Synthesis,characterization and in vitro degradation of a new family of alternative poly(ester-anhydrides)based on aliphatic and aromatic diacids[J]. Biomaterials,2001,22(3):211-218.
    [234]Wu XS, Wang N. Synthesis, characterization, biodegradation, and drug delivery application of biodegradable lactic/glycolic acid polymers [J]. Journal of Biomaterials Science-Polymer Edition,2001,12(1):21-34.
    [235]蔡晴,贝建中,王身国等.乙交酯/丙交酯共聚物的体内外降解行为及生物相容性研究[J].功能高分子学报,2000,13(3):249-254.
    [236]张亮,靳安民,郭志民.三维多孔骨修复材料DL-PLA及β-TCP/DL-PLA的体外降解研究[J].骨与关节损伤杂志,2001,16(3):184-186.
    [237]程侣柏,胡家振,姚蒙正等.精细化工产品的合成及应用.第二版.大连:大连理工大 学出版社,1992,118-121.
    [238]黄美娜.可预防骨不连的骨修复用新型形状记忆聚氨酯—脲的研究[D].重庆:重庆大学,2010:67.
    [239]李永刚.具有形状记忆功能的D,L—聚乳酸基输卵管避孕材料的制备与研究[D].重庆:重庆大学,2009:68.
    [240]朱久进.聚乳酸固载环糊精的制备及细胞相容性研究[D].重庆:重庆大学,2009:63.
    [241]Wu XS, Wang N, Synthesis, characterization, biodegradation, and drug delivery application of biodegradable lactic/glycolic acid polymers. Part Ⅱ:Biodegradation[J]. Journal of Biomaterials Science Polymer Edition,2001,12(1):21-34.
    [242]Moamman T. Rapid colorimetric assay for celluar growth and survial:appication to proliferation cytotoxicity assays [J]. Journal of Immunological Methods,1983,65(1):55-63.
    [243]彭兰兰.静电纺丝法制备PCL/PEG组织工程支架的研究[M].上海:东华大学,2009:2.
    [244]陈际达,刘伟,崔磊等.制备PDLLA组织工程致孔剂的研究[J].中国生物医学工程学报,2006,25(2):197-201.
    [245]史文红,赵成如,金刚.静电纺丝技术在生物医用材料领域中的应用[J].中国医疗器械信息,2006,5(12):17-20.
    [246]邱荣鑫,齐立行,彭丹丽等.ε-己内酯与L-丙交酯共聚物的合成及其电纺丝加工初步研究[J].高分子学报,2008,(12):1142-1148.
    [247]Cao D, Fu Z, Li C. Heat and compression molded electrospun poly(L-lactide) membranes: Preparation and characterization [J]. Materials Science and Engineering B,2011,176(12):900-905.
    [248]An K, Liu H, Guo S, Kumar DNT, Wang Q. Preparation of fish gelatin and fish gelatin/poly(L-lactide) nanofibers by electrospinning[J]. International Journal of Biological Macromolecules,2010,47(3):380-388.
    [249]Rim NG, Kim SJ, Shin YM, Lim DW, Par JHK. Mussel-inspired surface modification of poly(L-lactide) electrospun fibers for modulation of osteogenic differentiation of human mesenchymal stem cells[J]. Colloids and Surfaces B:Biointerfaces,2012,91(1):189-197.
    [250]D'Alessandro D, Battolla B, Trombi L, Barachini S, Cascone MG, Bernardini N, Petrini M, Mattii L. Embedding methods for poly(L-lactic acid) microfiber mesh/human mesenchymal stem cell constructs [J]. Micron,2009,40(5-6):605-611.
    [251]Luu YK, Kim K, Hsiao BS, Chu B, Hadjiargyrou M. Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA-PEG block copolymers. Journal of Controlled Release,2003,89(2):341-353.
    [252]Jose MV, Thomas V, Johnson KT, Dean DR, Nyairo E. Aligned PLGA/HA nanofibrous nanocomposite scaffolds for bone tissue engineering[J]. Acta Biomaterialia,2009,5(1):305-315.
    [253]李晓强.混合、同轴与乳液静电纺丝方法制备活性组织工程支架[D].上海:东华大学,2009:12.
    [254]Choi EJ, SonB, Hwang TS, Hwang EH. Increase of degradation and water uptake rate using electrospun star-shaped poly(D,L-lactide) nanofiber[J]. Journal of Industrial and Engineering Chemistry,2011,17(4):691-695.
    [255]Wang C, ChienHS, Yan KW, Hung CL, Hung KL. Correlation between processing parameters and microstructure of electrospun poly(D,L-lactic acid) nanofibers[J]. Polymer,2009,50(25):6100-6110.
    [256]Fong H, Chun I, Reneker DH. Beaded nanofibers formed during electrospinning[J]. Polymer,1999,40(16):4585-459.
    [257]何晨光,高永娟,赵莉,崔磊,曹谊林.静电纺丝的主要参数对PLGA纤维支架形貌和纤维直径的影响[J].中国生物工程杂志,2007,27(8):46-52.
    [258]Mo XM, Xu CY, Kotaki M, Ramakrishna S. Electrospun P(LLA-CL) nanofiber:a biomimetic extracellularmatrix for smooth muscle cell and endothelial cell proliferation [J]. Biomaterials,2004,25(10):1883-1890.
    [259]Dai Y, Niu J, Yin L, Xu J, Xi Y. Sorption of polycyclic aromatic hydrocarbons on electrospun nanofibrous membranes:Sorption kinetics and mechanism [J]. Journal of Hazardous Materials,2011,192(3):1409-1417.
    [260]刘祖德,藏鸿声,赵定麟.大鼠颅骨细胞体外培养形成钙化结节的光镜电镜研究[J].第二军医大学学报,1995,16(5):466-469.
    [261]Prabhakaran MP, Venugopal J, Ramakrishna S. Electrospun nanostructured scaffolds for bone tissue engineering [J]. Acta Biomaterialia,2009,5(8):2884-2893.
    [262]Xu X, Yang Q, WangY, Yu H. Biodegradable electrospun poly(L-lactide) fibers containing antibacterial silver nanoparticles[J]. European Polymer Journal,2006,42(9):2081-2087.
    [263]Mei F, Zhong J, Yang X, Ouyang X. Improved biological characteristics of poly(L-lactic acid) electrospun membrane by incorporation of multiwalled carbon nanotubes/hydroxyapatite nanoparticles[J]. Biomacromolecules,2007,8(12):3729-3735.
    [264]Wang C, Chien HS, Yan KW, Hung CL, Tsai SJ. Correlation between processing parameters and microstructure of electrospun poly (D,L-lactic acid) nanofibers [J]. Polymer,2009,50(25):6100-6110.
    [265]Reisea M, Wyrw R, Muller U, Zylinski M. Release of metronidazole from electrospun poly(L-lactide-co-D/L-lactide) fibers for local periodontitis treatment[J]. Dental Mterials, 2012,28(2):179-188.
    [266]高伟泉.静电纺丝制备PLLA组织工程微/纳米支架材料[M].吉林:吉林大学,2009:9-10.
    [267]张慎.静电纺丝制备复合引导组织/骨再生材料[D].北京:北京化工大学,2009:17.
    [268]戴建国.生物材料生物相容性的分子生物学研究进展[J].国外生物医学工程分册,2004,27(6):360-364.
    [269]Hllab NJ, Bundy KJ, O'Connor K. Evaluation of metallic and polymeric biomaterial surface enengy and surface roughness characteristics for directed cell adhesion[J]. Tissue Engineering,2001,7(1):55-71.
    [270]Flemming RG, Murphy CJ, Abrams GA. Effects of synthetic mico-and nano-structured surfaces on cell behavior [J]. Biomaterials,1999,20(6):573-588.
    [271]段斌PLGA-壳聚糖/PVA电纺复合膜的制备及性能研究[D].天津:天津大学,2006:43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700