用户名: 密码: 验证码:
纳米硬质合金刀具材料的ELID磨削机理及其切削性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米硬质合金具有比普通硬质合金更高的硬度、强度及韧性,在需要高耐磨性及强度的模具、工具、切削刀具(如微小刀具)等领域具有广泛的应用前景。目前关于纳米硬质合金的研究热点主要集中于纳米粉体制备技术、喷涂技术、纳米块体烧结技术以及和应用有关的材料摩擦磨损性能、刀具切削性能研究等方面,而对纳米硬质合金材料实用化需要解决的精密加工机理及工艺技术的研究相对较少。因此,研究纳米硬质合金的精密加工技术,对促进纳米硬质合金材料的实用化、扩大其应用范围具有十分重要的意义。
     在线电解修整(Electrolytic In-process Dressing, ELID)磨削技术是近年发展起来的一种新的超精密磨削技术,利用在线电解技术在砂轮表面形成氧化膜,从而实现砂轮在线修整。其中,砂轮表面氧化膜的性能对磨削过程及磨削表面质量有至关重要的影响。ELID磨削技术适于硬脆材料等难加工材料的精密磨削,用ELID磨削技术磨削硬质合金取得了很好效果,因此,本文应用ELID磨削技术来进行纳米硬质合金精密磨削技术的研究。
     本文在分析ELID磨削技术国内外研究进展的基础上,研究了ELID磨削砂轮表面氧化膜厚度、磨粒接触刚度计算模型,并进一步研究了纳米硬质合金ELID磨削机理;在综述纳米硬质合金材料及加工技术国内外研究进展的基础上,研究了纳米硬质合金刀具摩擦磨损性能及其切削性能。
     第一,对ELID磨削砂轮表面氧化膜厚度、磨粒接触刚度进行了系统研究。建立了脉冲电解条件下氧化膜厚度计算模型,并进行了仿真与实验验证,从脉冲电解能力这一新角度揭示了ELID磨削砂轮非线性电解的原因;建立了氧化膜中磨粒接触刚度计算模型并进行了仿真分析与实验验证,模型反映了氧化膜中磨粒接触刚度随磨削条件的变化,揭示了ELID磨削砂轮氧化膜自适应磨削过程的规律。
     第二,在氧化膜性能研究基础上,基于最小切削厚度理论研究了纳米硬质合金ELID磨削表面微观形貌形成机理。对最小切削厚度进行了理论分析与仿真,研究了ELID磨削锋锐磨粒微切削机理及钝化磨粒的挤压机理,并进行了仿真与实验验证;研究了纳米硬质合金的ELID磨削机理,由于纳米硬质合金硬度较高,磨削力较大,砂轮氧化膜弹性变形较大,从而实际磨削深度减小,同时由于由于氧化膜刚度的影响,氧化膜包含钝化磨粒,产生纳米挤压作用,使得纳米硬质合金ELID磨削后表面粗糙度较好。
     第三,研究了纳米硬质合金材料的摩擦磨损性能。首先利用球盘式摩擦磨损试验机研究了纳米硬质合金的摩擦系数、耐磨损性,然后利用SEM观察了磨损表面,研究了磨损机理。研究表明,随晶粒度减小,纳米硬质合金摩擦系数有降低的趋势;纳米硬质合金耐磨性随钴含量增加而降低,随钴含量不同,磨损机理显著不同,WC-7Co表现为晶粒脱落,WC-10Co表现为塑性流动。
     第四,应用ELID磨削技术,制备新型纳米硬质合金刀具,并从刀具锋锐度、刀具磨损速率等几个角度对其切削性能进行了综合评价。首先利用ELID磨削技术对切削刃口进行了精密磨削,利用原子力显微镜(AFM)对刃口半径进行了研究;然后利用所研制的纳米硬质合金刀具对白口铸铁、铝基复合材料进行了切削试验,实测了刀具磨损速率,并建立了刀具磨损速率计算模型,对模型进行了初步的仿真与实验分析。研究表明,建立的刀具磨损速率模型预测的后刀面磨损宽度与实验结果相符,表明此模型在实验范围内可以较准确的预测后刀面磨损宽度。
Nano cemented carbide is superior to common cemented carbide in properties, such as high hardness, toughness and strength. Nano cemented carbide has wide use in places such as some hard-wearing die, tool and cutter (for example: microtool), etc. Research focus of the nano cemented carbide is concentrated on preparing technology of nanometer powder, spraying technology, sintering technology and friction and wear per-formance, and cutting performance etc., but research of ultraprecision processing mechanism and technology of the nano cemented carbide is relatively less. So, explore ultraprecision processing technology and mechanism of the nano cemented carbide, to turn the nano cemented car-bide into application, and to expand their application fields have impor-tant significance.
     ELID (Electrolytic In-process Dressing) grinding technology is new technology of ultraprecision grinding, that is developed for the past few years. The oxide film is formed on grinding wheel by electrolytic in-process technology, thus the wheel is in-process dressed. Performances of the oxide film of wheel surface on grinding process and grinding sur-face quality have important influence. It’s good for grinding difficult to machine materials as hard and brittle materials etc. To obtain good results grinding cemented carbide by ELID grinding technology. So, prepare grinding nano cemented carbide by ELID grinding technology.
     In this paper on the basis of research progress in country and oversea for ELID grinding technology, the thickness, contact stiffness of the oxide film on wheel surface in ELID grinding are systematic researched. Fur-ther ELID grinding mechanisms for nano cemented carbide are researched. On the basis of research progress in country and oversea for nano ce-mented carbide and its processing technology, the friction and wear per-formances and cutting capability are researched.
     First, the thickness, and contact stiffness of the oxide film on wheel surface in ELID grinding is systematic researched. When the wheel is electrolyzed by pulse power, set up calculate model of the oxide film thickness and go on theoretical simulation and experimental researches, from the pulse electrolysis capacity this new angle the non-linear elec-trolytic reason in ELID grinding is announced. Set up calculate model of the oxide film contact stiffness and go on simulation and experimental analysis, the characteristic, that oxide film contact stiffness with grinding changing is reflected, self-adapting law of the oxide film in ELID grind-ing has showed.
     Second, from the performances of the oxide film, base on the theory of minimum thickness of cut (MTC) the surface micro topography for-mation mechanisms of nano cemented carbide in ELID grinding are re-searched. MTC is theoretically analyzed and simulated, and microcutting mechanism of sharp grits and burnishing mechanism of passivating grits is theoretically analyzed, simulated and experimentally researched a little. ELID grinding mechanisms of nano cemented carbide are studied, because the hardness is relatively high, and grinding forces are relatively great, make oxide film larger elastic deformation, and actual depth of cut (ADOC) of a grinding wheel is small. At the same time, because the effect of stiffness coefficient of the oxide film, the nano-burnished of the pas-sivating grits included in the oxide film makes ELID grinding surface quality of the nano cemented carbide better.
     Third, friction and wear performance of nano cemented carbide is experimentally researched. The coefficient of friction and hard-wearing of nano cemented carbide are studied by ball-on-disk friction and wear tester, the worn surface is observed by SEM, and the wear mechanism is studied. Results have suggested, as the crystalline grain degree is reduced, the coefficient of friction of nano cemented carbide has the tendency to reduce, and the wearability of nano cemented carbide is reduced with the cobalt contents increase. The cobalt content of nano cemented carbide is different, the wear mechanisms are prominent and different, the WC-7Co shows the crystalline grains come off, the WC-10Co shows the plastic flow.
     Fourth, based on ELID grinding technology new style nano-cutters are manufactured and its cutting performances are generally researched from the sharpness and wear rate of cutter. The blade is accurately ground by ELID grinding technology, and the edge radius on blade is researched by AFM. The white cast iron and aluminium base composite material is cut by nano cemented carbide cutter; the cutter wear rate is measured, set up cutter wear rate model, and carried on preliminary simulation and experimental analysis. Results have showed, good agreements between the predicted and measured tool flank wear land width show the devel-oped tool wear model can accurately predict tool flank wear to some ex-tent.
引文
1高濂,李蔚.纳米陶瓷.化学工业出版社, 2002:1~9
    2韩韦华,许晓静,刘延山.硬质合金刀具材料的研究现状与发展思路.工具技术. 2002, 36 (10):3~7
    3张玉华,张吉生.超细硬质合金研究综述.粉末冶金技术. 1995,13(3):216~221
    4龙坚战,李宁,蒋显全,胥永刚.纳米晶硬质合金的组织性能及应用.机械. 2004,31(1):52~54
    5肖诗纲.刀具材料及其合理选择.机械工业出版社, 1990:1~30
    6佘建芳.德国维迪阿公司超细硬质合金的发展.稀有金属与硬质合金. 2002,30(2):55~56
    7李仁琼.瑞典Sandvik公司硬质合金晶粒度分级标准.硬质合金. 2004(04):9
    8 L. E. McCandlish, B. H. Kear, S. J. Bhatia. Spray Conversion Process for the Production of Nanophase Composite Powders. US Patent: 5352269,1994
    9马学鸣.新型纳米硬质合金的研究.上海大学学报(自然科学版). 2001,6:320
    10林晨光.中国超细和纳米晶WC-Co硬质合金的研究开发概况.中国钨业. 2005(02)
    11 L. E. McCandlish, P. Seegopaul, R. K. Sadangi. Inhibition of WC Grain Growth during Sintering of Nanostructured WC-Co Powder Compacts. Advances in Powder Metallurgy and Particulate Materials. Seattle, WA, USA, 1995, 3:13~17
    12 K. Jia, T. E. Fischer, B. Gallois. Microstructure, Hardness and Toughness of Nnanostructured and Conventional WC-Co Composites. Nanostructured Materials. 1998,10(5):875~891
    13 M. Jain, R. K. Sadangi, W. R. Cannon, et al. Processing of Function-ally Graded WC/Co/diamond Nanocomposites. Scripta Mater. 2001,44(8~9):2099~2103
    14 S. I. Cha, S. H. Hong, G. H. Ha, et al. Microstructure and Mechanical Properties of Nanocrystalline WC-10Co Cemented Carbides. Scripta Mater. 2001,44(8~9):1535~1539
    15 W. Lin, X. D. Bai, Y. H. Ling, et al. Fabrication and Properties of Axisymmetric WC/Co Functionally Graded Hard Metal Via Micro-wave Sintering. Pricm 5: the Fifth Pacific Rim International Confer-ence on Advanced Materials and Processing, Pts 1-5. 2003,423~4:55~58
    16 H. C. Kim, D. Y. Oh, I. J. Shon. Sintering of Nanophase WC-15vol.%Co Hard Metals by Rapid Sintering Process. Int. J. Re-fract. Met. Hard Mater. 2004,22(4~5):197~203
    17 H. C. Kim, I. J. Shon, J. E. Garay, et al. Consolidation and Properties of Binderless Sub-micron Tungsten Carbide by Field-activated Sin-tering. Int. J. Refract. Met. Hard Mat. 2004,22(6):257~264
    18 H. C. Kim, I. J. Shon, I. K. Jeong, et al. Rapid Sintering of Ultra Fine WC and WC-Co Hard Materials by High-frequency Induction Heated Sintering and Their Mechanical Properties. Met. Mater.-Int. 2007,13(1):39~45
    19 H. C. Kim, I. J. Shon, J. K. Yoon, et al. Comparison of Sintering Be-havior and Mechanical Properties between WC-8Co and WC-8Ni Hard Materials Produced by High-frequency Induction Heating Sintering.Met. Mater.-Int. 2006,12(2):141~146
    20 X. Y. Wu, W. Zhang, W. Wang, et al. Electric-discharge Compaction of Nanocrystalline WC-10%Co Powders. Acta. Metall. Sin. 2004,40(9):1000~1004
    21 S. H. Cao, J. Y. Li, X. P. Lin, et al. The Sintering Behavior and Properties of Nano-grained WC-10Co Composite Powders. Rare Metal Mat. Eng. 2005,34(11):1703~1707
    22 X. L. Shi, G. Q. Shao, X. L. Duan, et al. Atomic Force Microscope Study of WC-10Co Cemented Carbide Sintered from Nanocrystalline Composite Powders. Journal of University of Science and Technology Beijing. 2005,12(6):558~563
    23 F. M. Zhang, J. F. Sun, J. Shen. Effects of Carbon Nanotubes Incor-poration on the Grain Growth and Properties of WC/Co Nanocompo-sites. Pricm 5: the Fifth Pacific Rim International Conference on Advanced Materials and Processing, Pts 1-5. 2005,475~479:989~992
    24 G. L. Tan, X. J. Wu, Z. Q. Li. Carbon Nanotubes Strengthened Nanophase WC-Co Hard Alloys. Adv. Eng. Mater. 2006,8(1~2):62~72
    25 G. H. Lee, S. Kang. Sintering of Nano-sized WC-Co Powders Pro-duced by a Gas Reduction-carburization Process. J. Alloys Compd. 2006,419(1~2):281~289
    26 A. Michalski, D. Siemiaszko, J. Jaroszewicz, et al. Nanocrystalline Cemented Carbides Sintered by the Pulse Plasma Method. High Pressure Technology of Nanomaterials, 2006,114:245~250
    27 S. X. Zhao, X. Y. Song, J. X. Zhang, et al. Effects of Size Matching of Raw Powder Particles on Properties of Spark Plasma Sintered Ul-trafine WC-Co Cemented Carbides. Acta. Metall. Sin. 2007,43(1):107~112
    28 K. Jia. The Effect of Fine Microstructure on the Wear and Relevant Mechanical Properties of Cemented Carbide. Doctor of Philosophy. Stevens Institute of Technology. 1996
    29 K. Jia, T. E. Fischer. Sliding Wear of Conventional and Nanostruc-tured Cemented Carbides. Wear. 1997,203:310~318
    30 H. Engqvist, N. Axen. Abrasion of Cemented Carbides by Small Grits. Tribol. Int. 1999,32(9):527~534
    31 J. M. Guilemany, S. Dosta, J. R. Miguel. The Enhancement of the Properties of WC-CoHVOF Coatings Through the Use of Nanostruc-tured and Microstructured Feedstock Powders. Surf. Coat. Tech. 2006,201(3~4):1180~1190
    32 H. Hosokawa, T. Nakajima, K. Shimojima. Friction and Wear Behav-iors of WC-Co/WC-Co Pairs in Air. Pricm 5: the Fifth Pacific Rim International Conference on Advanced Materials and Processing, Pts 1-5. 2007,534~536(Part 2):1193~1196
    33 P. V. Krakhmalev, J. Sukumaran, A. Gaard. Effect of Microstructure on Edge Wear Mechanisms in WC-Co. Int. J. Refract. Met. Hard Mat. 2007,25(2):171~178
    34郭秀云,于思远,陈锡让等.硬质合金磨削力的实验研究.硬质合金. 1996,13(4):201~206
    35刘奎,李艺, X. P. Li等.用立方氮化硼刀具对硬质合金材料进行延性超精密加工.纳米技术与精密工程. 2004(03)
    36 X. B. Liu, B. Zhang, Z. H. Deng. Grinding of Nanostructured Ceramic Coatings: Surface Observations and Material Removal Mechanisms. Int. J. Mach. Tools Manuf. 2002,42(15):1665~1676
    37 Z. H. Deng, B. Zhang, Z. Y. Sun. Morphology of Ground Sur-face/subsurface of Ceramic Coatings by Precision Grinding. J. Chin.Ceram. Soc. 2005,33(3):396~401
    38 Z. H. Deng, B. Zhang, R. Cheng. Investigations of Grinding Forces for Nanostructured WC/12Co Coatings. Advances in Abrasive Tech-nology Viii. 2006,304~305:151~155
    39 H. Huang, R. Irwan, T. Kuriyagawa. A Study on Deformation and Removal Mechanisms of Tungsten Carbide Using Nanoindentation. Advances in Abrasive Technology Viii. 2007,329:385~390
    40张春河,王平,李伟等.硬质合金刀具材料的超精密磨削试验研究.金刚石与磨料磨具工程. 1994, (05):24~26
    41张春河.在线电解修整砂轮精密镜面磨削理论及应用技术的研究.哈尔滨工业大学博士论文. 1996:69~98
    42居冰峰,袁哲俊.在普通磨床上对硬质合金实施精密磨削的实验.机械. 1996,23(03):11~13
    43关佳亮,袁哲俊,杨玉春.钢结硬质合金的精密镜面磨削.哈尔滨理工大学学报. 1998,3(03):38~40
    44关佳亮. ELID镜面磨削的扩大应用及磨削液和砂轮的改进研究.哈尔滨工业大学博士论文. 1998:77~91
    45王平.硬脆材料的ELID精密镜面磨削机理和技术的研究.哈尔滨工业大学博士论文. 1995:36~49
    46王平,唐一平,张飞虎等. TiC系钢结硬质合金镜面微浮凸磨削机理的研究.西安交通大学学报. 1998(05)
    47周曙光,徐中耀,关佳亮.硬质合金超精密镜面磨削的实验研究.机械工艺师. 2000(10):12
    48朱波,袁哲俊,张飞虎等. Elid超精密磨削钢结硬质合金及其表面质量分析.中国机械工程. 2000,11(08):866~868
    49肖强,千学明,沈云波. ELID镜面磨削硬质合金的工艺参数实验研究.制造技术与机床. 2007, (04):75~79
    50 N. Itoh, H. Ohmori. Grinding Characteristics of Hard and Brittle Materials by Fine Grain Lapping Wheels with ELID. J. Mater. Process. Technol. 1996, (62):315~320
    51 H. Ohmori, K. Katahira. Elid-grinding of Microtool and Applications to Fabrication of Microcomponents. Int. J. Mater. Prod. Technol. 2003,18(4~6):498~508
    52 S. W. Lee, H. Z. Choi. A Study of Micro-tool Machining Using Elec-trolytic In-process Dressing and An Evaluation of the Characteristics. Advances in Abrasive Technology Viii. 2003,238~239:35~40
    53 X. Wei, Z. B. Luo. Study on Cutting Performance of Nano-cemented Carbide Cutting Tools. Chin. J. Mech. Eng. 1999,35(1):57~60
    54 B. D. Beake, N. Ranganathan. An Investigation of the Nano Indenta-tion and Nano/micro-tribological Behaviour of Monolayer, Bilayer and Trilayer Coatings on Cemented Carbide. Mat. Sci. Eng. A-Struct. 2006,423(1-2):46~51
    55张立. WC纳米棒强化的硬质合金——PCB微钻的材料与工艺设计.硬质合金. 2001,18(4):192~196
    56张家亮.纳米技术在PCB用微钻中的应用.印制电路信息. 2004,(2):12~18
    57林有希,高诚辉,陈志华.电路板复合材料微小孔加工技术.工具技术. 2006,(6):28~31
    58 H. Ohmori. Ultra-precision Grinding of Optical Materials and Com-ponents Applying ELID (Electrolytic In-Process Dressing). Interna-tional Conference on Optical Fabrication and Testing, SPIE. Tokyo, Japan, 1995,2576:26~46
    59 H. Ohmori, T. Nakagawa. Analysis of Mirror Surface Generation ofHard and Brittle Materials by ELID (electronic in-process dressing) Grinding with Superfine Grain Metallic Bond Wheels. CIRP Annals - Manufacturing Technology. 1995,44(1):287~290
    60张飞虎,张春河,欧海涛等.在线电解修整镜面磨削中砂轮耐用度的研究.哈尔滨工业大学学报. 1999,31(6):9~12
    61 H. S. Lim, K. Fathima, A. Senthil Kumar, et al. A Fundamental Study on the Mechanism of Electrolytic In-process Dressing (ELID) Grind-ing. Int. J. Mach. Tool. Manuf. 2002,42(8):935~943
    62 S. H. Jung, K. Yang, S. C. Soung. Grinding characteristics of con-ventional and ELID methods in difficult-to-cut and hardened brittle materials. J. Mater. Process. Technol. 2004,155~156:1196~1200
    63居冰峰,陈子辰.单片机控制的VMOS管脉冲电源的研制.机电工程,机电一体化论文集, 1997:67~69
    64居冰峰. ELID磨削机理的研究及电解修整脉冲电源的研制.哈尔滨工业大学硕士学位论文. 1996
    65关佳亮,张代军,王凡.实用新型ELID磨削电源的开发.现代制造工程. 2006, (6):109~111
    66北嶋孝之,米子将,塩田将仁.パルス電源によるELID放電複合加工の影響-放電条件の影響.精密工学会大会学術講演会講演論文集, 1999:258~260
    67王平,张春河,李伟等.在线电解修整砂轮的超精密镜面磨削新技术的发展与应用.磨料磨具与磨削. 1994,4(82):13~15
    68王树启,黄红武,尚振涛等.电源参数对氧化锆Elid高速磨削表面粗糙度的影响.机械制造. 2006, 44(505):56~58
    69常新山,马树林,叶怀储等.基于PIC16F877的ELID电源设计开发与应用.电加工与模具.2008, (1):61~63
    70舒展.脉冲电源改进及ELID磨削技术实验研究.天津大学硕士学位论文, 2006:12~22
    71王平,张飞虎.铸铁纤维、铸铁结合剂超硬磨料砂轮在ELID超镜面磨削中的应用.工具技术. 1994,28(5):36~39
    72关佳亮,范晋伟,黄旭东.塑性材料专用ELID磨削金属结合剂砂轮的研制.精密制造与自动化. 2004, (4):36~38
    73 N. Itoh, H. Ohmori. Finishing Characteristics of Brittle Materials by ELID-lap Grinding Using Metal-resin Bonded Wheels. Int. J. Mach. Tools Manuf. 1998,38(7):747~762
    74刈込勝比古,大森整.鋳鉄ボンド砥粒レス砥石による水晶のELIDラップ研削特性.砥粒加工学会誌 . 2002,46(2):104~105
    75 J. H. Liu, Z. J. Pei, G. R. Fisher. ELID Grinding of Silicon Wafers: A Literature Review. Int. J. Mach. Tool. Manuf. 2007,47(3~4):529~536
    76 N. Itoh, A. Nemoto, T. Katoh, et al. Eco-Friendly ELID Grinding Using Metal-Free Electro-Conductive Resinoid Bonded Wheel. JSME Int J., Ser. C. 2004,47(1):72~78
    77 N. Itoh, A. Nemoto, T. Katoh, et al. Eco-friendly ELID Grinding Us-ing Metal Free Electro-conductive Bond Wheel. Proceedings of In-ternational Conference on Leading Edge Manufacturing in 21st Cen-tury. 2003:211~214
    78 N. Itoh, H. Ohmori. Development of Metal-free Conductive Bonded Diamond Wheel for Environmentally-friendly Electrolytic In-process Dressing (ELID) Grinding. New Diam. Front. Carbon Technol. 2004,14(4):227~238
    79根本昭彦.环保型ELID磨削用RB陶瓷结合剂金刚石砂轮的开发.超硬材料工程. 2005,17(4):40~47
    80 Y. Hasegawa, N. Itoh, G. Itoh, et al. Development of ConductiveRubber-Bond Wheel by ELID Grinding(Nanoprecision Elid Grinding). Proceedings of International Conference on Leading Edge Manufac-turing in 21st Century. 2005:231~236
    81長谷川勇治,大部省吾,伊藤伸英. ELID研削用導電性ラバーボンドの開発と加工特性(切削研削研磨加工).山梨講演会講演論文集. 2004:217~218
    82長谷川勇治,大部省吾,伊藤伸英l. ELID研削用導電性ラバーボンド砥石の開発と加工特性.砥粒加工学会誌. 2006,50(1):30~33
    83長谷川勇治,大部省吾,林芳幸. DLC被膜を用いたELID研削用砥石の開発:第二報ELID研削用DLC砥石による加工特性.日本機械学会講演論文集.東北支部, 2005:138~139
    84大森整. ELID研削における研削液供給条件の影響.日本機械学会2001年度年次大会講演論文集, 2001:275~276
    85大森整,林偉民,郭建強. F-0505 ELID研削における研削液供給条件の影響.年次大会講演論文集. 2001:275~276
    86長谷川勇治,南川丈夫,伊藤伸英. ELID研削特性に及ぼす研削液の希釈倍率の影響.山梨講演会講演論文集. 2003:175~176
    87内田光宣,長谷川勇治,伊藤伸英. ELID研削液の特性調査(切削研削研磨加工).山梨講演会講演論文集. 2004:219~220
    88关佳亮,袁哲俊,张飞虎.精密ELID镜面磨削用新磨削液的研制.金刚石与磨料磨具工程. 2000, (2):40~42
    89关佳亮,袁哲俊,张飞虎. ELID精密镜面磨削用新磨削液的研制.哈尔滨工业大学学报. 1998,30(5):69~73
    90仇中君,张飞虎,谢大纲. ELID磨削专用磨削液的研究.工具技术. 2000,34(8):12~14
    91关佳亮,范晋伟.硬脆材料专用ELID磨削液的研制.金刚石与磨料磨具工程. 2003, (6):22~26
    92李洪双,刘本东.塑性材料专用ELID磨削液的研制.航空精密制造技术. 2004,40(6):8~12
    93王树启,黄红武,尚振涛等.在线电解修锐(Elid)磨削液的成膜特性实验研究.精密制造与自动化. 2005, (4):14~17
    94岡敦司,大森整,林偉民. ELID研削における研削液の再生の検討(第1報).精密工学会大会学術講演会講演論文集.2000:541~542
    95岡敦司. ELID研削における研削液の再生の検討(第2報:電気分解性質を利用した効果). 2001年度精密工学会春季大会学術講演会講演論文集. 2001:241~242
    96大森整.環境調和型ELID研削液の研削効果. 2002年度精密工学会春季講演論文集. 2002:526
    97大森整.環境調和型ELID研削技術の開発 .精密工学会大会学術講演会講演論文集. 2002:525
    98 X. M. Liu. Study of High Speend Electrolytic In-process Dressing. Doctor of Philosophy. Stevens Institute of Technology. 2003:26~110
    99 Y. Pan, T. Sasaki. An ELID Grinding System with A Minimum Quan-tity of Liquid. Advances in Abrasive Technology Viii. 2003,238~239:23~28
    100 Z. Q. Zhu, X. H. Wang. Simulation and Analysis of Rigid/foil Elec-trolytic In-process Dressing (ELID) Systems for Grinding. J. Manuf. Sci. Eng. 2004,126(3):565~570
    101大森整,牧野内昭武,岡本雄太. ELID研削切断機の開発および適用効果(第3報:電極形状の影響).精密工学会大会学術講演会講演論文集. 1998:473
    102銭軍.電極レスELID研削による自由曲面加工法の開発 (第4報:円筒内面の鏡面研削特性).型技術. 1999,14:128~129
    103銭軍,大森整,李偉.ダブル電極によるELID研削効果および特性.精密工学会大会学術講演会講演論文集. 1998:356~357
    104勝又真彦,伊藤伸英,大森整. ELIDラップ研削特性に及ぼす電極面積の影響.精密工学会大会学術講演会講演論文集. 2000:337~338
    105伊藤伸英,大森整,長谷川勇治. ELID電解特性に及ぼす電極形状の影響.精密工学会大会学術講演会講演論文集. 2002:538
    106 A. G. Mamalis, M. Horvath, A.I. Grabchenko. Diamond Grinding of Super-hard Materials. J. Mater. Process. Technol. 2000, (97):120~125
    107 M. M. Islam, A. Senthil Kumar, S. Balakumar, et al. Performance Evaluation of A Newly Developed Electrolytic System for Stable Thinning of Silicon Wafers. Thin Solid Films. 2006,504(1~2):15~19
    108三石憲英. ELID研削における箔電極の効果. 2002年度精密工学会春季講演論文集. 2002:527~528
    109根本昭彦,佐々木哲夫,伊藤伸英. ELID研削における箔電極の効果:第2報研削切断への適用.精密工学会大会学術講演会講演論文集. 2002:394~396
    110 J. Qian, W. Li. Precision Internal Grinding with a Metal-bonded Diamond Grinding Wheel. J. Mater. Process. Technol. 2000,105(1):80~86
    111 H. Ohmori, Y. Yamagata. Development of Large Ultraprecision Aspheric Optics Elid-grinder Integrated and Computerized: "L-UAOE-GIC" System. Abrasives. 2000, (n APR./MAY):31~36
    112 J. Qian, H. Ohmori. Internal Mirror Grinding with a Metal/metal-resin Bonded Abrasive Wheel. Int. J. Mach. Tool. Manuf. 2001,41(2):193~208
    113大森整,銭軍,李偉.電極レスELID研削による円筒内面仕上げ方式と効果.砥粒加工学会誌. 1999,43(12):557~558
    114郭建強,大森整,林偉民.電極レスマイクロELID研削の効果.精密工学会大会学術講演会講演論文集, 2000:542~543
    115 H. Ohmori. Developmental History and Variation of Precision and Efficient Machining Assisted with Electrolytic Process Principle and Applications. The World Advances in ELID-Grinding Technolo-gies:Trends on High Efficiency and Essential Processing. Changsha, China, 2008:1~4
    116 J. B. Richard. Computer Control and Process Monitoring of Electro-lytic In-process Dressing of Metal Bond Fine Diamond Wheels for NIF Optics. SPIE, 1999,3782:61~69
    117 H. Chen, J. Li, C. M. L. James. Anodic Metal Matrix Removal Rate in Electrolytic In-process Dressing I: Two-dimensional Modeling. J. Appl. Phys. 2000,87(6):3151~3158
    118 R. Pavel, M. Pavel, L. Marinescu. Investigation of Pre-dressing Time for ELID Grinding Technique. J. Mater. Process. Technol. 2004,149(1~3):591~596
    119 J. Li, C. M. L. James. Mechanisms of Sawing of BK7 Glass by Elec-trolytic In-process Dressing. J. Mater. Process. Technol. 2005,168(3):377~389
    120 B. J. Ma, Y. Q. Zhu, D. J. Stephenson. Experimental Study on the Growth Behaviors of Oxide Layers in ELID Pre-dressing Process. Materials Science Forum. 2006,532-533:588~591
    121朱育权,马保吉, D.J. Stephenson. ELID超精密磨削砂轮表面氧化膜形成过程的建模和仿真.工具技术. 2008,42(5):11~14
    122趙崇禮 ,陳谷良,許瓊姿等. ELID線上削銳技術中金屬氧化膜之特性研究.第三屆奈米工程暨微系統技術研討會.台湾工研院, 1999,2:43~50
    123关佳亮,郭东明,袁哲俊. Elid镜面磨削中砂轮生成氧化膜特性及其作用的研究.机械工程学报. 2000,36(05):90~92
    124 C. Zhang, H. Ohmori, I. Marinescu, et al. Grinding of Ceramic Coat-ings with Cast Iron Bond Diamond Wheels. A Comparative Study: ELID and Rotary Dresser. Int. J. Adv. Manuf. Technol. 2001,18(8):545~552
    125朱波.钢结硬质合金及钛合金ELID磨削技术及机理的研究.哈尔滨工业大学博士论文. 2001:44~70
    126 K. Fathima, A. S. Kumar, M. Rahman, et al. A Study on Wear Mecha-nism and Wear Reduction Strategies in Grinding Wheels Used for ELID Grinding. Wear. 2003, (254):1247~1255
    127 T. Kato. Friction and Wear Properties of an ELID-grinding Wheel based on CCD Microscope Observation. Key Engineering Materials. 2003,238:307
    128 Y. Dai, H. Ohmori, W. Lin, et al. A Fundamental Study on Optimal Oxide Layer of Fine Diamond Wheels During ELID Grinding Process. Advances in Abrasive Technology Viii. 2006,304~305:176~180
    129金卫东.硬脆材料氮化硅陶瓷的ELID超精密磨削技术研究.天津大学博士学位论文. 2005:1~110
    130 P. Wang, W. F. Zhao, B.F. Ju, et al. Affection Mechanism of the Electrolytic Oxidate Film on the Surface of Cast Iron Wheel in ELID Mirror Grinding. Jingangshi yu Moliao Moju Gongcheng. 1996, (6):25~28
    131张春河.在线电解修整砂轮精密镜面磨削理论及应用技术的研究.哈尔滨工业大学博士论文. 1996:17~51
    132長谷川勇治,佐々木崇,伊藤伸英.硬脆材料のELID研削特性:電解被膜厚さの影響(オーガナイズドセッション:切削研削加工2).山梨講演会講演論文集. 2001:155~156
    133 C. Z. Ren, J. H. Hua, Z. Y. Wu, et al. Influence of the State of Pas-sivating Films in Electrolytic In-process Dressing (ELID) gGrinding Process. Key Engineering Materials. 2006,304-305:24~28
    134 C. Z. Ren, X. J. Guo, L. W. Yuan. A Study on the Mechanism of the Electrolytic In-process Dressing (ELID) Grinding Using Molecular Dynamics (MD) and Finite Element (FE). Advances in Abrasive Technology Viii. 2007,329:123~130
    135 H. Y. Kim, J. H. Ahn, Y. H. Seo. Study on the Estimation of Wheel State in Electrolytic In-process Dressing (ELID) Grinding. IEEE In-ternational Symposium on Industrial Electronics. Pusan, 2001,3:1615~1618
    136 H. Y. Kim, J. H. Ahn, Y. H. Seo. In-process Measurement of ELID Grinding Status - Thickness of Insulating Layer. Ksme International Journal. 2001,15(9):1268~1273
    137高大晓. ELID磨削钝化膜主动控制技术研究.天津大学博士学位论文. 2008:20~50
    138 H. Ohmori. Utilization of Nonlinear Conditions in Precision Grinding with ELID (Electrolytic in-Process Dressing) for Fabrication of Hard Material Components. CIRP Ann. - Manuf. Technol. 1997,46:261~264
    139 A. J. Bard, L. R. Faulkner.电化学方法原理及应用.谷林锳 ,吕鸣祥,宋湿哲,许淳淳译.化学工业出版社, 1986:1~42
    140 S.马尔金.磨削技术理论与应用.蔡光起,巩亚东,宋贵亮译.第2版.东北大学出版社, 2002.8:1~260
    141K. Fathima, M. Rahman, A. S. Kumar, et al. Modeling of Ul-tra-Precision ELID Grinding. J. Manuf. Sci. Eng. 2007,129:296~302
    142H. Chen. Material and Process Issues in Electrolytic In-Process Dressing(ELID)-Grinding. Doctor of Philosophy. University of Rochester. 1998:17~25
    143大森整. ELID研削加工技術 .工業調查会,平成12年:1~187
    144 A. Broese van Groenou. Grinding of Ferrites, Some Mechanical and Magnetic Aspects. IEEE Transactions on Magnetics. 1975, Mag-11(5):1446~1451
    145陈日曜.金属切削原理.第2版.机械工业出版社, 1998:187~195
    146蔡松崎,李伟善, J. L. Luo. Fe在水溶液中形成钝化膜的结构和性质.中国腐蚀与防护学报. 2003,23(3):187~192
    147景志红,吴世华.室温研磨固相反应法制备γ-Fe 2 O 3纳米粉体及其气敏性能研究.无机化学学报. 2003,22(3):483~487
    148孟哲,贾振斌,魏雨.非晶态δ-FeOOH液相合成纳米级α-Fe 2 O 3粉体的历程研究.化学学报. 2004,62(5):485~488
    149林河成.优良的研磨剂——稀土抛光粉.世界有色金属. 1995,(9):36~37
    150 Z. J. Yuan, Y. X. Yao, M. Zhou. Lapping of Single Crystal Diamond Tools. CIRP Ann. - Manuf. Technol. 2003,52(1):285~288
    151 S. M. Son, H. S. Lim, J. H. Ahn. The Effect of Vibration Cutting on Minimum Cutting Thickness. Int. J. Mach. Tool. Manuf. 2006,46(15):2066~2072
    152 C. F. Cheung. Influence of Cutting Friction on Anisotropy of Surface Properties in Ultra-precision Machining of Brittle Single Crystals.Scripta Mater. 2003,48(8):1213~1218
    153 N. Ikawa, S. Shimada, H. Tanaka. Minimum Thickness of Cut in Mi-cromachining. Nanotechnol. 1992,3(1):6~9
    154 S. Shimada, N. Ikawa, H. Tanaka, et al. Feasibility Study on Ultimate Accuracy in Microcutting Using Molecular Dynamics Simulation. CIRP Ann. - Manuf. Technol. 1993,42(1):91~94
    155 Z. J. Yuan, M. Zhou, S. Dong. Effect of Diamond Tool Sharpness on Minimum Cutting Thickness and Cutting Surface Integrity in Ultra-precision Machining. J. Mater. Process. Technol. 1996,62(4):327~330
    156 S. M. Son, H. S. Lim, J. H. Ahn. Effects of the Friction Coefficient on the Minimum Cutting Thickness in Micro Cutting. Int. J. Mach. Tool. Manuf. 2005,45(4-5):529~535
    157 X. Liu, R. E. DeVor, S. G. Kapoor. An Analytical Model for the Pre-diction of Minimum Chip Thickness in Micromachining. J. Manuf. Sci. Eng. 2006,128(2):474~481
    158 B. P. O'Connor, E. R. Marsh, J. A. Couey. On the Effect of Crystal-lographic Orientation on Ductile Material Removal in Silicon. Precis. Eng. 2005,29(1):124~132
    159 M. P. Vogler, R. E. DeVor, S. G. Kapoor. On the Modeling and Analysis of Machining Performance in Micro-endmilling, Part i: Surface Generation. J. Manuf. Sci. Eng. 2004,126(4):685~694
    160张幼桢.金属切削理论.航空工业出版社, 1988:366~367
    161 M. Yoshioka. Waveform of Grinding Force for Single Grain Grind-ing-grinding of a Brittle Material by a Single Abrasive Grain (2nd report). Journal of Japan Society of Precision Engineering. 1993,59(03):515~520
    162 Y. Ohbuchi, T. Matsuo. Force and Chip Formation in Single-grit Or-thogonal Cutting with Shaped CBN and Diamond Grains. Annals of CIRP, 1991,40:327~329
    163蔡光起,郑焕文.重负荷磨削的单颗磨粒磨削试验研究.磨料磨具与磨削. 1985,(5):1~8
    164冯宝富,赵恒华,蔡光起等.高速单颗磨粒磨削机理的研究.东北大学学报(自然科学版). 2002,23(5):470~473
    165 K. Y. Li, Z. F. Zhou, I. Bello, et al. Study of Tribological Performance of ECR-CVD Diamond-like Carbon Coatings on Steel Substrates: Part 1. The Effect of Processing Parameters and Operating Conditions. Wear. 2005,258(10):1577~1588
    166侯亚奇,庄大明,张弓.润滑条件下金刚石薄膜及石墨/金刚石复合薄膜的摩擦学性能.摩擦学学报. 2002,22(1):1~5
    167廖家轩,夏立芳,孙跃.氮和碳等离子体基离子注入铝合金表面氮化铝/类金刚石碳膜改性层的摩擦学特性.摩擦学学报. 2001,21(5):324~329
    168 E. Konca, Y. T. Cheng, A. M. Weiner. Effect of Test Atmosphere on the Tribological Behaviour of the Non-hydrogenated Diamond-like Carbon Coatings Against 319 Aluminum Alloy and Tungsten Carbide. Surf & Coat Tech. 2005,200(5-6):1783~1791
    169 M. Schmitt, D. Paulmier, H. T. Le. Influence of Diamond Crystal Orientation on Their Tribological Behaviour Under Various Envi-ronments. Thin Solid Films. 1999,343~344:226~229
    170 N. P. Suh, M. Mosleh. Minimum Coefficient of Friction: What Is It? CIRP Ann. - Manuf. Technol. 1994,43(1):491~495
    171 G. Q. Cai, B. F. Feng, Jin.T. Study on the Friction Coefficient in Grinding. J Mater Process Tech. 2002,129:25~29
    172 V. Siva, Y. L. Steven. Effects of Ploughing Forces and Friction Coef-ficient in Microscale Machining. J Manuf Sci E-T ASME. 2007,129:274~280
    173 H. A. Kishawy, M. A. Elbestawi. Effects of Process Parameters on Material Side Flow During Hard Turning. Int. J. Mach. Tool. Manuf. 1999,39(7):1017~1030
    174 R. Komanduri, N. Chandrasekaran, L. M. Raff. Effect of Tool Ge-ometry in Nanometric Cutting: A Molecular Dynamics Simulation Approach. Wear. 1998,219(1):84~97
    175 D. A. Lucca, Y. W. Seo. Effect of Tool Edge Geometry on Energy Dissipation in Ultraprecision Machining. CIRP Ann. - Manuf. Technol. 1993,42(1):83~86
    176 W. Grzesik. A Revised Model for Predicting Surface Roughness in Turning. Wear. 1996,194:143~148
    177 J. Kaczmarek. Principles of Machining by Cutting, Abrasion and Erosion. Peter Peregrinus,1976
    178 M. C. Shaw. Metal Cutting Principles–Oxford Series on Advanced Manufacturing. Clarendon Press, University of Oxford, 2005
    179 T. Sata, M. C. Shaw. Behavior of Cellular Materials Undergoing Plastic Flow. CIRP Ann. - Manuf. Technol. 1964,12(1):25~28
    180 A. Bolshakov, G. M. Pharr. Influences of Pile up on the Measurement of Mechanical Properties by Load and Depth Sensing Indentation Techniques. J. Mater. Res. 1998,13:1049~1058
    181 W. C. Oliver, G. M. Pharr. Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology. J. Mater. Res. 2004,19(1):3~20
    182毛善锋,汤铭权,万迪慧.超声振动切削时硬质合金刀具磨损机理研究.东南大学学报. 1995,25(3): 51~54
    183田胜元,萧曰嵘.实验设计与数据处理.中国建筑工业出版社, 1988:146~169

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700