用户名: 密码: 验证码:
低渗砂岩储层孔隙结构特征及孔隙演化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以三类具有不同盆地地温背景、埋藏史条件与岩性特征的低渗砂岩储层为研究对象(苏北盆地沙埝地区古近系阜宁组阜三段储层、三塘湖盆地牛圈湖地区侏罗系西山窑组西二段储层与鄂尔多斯盆地延安地区二叠系石盒子组盒八段储层),应用铸体薄片、扫描电镜、液氮吸附法微孔测试、粒度分析、x衍射、阴极发光、电子探针、常规压汞、恒速压汞等技术与方法,分析、对比了低渗储层孔隙与喉道的分布特征。在筛选和建立较为准确的孔隙度演化计算方法的基础上,结合储层成岩作用进行了孔隙度演化史恢复。最后,分析了三类低渗储层孔隙度演化特征,对其影响因素进行了探讨。取得以下认识:
     (1)不同砂岩类型低渗储层均为各种成因的孔喉并存,孔隙、喉道半径分布范围也往往较大,但半径较大的孔隙与喉道分布频率低,通常是造成其低孔低渗的主要原因;是否含有相对粗大喉道及粗大喉道的半径与数量是渗透率的决定因素;微孔在低渗储层的孔隙中占据相当比例,且随储层物性变差,微孔占总孔隙度的比例显著提高:由于小于0.1μm的微孔仍是天然气的有效储集空间,因此,微孔是低渗-超低渗天然气储层孔隙的重要组成部分。
     (2)不同砂岩类型低渗储层初始孔隙度存在一定差别,但与储层现今物性面貌相比,初始孔隙度的差别相对较小:除部分早期碳酸盐胶结物发育的储层外,大部分储层的主要孔隙度损失由压实作用造成;不同砂岩类型的低渗储层均经受了不同强度溶蚀作用的改造,溶蚀强度由主要溶蚀期酸性介质的浓度及孔隙渗流能力所决定;胶结损失孔隙度存在较大差异,但除成岩早期形成的碳酸盐胶结物外,其余胶结物共同的作用均是充填孔隙、堵塞喉道,使储层致密化。
     (3)较高地温场、短深埋期、早期弱碱性成岩环境下的长石砂岩类储层,早期碳酸盐胶结物一般沉淀于压实快速减孔阶段,抑制压实的同时为后期溶蚀提供了物质基础;较高地温场下,有机质成熟形成的有机酸对碳酸盐胶结物与骨架颗粒的溶蚀形成了较为发育的扩大粒间孔;长石溶蚀产物就地沉淀形成的高岭石等粘土矿物沉淀于孔隙较为狭窄处或充填喉道,使储层在具有较高孔隙度的同时,渗透率却较低。
     (4)低地温场、中等深埋期、酸性成岩环境(煤系地层)的岩屑砂岩类储层,缺乏早期碳酸盐胶结物对骨架颗粒的支撑,塑性岩屑在压实过程中强烈变形,导致孔隙度随埋深增大迅速减小:低地温场下有机质程成熟度低,提供的有机酸有限,加之孔隙渗流条件较差,胶结作用和溶蚀作用均较弱。压实作用往往是造成此类储层低渗的主要原因。
     (5)中等地温场、长深埋期、酸性成岩环境下的石英砂岩类储层,压实快速减孔阶段形成的少量石英次生加大边抑制压实的效果非常有限;深埋期长时间较高的地温环境使骨架颗粒溶蚀产物沉淀为更为稳定的硅质胶结物和粘土矿物,造成粒间孔隙大量封闭的同时,又充填了部分溶孔。在压实损失孔隙度较大的情况下,长时间较高地温条件下石英次生加大的普遍发育与粘土矿物和含铁碳酸盐的充填,往往造成此类储层为超低渗储层。
Taking three low-permeability reservoirs with different palaeogeothermal background, burial history and different sandstone classifications as the research object, which is Funing formation of Early Paleogene in Shanian, North Jiangsu basin, Xishanyao formation of Middle Jurassic in Niujuanhu, Santanghu basin, and Shihezi formation of Middle Permian in Yan'an, Erdos basin, with the technique of casting sections, staining, scanning electron microscopy, liquid nitrogen adsorption method micropore testing, grain size analysis, X-diffraction, electron microprobe analysis, energy dispersive analysis, mercury penetration and rate-controlled mercury penetration, the microscopic pore structure of low-permeability sandstone reservoirs is studied. Base on the accurace method of model analysis, the porosity evolution pathways of the three low-permeability reservoirs are studied, and their influential factors are analysed.
     The conclusions are in following:
     (1) There are pores and pore-throats of various genetic types in s low-permeability reservoirs with different sandstone classifications, and their radius changes in a large scale. The quantities of relatively large pore-throats are usually small, which is the main reason for their low-permeability. The results of rate-controlled mercury penetration show, the permeability of sandstone reservoirs is mainly controlled by the quantity and radius of relatively large pore-throats. The micropores occupy a considerable proportion of porosity in low-permeability reservoirs, and their proportions are obviously mproving with reservoir physical property being worse. As a sort of effective accumulating space of natural gas, micropores are important part of porosity in ultra low-permeability natural gas reservoirs.
     (2) There are some differences of original porosity in different sandstone reservoirs, which are lower than today. The major porosity losses of most reservoirs are caused by compaction, except those being cemented by carbonate in early phase. Different sandstone reservoirs suffered dissolution more or less, which is controlled by organic acid concentration and filtrate capability of pore network. There are great differences of cementational porosity losses in sandstone reservoirs, all cement will fill pores and block pore-throat to make reservoirs densifying, except carbonate cement in early phase.
     (3) The reservoir of arkose sandstone with the relatively high palaeogeothermal, short period of large buried-depth, week-alkaline environment in early diagenetic phase, is offen cemented by carbonate in the smaller depth, where the porosity declined sharply with depth. The carbonate cementation can retard compation, and provides dissolution mass. In the relatively high palaeogeothermal condition, organic acid supplying by organic maturation dissolved carbonate and framework grains, and formed substantial secondary porosity. The products of dissolution of aluminum-silicate framework grains, are precipitated in the pore network as an authigenic kaolinite, what results in a significant decrease in permeability of reservoir.
     (4) The reservoir of lithic sandstone with relatively low palaeogeothermal, moderate period of large buried-depth, acidic diagenetic environment (coal measure strata) in early diagenetic phase, is offen free of carbonate cements. The ductile lithic strongly deformed in compacting process, and the porosity decreased sharply with depth.In the relatively low palaeogeothermal condition, organic acid supplying by organic maturation is limited, the dissolution and cementation are both relatively week in the more closed pore network caused by intensive compaction.
     (5) The reservoir of quartzose sandstone with moderate palaeogeothermal, long period of large buried-depth, because of the late time of quartz overgrowth formation, porosity decreased sharply with depth. The quartz and authigenic clay mineral are precipitated from the dissolution mass of framework grains, which makes intergranular pores consuming drasticly, and filled part of secondary porosity. In the condition of substantial porosity loss in compacting process, the quartz overgrowth and clay mineral filled primary and secondary porosity severely, what makes the reservoir be ultra-low-permeability usually.
引文
[1]胡文瑞.中国低渗透油气的现状与未来[J].中国工程科学,2009,11(8):29-37
    [2]胡文瑞,何白新.鄂尔多斯盆地油气勘探大发展启示[J].中国石油勘探,2001,6(4):1-4
    [3]胡文瑞.鄂尔多斯盆地油气勘探开发理论与技术[M].北京:石油工业出版社,2000:5-8
    [4]刘震,刘静静,王伟,等.低孔渗砂岩石油充注临界条件实验-以西峰油田为例[J].石油学报,2012,33(6):996-1002
    [5]罗明高,黄健全,唐洪.油气在储层孔喉中的微观运移机理探讨[J].沉积学报,1999,17(2):269-272
    [6]罗明高,黄健全,唐洪.油气聚集微观定量模型[J].沉积学报,2000,18(1):151-156
    [7]杨正明,张英芝,郝明强.低渗透油田储层综合评价方法[J].石油学报,2006,27(2):64-67
    [8]张文达,朱盘良,梁舒.砂岩压汞毛细管压力曲线评价储层的新参数及地质意义[J].石油实验地质,1994,16(4):384-388
    [9]杨通佑,范尚炯,陈元千,等.石油及天然气储量计算方法[M].石油工业出版社,1990:49-62
    [10]孙卫,史成恩,赵惊蛰,等.X-CT扫描成像技术在特低渗透储层微观孔隙结构及渗流机理研究中的应用—以西峰油田庄19井区长82储层为例[J].地质学报,2006,80(5):775-781
    [11]王夕宾,钟建华,王勇,等.濮城油田南区沙二上4-7砂层组储层孔隙结构及与驱油效率的关系[J].应用基础与工程科学学报,2006,14(3):324-333
    [12]沈平平.油水在多孔介质中的运动理论和实践[M].北京:石油工业出版社,2000:17-18
    [13]毛志强,高楚桥.孔隙结构与含油岩石电阻率性质理论模拟研究[J].石油勘探与开发,2000,27(2):87-93
    [14]胡雪涛,李允.随机网络模拟研究微观剩余油分布[J].石油学报,2000,21(7):46-53
    [15]张龙海,周灿灿,刘国强,等.孔隙结构对低孔低渗储集层电性及测井解释评价的影响[J].石油勘探与开发,2006,33(6):671-677
    [16]Paola R, Andrea O, Ornella B,et al. Depositional setting and diagenetic processes and their impact on the reservoir quality in the late Visean-Bashkirian Kashagan carbonate platform (Pre-Caspian Basin, Kazakhstan)[J].AAPG Bulletin,2010,v94(9):1313-1348
    [17]Anjos S, Luiz F, Souza R, et al. Depositional and diagenetic controls on the reservoir quality of Lower Cretaceous Pendencia sandstones, Potiguar rift basin, Brazil[J].AAPG Bulletin,2000,v84(11):1719-1742
    [18]Walderhaug O, Eliassen A, and Aase N. Prediction of permeability in quartz-rich sandstones:example from the Norwegian continental shelf and the Fontainebleau sandstone[J]. Journal of Sedimentary Research,2012,v82(12):899-912
    [19]Dullien,F.A.L,Dhawn,G.K.,Bivariate Pore size distribution of some sandstone[J], Jounal of Colloid and Interface Science,1975,v52(1):129-135
    [20]Netto A.S. Pore-size distribution in sandstones[J]. AAPG Bulletin,1993,v77(6):1101-1104
    [21]Voloitin Y, Looyestijn W J, Slijkerman W, et al. A practical approach to obtain primary drainage capillary pressure curves from NMR core and log data[J]. Petrophysics,2001, v42 (4):334-343
    [22]Nabawy B, Geraud Y, Rochette P, et al. Pore-throat characterization in highly porous and permeable sandstonesfJ]. AAPG Bulletin,2009,v93(6):719-739
    [23]Milner M, Mclin R,Petriello J, et al.2010. Imaging texture and porosity in mudstones and shales:Comparison of secondary and ionmilled backscatter SEM methods[R]. Canadian Unconventional Resources and International Petroleum Conference, CSUG/ SPE 138975, Alberta, Canada,2010:19-21
    [24]Nelson P. Pore-throat sizes in sandstones, tight sandstones, and shales[J]. AAPG Bulletin, 2009, v93(3):329-340
    [25]Capm W. Pore-throat sizes in sandstones, tight sandstones, and shales:Discussion[J]. AAPG Bulletin,2011, v95(8):1443-1447
    [26]Attwood D. Nanotomography comes of age[J].Nature,2006,v442 (10):642-643
    [27]邹才能,朱如凯,白斌,等.中国油气储层中纳米孔首次发现及其科学价值[J].岩石学报,2011,27(6):1857-1864
    [28]邹才能,李建忠,董大忠,等.中国首次在页岩气储集层中发现丰富的纳米级孔隙[J].石油勘探与开发,2010,37(5):513
    [29]邹才能,董大忠,王社教,等.中国页岩气形成机理、地质特征及资源潜力[J].石油勘探与开发,2010,37(6):641-653
    [30]应凤祥,杨式升,张敏,等.激光扫描共聚焦显微镜研究储层孔隙结构[J].沉积学报,2002,20(1):75-79
    [31]王瑞飞,陈明强,孙卫.鄂尔多斯盆地延长组超低渗透砂岩储层微观孔隙结构特征研究[J].地质论评,2008,54(2):270-278
    [32]王忠东,肖立志,刘宴堂.核磁共振弛豫信号多指数反演新方法及其应用[J].中国科学(D辑),2003,33(4):323-332
    [33]王为民,郭和坤,叶朝辉.利用核磁共振可动流体评价低渗透油田开发潜力[J].石油学报,2001,22(6):40-44
    [34]潘高峰,刘震,赵舒,等.砂岩孔隙度演化定量模拟方法-以鄂尔多斯盆地镇泾地区延长组为例[J].石油学报,2011,32(2):249-256
    [35]张荣虎,姚根顺,寿建峰,等.沉积、成岩、构造一体化孔隙度预测模型[J].石油勘探与开发,2011,38(2):145-151
    [36]孟元林,王志国,杨俊生,等.成岩作用过程综合模拟及其应用[J].石油实验地质,2003,25(2):211-220
    [37]孟元林,姜文亚,刘德来,等.储层孔隙度预测与孔隙演化史模拟方法探讨-以辽河拗陷双清地区为例[J].沉积学报,2008,26(5):780-788
    [38]渠冬芳,姜振学,刘惠民,等.关键成藏期碎屑岩储层古孔隙度恢复方法[J].石油学报,2012,33(3):404-413
    [39]何东博,应凤祥,郑浚茂,等.碎屑岩成岩作用数值模拟及其应用[J].石油勘探与开发,2004,31(6):66-68
    [40]王国亭,何东博,李易隆,等.吐哈盆地巴喀气田八道湾组致密砂岩储层分析及孔隙度演化定量模拟[J].地质学报,2012,86(11):1847-1856
    [41]Ehrenberg S, Nadeau P, Steen (?). Petroleum reservoir porosity versus depth:Influence of geological age[J]. AAPG Bulletin,2009,v93(10):1281-1296
    [42]Bloch S, Lander R H, Bonnell L. Anomalously high porosity and permeability in deeply buried sandstone reservoirs:Origin and predictability [J]. AAPG Bulletin,2002, v 86(2): 301-328
    [43]Ajdukiewicz J M, Nicholson P H, Esch. W L. Prediction of deep reservoir quality using early diagenetic process models in the Jurassic Norphlet Formation, Gulf of Mexico[J]. AAPG Bulletin,2010, v 94(8):1189-1227
    [44]Houseknecht D W. Assessing the relative importance of compaction processes and cementation to reduction of porosity in sandstones[J]. AAPG Bulletin,1987, v71(6):633-642
    [45]Houseknecht D W. Intergranular pressure solution in four quartzose sandstones[J]. Journal of Sedimentary Petrology,1988,v58(2):228-246
    [46]Paola R, Andrea O, Ornella B,et al. Depositional setting and diagenetic processes and their impact on the reservoir quality in the late Visean-Bashkirian Kashagan carbonate platform (Pre-Caspian Basin, Kazakhstan) [J].AAPG Bulletin,2010, v 94(8):1313-1348
    [47]Morad S, Khalid A, Ketzer J. The impact of diagenesis on the heterogeneity of sandstone reservoirs:A review of the role of depositional facies and sequence stratigraphy [J].AAPG Bulletin,2010, v 94(8):1267-1309
    [48]Rick C, Tony M, Robert B. Reservoir quality modeling of tight-gas sands in Wamsutter field:Integration of diagenesis, petroleum systems, and production data [J].AAPG Bulletin,2010, v 94(8):1229-1266
    [49]Makowitz A, Milliken K. Quantification of brittle deformation in burial compaction, frio and mount Simon formation sandstones. [J]. Journal of Sediment Research.2003,v73(6): 1007-1021
    [50]Sylvia M C, Anjos D, Luiz F,et al. Depositional and diagenetic controls on the reservoir quality of Lower Cretaceous Pendencia sandstones, Potiguar rift basin, Brazil [J].AAPG Bulletin,2000, v 84(11):1719-1742
    [51]Lundegard P D. Sandstone porosity loss-a "big picture" view of the importance of compaction[J].AAPG Bulletin,1992, v 62(2):250-260
    [52]Wilson J C, McBride E F. Compaction and porosity evolution of Pliocene sandstones, Ventura basin, California:reply[J].AAPG Bulletin,1989, v 73(10):1280
    [53]Wilson J C, McBride E F. Compaction and porosity evolution of Pliocene sandstones, Ventura basin, California[J].AAPG Bulletin,1988, v 72(6):664-681
    [54]Houseknecht D W. Assessing the relative importance of compaction processes and cementation to reduction of porosity in sandstones:reply[J].AAPG Bulletin,1989, v 73 (10):1277-1279
    [55]Ehrenberg S N. Assessing the relative importance of compaction processes and cementation to reduction of porosity in sandstones:discussion; compaction and porosity evolution of Pliocene sandstones, Ventura Basin, California:discussion[J].AAPG Bulletin, 1989, v 73(10):1274-1276
    [56]Ehrenberg S N. Measuring sandstone compaction from modal analyses of thin sections: how to do it and what the results mean[J].AAPG Bulletin,1995, v 65(2):369-379
    [57]Ehrenberg S N. Relationship between diagenesis and reservoir quality in sandstones of the Garn formation, Haltenbanken, mid-Norwegian continental shelf[J].AAPG Bulletin, 1990, v 74(10):1538-1558
    [58]Remy R R. Porosity reduction and major controls on diagenesis of Cretaceous-Paleocene volcaniclastic and arkosic sandstone, Middle Park basin, Colorado[J]. Journal of Sediment Research.1994,v64(4a):797-806
    [59]Pate C R. Assessing the relative importance of compaction processes and cementation to reduction of porosity in sandstones:discussion[J].AAPG Bulletin,1989, v 73(10):1270-1273
    [60]Beard D C, Weyl P K. Influence of texture on porosity and permeability of unconsolidated sand[J].AAPG Bulletin,1973,v57(2):349-369
    [61]代金友,张一伟,熊琦华,等.成岩作用对储集层物性贡献比率研究[J].石油勘探与开发,2003,30(4):54-56
    [62]Pittman E D, Larese R E. Compation of lithic sands:experimental results and applications[J].AAPG Bulletin,1991, v 75(8):1279-1299
    [63]Rittenhouse G. Mechanical compaction of sands containing different percentages of ductile grains:a theoretical approach[J].AAPG Bulletin,1971, v 55(1):92-96
    [64]Lander R H, Walderhaug O. Predicting Porosity through Simulating Sandstone Compaction and Quartz Cementation[J].AAPG Bulletin,1999, v 83(3):433-449
    [65]Lander R H, Larese R E, Bonnell L M. Toward more accurate quartz cement models:The importance of euhedral versus noneuhedral growth rates[J].AAPG Bulletin,2008, v 92(11):1537-1563
    [66]Paxton S T, Szabo J O, Ajdukiewicz J M,et al. Construction of an intergranular volume compaction curve for evaluating and predicting compaction and porosity loss in rigid-grain sandstone reservoirs[J].AAPG Bulletin,2002, v86(12):2047-2067
    [67]Cook J E, Goodwin L B, Boutt D F. Systematic diagenetic changes in the grain-scale morphology and permeability of a quartz-cemented quartz arenite[J].AAPG Bulletin, 2011, v95(6):1067-1088
    [68]朱平.江苏油田油气藏基本特征及其分类[J].断块油气田,2001,8(5):12-17
    [69]张金亮.高邮凹陷阜三段沉积相分析[J].青岛海洋大学学报,2002,32(4):591-596
    [70]吴向阳,夏连军,陈晶.苏北盆地高邮凹陷构造再认识及对油气勘探的意义[J].石油实验地质,2009,31(6):570-575
    [71]李亚辉.苏北盆地高邮凹陷构造转换带控油机制研究[J].石油实验地质,2006,28(2):109-112
    [72]周鼎武,柳益群,邢秀娟,等.新疆吐哈、三塘湖盆地二叠纪玄武岩形成古构造环境恢复及区域构造背景示踪[J].中国科学(D辑):地球科学,2006,36(2):143-153
    [73]赵泽辉,郭召杰,张臣,等.新疆东部三塘湖盆地构造演化及其石油地质意义[J].北京大学学报(自然科学版),2003,39(2):219-228
    [74]孙自明,熊保贤,李永林,等.三塘湖盆地构造特征与有利勘探方向[J].石油实验地质,2001,23(1):23-27
    [75]欧阳征健,周鼎武,冯娟萍,等.新疆三塘湖盆地走滑构造特征与油气勘探[J].现代地质,2006,20(2):277-282
    [76]李明瑞,窦伟坦,蔺宏斌,等.鄂尔多斯盆地东部上古生界致密岩性气藏成藏模式[J].石油勘探与开发,2009,36(1):56-61
    [77]陈刚,李向平,周立发,等.鄂尔多斯盆地构造与多种矿产的耦合成矿特征[J].地学前缘,2005,12(4):535-541
    [78]滕吉文,王夫运,赵文智,等.鄂尔多斯盆地上地壳速度分布与沉积建造和结晶基底起伏的构造研究[J].地球物理学报,2008,51(6):1753-1766
    [79]邓军,王庆飞,高帮飞,等.鄂尔多斯盆地多种能源矿产分布及其构造背景[J].地球科学(中国地质大学学报),2006,31(3):330-336
    [80]魏永佩,王毅.鄂尔多斯盆地多种能源矿产富集规律的比较[J].石油与天然气地质,2004,25(4):385-392
    [81]SY/T 6285-2011,油气储层评价方法[S].北京:石油工业出版社,2011
    [82]Pittman E D. Artifact porosity in thin sections of sandstones[J]. Journal of Sedimentary Research,1992,v62(4):734-737
    [83]严云奎.鄂尔多斯盆地延长油区上古生界沉积相及储层微观特征研究[D].西安:西北大学,2010
    [84]郭履灿.试论体视学方法在地球科学中的某些应用[J].CT理论与应用研究,1999,8(3):10-14
    [85]毛灵涛,薛茹,安里千MATLAB在微观结构SEM图像定量分析中的应用[J].电子显微学报,2004,23(5):579-583
    [86]毛灵涛,薛茹,安里千,等.软土孔隙微观结构的分形研究[J].中国矿业大学学报,2005,34(5):600-604
    [87]彭瑞东,杨彦从,鞠杨,等.基于灰度CT图像的岩石孔隙分形维数计算[J].科学通报,2011,56(26):2256-2266
    [88]SY/T 6103-2004,岩石孔隙结构特征的测定-图像分析法[S].北京:石油工业出版社,2004
    [89]王道富.鄂尔多斯盆地特低渗透油田开发[M].北京:石油工业出版社,2007:32-41
    [90]邸世祥.中国碎屑岩储集层的孔隙结构[M].西安:西北大学出版社,1981:1-7
    [91]李道品.低渗透砂岩油田开发[M].北京:石油工业出版社,1997:14-30
    [92]罗蛰潭,王允诚油气储集层的孔隙结构[M].北京:科学出版社,1986:62-80
    [93]Slatt R M,O Brien N R. Pore types in the Barnett and Woodford gas shales:Contribution to understanding gas storage and migration pathways in fine-grained rocks[J].AAPG Bulletin,2011, v95(12):2017-2030
    [94]Chalmers G R, Bustin R M, Power I M. Characterization of gas shale pore systems by orosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses:Examples from the Barnett, Woodford, Haynesville, Marcellus,and Doig units[J].AAPG Bulletin,2012, v96(6):1099-1119
    [95]Clarkson C R, Jensen J L, Pedersen P K,et al. Innovative methods for flow-unit and pore-structure analyses in a tight siltstone and shale gas reservoir[J].AAPG Bulletin,2012, v96(2):355-374
    [96]Loucks R G, Reed R M, Ruppel S C,et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J].AAPG Bulletin,2012, v96(6):1071-1098
    [97]Milliken K L, Rudnicki M, Awwiller D N,et al. Organic matter-hosted pore system, arcellus Formation (Devonian), Pennsylvania[J].AAPG Bulletin,2013, v97(2):177-200
    [98]Bliefnick D M, Kaldi J G. Pore geometry; control on reservoir properties, Walker Creek Field, Columbia and Lafayette counties, Arkansas[J].AAPG Bulletin,1996, v80(7): 1027-1044
    [99]Guo Ping, Sun Liangtian, Li Shilum,et al. A theoret ical study of the effect of porous media on the dew point press ure of a gas condensate[C]. SPE 35644,1996:617-624
    [100]欧成华,易敏,郭平,等.N2、CO2和天然气在岩心孔隙内表面的吸附量的测定[J].石油学报,2000,21(5):67-71
    [101]孟元林,王粤川,牛嘉玉,等.储层孔隙度预测与有效天然气储层确定-以渤海湾盆地鸳鸯沟地区为例[J].天然气工业,2007,27(6):42-45
    [102]刘辉,吴少华,姜秀民,等.快速热解褐煤焦的低温氮吸附等温线形态分析[J].煤炭学报,2005,30(4):507-510
    [103]琚宜文,姜波,侯泉林,等.华北南部构造煤纳米级孔隙结构演化特征及作用机理[J].地质学报,2005,79(2):269-285
    [104]胡宝林,车遥,杨起,等.鄂尔多斯盆地煤储层低温氮等温吸附特征分析[J].煤田地质与勘探,2003,31(2):20-23
    [105]沈平平.油水在多孔介质中的运动理论和实践[M].北京:石油工业出版社,2000:1-18
    [106]SY/T 5346-2005,岩石毛管压力曲线的测定[S].北京:石油工业出版社,2005
    [107]黄琨.孔隙介质渗流基本方程的探索[D].武汉:中国地质大学,2012
    [108]贺承祖,华明琪.储层孔隙结构的分形几何描述[J].石油与天然气地质,1998,19(1):15-23
    [109]胡雪蛟,杜建华,周磊,等.多孔介质毛细压力-饱和度的滞后特性[J].石自然科学进展,2001,11(5):537-542
    [110]王瑞飞.低渗砂岩储层微观特征及物性演化研究[D].西安:西北大学,2007
    [111]王金勋,杨普华,刘庆杰,等.应用恒速压汞实验数据计算相对渗透率曲线[J].石油大学学报(自然科学版),2003,27(4):66-69
    [112]于俊波,郭殿军,王新强.基于恒速压汞技术的低渗透储层物性特征[J].大庆石油学院学报,2006,30(2):22-25
    [113]Pittman E D. Relationship of porosity and permeability to various parameters derived from mercury injection-capillary pressure curves for sandstone[J].AAPG Bulletin,1992, v76(2):191-198
    [114]柴智,师永民,徐常胜,等.人造岩芯孔喉结构的恒速压汞法评价[J].北京大学学报(自然科学版),2012,48(5):770-774
    [115]张创,孙卫,解伟.低渗储层有效喉道半径下限研究:以苏北盆地高邮凹陷沙埝南地区为例[J].地质科技情报,2011,30(1):103-107
    [116]Bryant S L,Cade C,Mellor D W. Permeability predication from geological models [J].AAPG Bull,1993,v77(8):1338-1350
    [117]Yiotis A G, Stubos A K, Boudouvis A G, et al. Pore-net work modeling of isothermal drying in porous media[J].Transport Porous Med,2005,v58(1):63-86
    [118]Pereira G G, Pinczewski W V, Chan D Y C, et al. Pore scale network model for drainage dominated three-phaseflow in porous media[J].Transport Porous Med,1996, v 24(2): 157-166
    [119]Adler P M, Jacquin C C, Quiblier J A. Flow in simulated porous media[J].Int J multiphase Flow,1990, v 16(4):691-712
    [120]Silin D B, Jin G D, Patzek T W. Robust Determination of the Pore-Space Morphology in Sedimentary Rocks[J].SPE84296,2003:1-15
    [121]Chawla N, Sidhu R S, Ganesh V. Three-dimensional visualization and microstructure-based modeling of deformation in particle-reinforced composites[J].Acta Materialia, 2006, v 54(6):1541-1546
    [122]Arns C H, Bauget F, Limaye A, et al. Pore-scale characterization of carbonates using X-ray microtomography [J].SPE Journal,2005, v 10(4):475-484
    [123]Turner M L, Knung L, Arns C H, et al.Three dimensional imaging of multiphase flow in porous media[J].Physica A,2004, v 33(9):166-172
    [124]Sun W, Qu Z H, Tang G Q. Characterization of water injection in low permeability rock using sandstone micromodels[J].Journal of Petroleum Technology,2004, v 56(5):71-72
    [125]Morrow W N. Physics and thermodynamics of capillary action in porous media[J] Industrial and Engineering Chemistry Research,1970, v 63:32-56
    [126]Hooper E. Fluid migration along growth fault in compacting sediments[J].Journal of Petroleum Geology,1991, v 14(2):160-190
    [127]Jerauld G R, Scriven L E, Davis H T. Percolation and conduction on the 3D voronoi and regular networks:a second case study in topological disorder[J]. Journal of Physical Chemistry,1984, v 17:3429-3439
    [128]Heiba A A, Sahimi M, Scriven L E. Percolation theory of two-phase relative permeability[J]. SPE11015,1992:123-132
    [129]钟大康,朱筱敏,李树静,等.早期碳酸盐胶结作用对砂岩孔隙演化的影响-以塔里木盆地满加尔凹陷志留系砂岩为例[J].沉积学报,2007,25(6):885-890
    [130]钟大康,朱筱敏,王红军,等.中国深层优质碎屑岩储层特征与形成机理分析[J].中国科学(D辑),2008,38(增刊I):11-18
    [131]王琪,史基安,薛莲花,等.碎屑储集岩成岩演化过程中流体-岩石相互作用特征-以塔里木盆地西南坳陷地区为例[J].沉积学报,1999,17(4):584-590
    [132]杨帆,孙玉善,谭秀成,等.迪那2气田古近系低渗透储集层形成机制分析[J].石油勘探与开发,2005,32(2):39-42
    [133]张金亮,常象春,刘宝珺,等.苏北盐城油气藏流体历史分析及成藏机理[J].地质学报,2002,76(2):254-260
    [134]施振飞,张振城,叶绍东,等.苏北盆地高邮凹陷阜宁组储层次生孔隙成因机制探讨[J].沉积学报,2005,23(3):429-436
    [135]姚合法,林承焰,侯建国,等.苏北盆地粘土矿物转化模式与古地温[J].沉积学报,2004,22(1):29-35
    [136]张金亮,刘宝珺,毛凤鸣,等.苏北盆地高邮凹陷北斜坡阜宁组成岩作用及储层特征[J].石油学报,2003,24(2):43-49
    [137]刘林玉,陈刚,柳益群,等.碎屑岩储集层溶蚀型次生孔隙发育的影响因素分析[J].沉积学报,1998,16(2):97-101
    [138]李汶国,张晓鹏,钟玉梅.长石砂岩次生溶孔的形成机理[J].石油与天然气地质,2005,26(2):220-224
    [139]罗孝俊,杨卫东,李荣西,等.pH值对长石溶解度及次生孔隙发育的影响[J].矿物岩石地球化学通报,2001,20(2):103-107
    [140]张永旺,曾溅辉,张善文,等.长石溶解模拟实验研究综述[J].地质科技情报,2009,28(1):31-37
    [141]罗孝俊,杨卫东.有机酸对长石溶解度影响的热力学研究[J].矿物学报,2001,21(2):183-188
    [142]向廷生,蔡春芳,付华娥.不同温度、羧酸溶液中长石溶解模拟实验[J].沉积学报,2004,22(4):597-602
    [143]黄可可,黄思静,佟宏鹏,等.长石溶解过程的热力学计算及其在碎屑岩储层研究中的意义[J].地质学报,2009,28(4):474-482
    [144]杨香华,孙永传,李惠生,等.长石溶解质量平衡对储集层质量的影响义[J].石油勘探与开发,1998,25(3):35-37
    [145]史基安,晋慧娟,薛莲花.长石砂岩中长石溶解作用发育机理及其影响因素分析[J].沉积学报,1994,12(3):67-75
    [146]肖奕,王汝成,陆现彩,等.低温碱性溶液中微纹长石溶解性质研究[J].矿物学报,2003,23(4):333-340
    [147]张永旺,曾溅辉,郭建宇.低温条件下长石溶解模拟实验研究[J].地质论评,2009,55(1):134-142
    [148]赖兴运,于炳松,陈军元,等.碎屑岩骨架颗粒溶解的热力学条件及其在克拉2气田的应用[J].中国科学(D辑),2004,34(1):45-53
    [149]罗孝俊,杨卫东.有机酸对长石溶解度影响的热力学研究[J].矿物学报,2001,21(2):183-187
    [150]王行信.泰康和古龙地区粘土矿物对砂岩储层孔隙结构及产能的影响[J].石油与天然气地质,1985,6(2):187-198
    [151]关平,张文涛,吴雪松,等.江汉盆地白垩系渔洋组砂岩的成岩作用及其热力学分析[J].岩石学报,2006,22(8):2144-2150
    [152]王琪,史基安,薛莲花,等.碎屑储集岩成岩演化过程中流体-岩石相互作用特征:以塔里木盆地西南坳陷地区为例[J].沉积学报,1999,17(4):584-590
    [153]SY/T 5477-2003,碎屑岩成岩阶段划分[S].北京:石油工业出版社,2003
    [154]王宏语,樊太亮,肖莹莹,等.凝灰质成分对砂岩储集性能的影响[J].石油学报,2010,31(3):432-439
    [155]邹才能,赵文智,贾承造,等.中国沉积盆地火山岩油气藏形成与分布[J].石油勘探与开发,2008,35(3):257-271
    [156]宫清顺,倪国辉,芦淑萍,等.准噶尔盆地乌尔禾油田凝灰质岩成因及储层特征[J].石油与天然气地质,2010,31(4):481-485
    [157]王建伟,鲍志东,陈孟晋,等.砂岩中的凝灰质填隙物分异特征及其对油气储集空间影响[J].地质科学,2005,40(3):429-439
    [158]张凡芹,王伟锋,王建伟,等.苏里格庙地区凝灰质溶蚀作用及其对煤成气储层的影响[J].吉林大学学报(地球科学版),2006,36(3):365-369
    [159]刘锐娥,孙粉锦,拜文华,等.苏里格庙盒8气层次生孔隙成因及孔隙演化模式探讨[J].石油勘探与开发,2002,29(4):47-49
    [160]包洪平,杨奕华,王晓方,等.同沉积期火山作用对鄂尔多斯盆地上古生界砂岩储层形成的意义[J].古地理学报,2007,9(4):397-406
    [161]张慧,周安朝,郭敏泰,等.沉积环境对降落火山灰蚀变作用的影响-以大青山晚古生代煤系为例[J].沉积学报,2000,18(4):515-521
    [162]邱明.含煤岩系中某些自生矿物的沉积环境意义[J].煤炭学报,1987,11(2):65-74
    [163]张育民,李红,朱玉双.新疆三塘湖盆地沉积成岩作用研究[J].西北大学学报(自然科学版),2005,35(6):793-798
    [164]刘林玉,邸世祥.吐鲁番坳陷中侏罗统沉积与储层孔隙发育特征[J].石油与天然气地质,1997,18(3):247-251
    [165]党犇,赵虹.吐哈盆地台北凹陷侏罗系油气储层特征及影响因素[J].成都理工大学学报(自然科学版),2005,32(2):142-146
    [166]唐勇.三塘湖盆地牛圈湖油田西山窑组储集层特征及评价[J].新疆石油地质,1998,19(6):493-497
    [167]Goldstein R H, Rossi C. Recrystallization in quartz[J]. Journal of Sedimentary Research, 2002,v72(3):432-440
    [168]Haddad A C, Worden R H, Prior D J, et al. Quartz cement in the fontainbleau sandstone, Paris basin, France.:crystallography and implications for mechanisms of cement growth[J]. Journal of Sedimentary Research,2006,v76(6):244-256
    [169]Marchand A M, Haszeldine R S, Macaulay C I, et al. Quartz cementation inhibited by crestal oil charge:Miller deep water sandstone, UK North Sea[J]. Clay Minerals,2000, v35:201-210
    [170]Ehrenberg S N, Aqrawi A A, Nadeaul P H. An overview of reservoir quality in producing Cretaceous strata of the Middle East[J]. Petroleum Geoscience,2008, v14 (8):307-318
    [171]Makowitz A, Sibley D. Crystal growth mechanisms of quartz overgrowths in a Cambrian quzrtz arenite[J]. Journal of Sedimentary Research,2001,v71(5):809-816
    [172]Makowitz A, Lander R H, Milliken K L. Diagenetic modeling to assess the relative timing of quartz cementation and brittle grain processes during compaction [J].AAPG Bulletin,2006, v90(6):873-885
    [173]Marchand A M, Haszeldine R S, Smalley P C, et al. Evidence for reduced quartz-cementation rates in oil-filled sandstones [J].Geology 2001, v29 (10):915-918
    [174]McBride E F. Quartz cement in sandstones:a review [J].Earth Science Reviews,1989, v26:69-112
    [175]McBride E F. Heterogeneous packing and quartz cementation of the Eureka quartzarenite (middle Ordovician), Utah and Nevada, USA[J]. Journal of Sedimentary Research,2012,v82(12):664-680
    [176]Pettijion F J, Potter P E, Siever R. Sand and sandstone[M]. New York:Springer-Verlag, 1987:553
    [177]付金华.鄂尔多斯盆地上古生界天然气成藏条件及富集规律[D].西安:西北大学,2004
    [178]武文慧.鄂尔多斯盆地上古生界储层砂岩特征及成岩作用研究[D].成都:成都理工大学,2011
    [179]武文慧,黄思静,陈洪德,等.鄂尔多斯盆地上古生界碎屑岩硅质胶结物形成机制及其对储集层的影响[J].古地理学报,2011,13(2):193-200
    [180]席胜利,李文厚,魏新善,等.鄂尔多斯盆地上古生界两大气田不同石英砂岩储层特征对比研究[J].沉积学报,2007,27(2):221-229
    [181]郑瑞林.陕甘宁盆地煤系地层中石英砂岩成岩作用及其孔隙演化[J].石油勘探与开发,1989,16(6):31-40
    [182]Ehrenberg S N. Preservation of anomalously high porosity in deeply buried sandstones by grain-coating chlorite:examples from the Norwegian continental shelf[J].AAPG Bulletin,1993,v77(7):1260-1286
    [183]Georgia P P, Shawna W M. Early diagenesis of inner-shelf phosphorite and iron-silicate minerals, Lower Cretaceous of the Orpheus graben, southeastern Canada:implications for the origin of chlorite rims[J].AAPG Bulletin,2008, v92(9):1153-1168
    [184]Billault V, Beaufort D, Baronnet A, et al. A nanopetrographic and textural study of grain-coating chlorites in sandstone reservoirs[J]. Clay Minerals,2003, v 38:315-328
    [185]Grigsby J.D. Origin and growth meachanism of authigenic chlorite in sandstones of the lower Vicksburg formation, south Texas[J]. Journal of Sediment Research,2001, v 71 (1):27-36
    [186]Berger A, Gier S, Krois P. Porosity-preserving chlorite cements in shallow-marine volcaniclastic sandstones:evidence from Cretaceous sandstones of the Sawan gas field, Pakistan[J]. AAPG Bulletin,2009, v 93(5):595-615
    [187]Humphreys B, Smith S A, Strong G E. Authigenic chlorite in Late Triassic sandstones from the central Graben, North sea[J]. Clay Minerals,1989,v24:427-444
    [188]胡宗全.鄂尔多斯盆地上古生界砂岩储层方解石胶结物特征[J].石油学报,2003,24(4):40-43
    [189]肖红平,刘锐娥,李文厚,等.鄂尔多斯盆地上古生界碎屑岩相对高渗储集层成因及分布[J].古地理学报,2012,14(4):543-552
    [190]付锁堂,石小虎,南珺祥.鄂尔多斯盆地东北部上古生界太原组及下石盒子组碎屑岩储集层特征[J].古地理学报,2010,12(5):609-617
    [191]罗月明,刘伟新,谭学群,等.鄂尔多斯大牛地气田上古生界储层成岩作用评价[J].石油实验地质,2007,29(4):384-390
    [192]张明禄,达世攀,陈调胜.苏里格气田二叠系盒8段储集层的成岩作用及孔隙演化[J].天然气工业,2002,22(6):13-16
    [193]Damanti J F, Jordan T E. Cementation and compaction history of synorogenic foreland basin sedimentary rocks from Huaco, Argentina[J]. AAPG Bulletin,1989, v 73(7):858-873
    [194]罗静兰,Morad S,阎世可,等.河流-湖泊三角洲相砂岩成岩作用的重建及其对储层物性演化的影响-以延长油区侏罗系-上三叠统砂岩为例.中国科学(D辑),2001,31(12):1006-1016
    [195]罗静兰,张晓莉,张云翔,等.成岩作用对河流-三角洲相砂岩储层物性演化的影响[J].沉积学报,2001,19(4):541-547
    [196]罗静兰,刘小洪,林潼,等.成岩作用与油气侵位对鄂尔多斯盆地延长组砂岩储层物性的影响[J].地质学报,2006,80(5):664-673
    [197]王瑞飞,陈明强.储层沉积-成岩过程中孔隙度参数演化的定量分析:以鄂尔多斯盆地沿25区块、庄40区块为例[J].地质学报,2007,81(10):1432-1440
    [198]龙玉梅,毛树华,桑利,等.成岩作用对低渗透砂岩储层物性的影响:以坪北油田上三叠统延长组油藏为例[J].东华理工大学学报(自然科学版),2008,31(2):131-135
    [199]王宝清,张荻楠,刘淑芹,等.龙虎泡地区高台子油层成岩作用及其对储集岩孔隙演化的影响[J].沉积学报,2000,18(3):414-419
    [200]吕成福,陈国俊,杜贵超,等.酒东坳陷营尔凹陷下白垩统储层孔隙特征及其影响因素研究[J].沉积学报,2010,28(3):556-562
    [201]Ludwick J C. A volumeter for measuring porosity of incoherent sands[J]. Journal of Sedimentary Petrology,1956,v26:276-283
    [202]Pryor W A. Reservoir inhomogeneities of some recent sand bodies[J]. SPE3607:1-12
    [203]Atkins J E. Porosity and packing of Holocene river, dune, and beach sands[J]. AAPG Bulletin,1992,v76:339-355
    [204]Scherer M. Parameters influencing porosity in sandstones:A model for sandstone porosity prediction[J]. AAPG Bulletin,1987,v71:485-491
    [205]成都地质学院陕北队.沉积岩(物)粒度分析及其应用[M].北京:地质出版社,1978
    [206]Friedman G M. Determination of sieve-size distribution from thin-saction data for sedimentary petrological studies[J]. Journal of Geology,1958,v66:384-416
    [207]Friedman G M. Comparism of moment measures for sieving and thin-section data in sedimentary petrological studies[J]. Journal of Sedimentary Petrology,1962,v32:15-25
    [208]Pate J H. Diagenetic variation in the Permo-Triassic Ivishak sandstone in the Prudhoe bay field and central-northeastern National Petroleum Reserve in Alaska, Alaska North Slope Geology[J]. Pacific Section SEPM and Alaskan Geological Society,1987:77-94
    [209]李传亮.油藏工程原理[M].北京:石油工业出版社,2005:40-42
    [210]赵澄林,朱平,陈方鸿.高邮凹陷高分辨率层序地层学及储层研究[M].北京:石油工业出版社,2001:43-57
    [211]郝建荣.新疆三塘湖盆地地质特征和盆地热演化[D].西安:西北大学,2002
    [212]Aase N E, Bjorkum P A, Nadeau P H. The effect of grain-coating microquartz on preservation of reservoir porosity[J]. AAPG Bulletin,1996,v80(10):1654-1673
    [213]Aase N E, Walderhaug O. The effect of hydrocarbons on quartz cementation:diagenesis in the Upper Jurassic sandstones of the Miller Field, North Sea, revisited[J]. Petroleum Geoscience,2005,v11:215-223
    [214]Ajdukiewicz J M, Larese R E. How clay grain coats inhibit quartz cement and preserve porosity in deeply buried sandstones:Observations and experiments[J]. AAPG Bulletin,2012,v96(11):2091-2119
    [215]Bloch S, Helmold K P. Approaches to predicting reservoir quality in sandstones[J]. AAPG Bulletin,1995,v79(1):97-115
    [216]Ehrenberg S N, Walderhaug O, Bj(?)rlykke K. Carbonate porosity creation by mesogenetic dissolution:Reality or illusion? [J]. AAPG Bulletin,2012,v96(2):217-223
    [217]Ehrenberg S N, Nadeau P H, Steen 0. A megascale view of reservoir quality in producing sandstones from the offshore Gulf of Mexico [J]. AAPG Bulletin, 2008,v92(2):145-164
    [218]Ehrenberg S N, Nadeau P H. Sandstone vs carbonate petroleum reservoirs:A global perspective on porosity-depth and porosity-permeability relationships[J]. AAPG Bulletin, 2005,v89(4):435-445
    [219]Franks S G, Zwingmann H. Origin and timing of late diagenetic illite in the Permian-Carboniferous Unayzah sandstone reservoirs of Saudi Arabia[J]. AAPG Bulletin,2010,v94(8):1133-1159
    [220]Taylor T R. The influence of calcite dissolution on reservoir porosity in Miocene sandstones, Picaroon field, offshore Texas gulf coast[J]. Journal of sedimentary research,1990,v60(3):322-334
    [221]Walderhaug O. Precipitation rates for quartz cement in sandstones determined by fluid-inclusion microthemometry and temperature-history modeling [J]. Journal of sedimentary research,1994,v64(2):324-333
    [222]Walderhaug O, Bjorkum P A, Aase N E. Kaolin-coating of stylolites, effect on quartz cementation and general implications for dissolution at mineral interfaces[J]. Journal of sedimentary research,2006,v76(6):234-243
    [223]操应长,葸克来,王健,等.砂岩机械压实与物性演化成岩模拟实验初探[J].现代地质,2011,25(6):1152-1158
    [224]陈国俊,吕成福,王琪,等.珠江口盆地深水区白云凹陷储层孔隙特征及影响因素[J].石油学报,2010,31(4):566-572
    [225]胡作维,李云,黄思静,等.砂岩储层中原生孔隙的破坏与保存机制研究进展[J].地球科学进展,2012,27(1):14-25
    [226]李传亮,孔祥言.孔-深关系曲线方程研究[J].新疆石油地质,2001,22(2):5-6
    [227]李蕙生,陈红汉.精细埋藏史分析在砂岩成岩-孔隙演化模式研究中的重要性[J].地学前缘,1995,2(3-4):78
    [228]刘震,邵新军,金博,等.压实过程中埋深和时间对碎屑岩孔隙度演化的共同影响 [J].现代地质,2007,21(1):125-132
    [229]孟万斌,吕正祥,刘家铎,等.川西中侏罗统致密砂岩次生孔隙成因分析[J].岩石学报,2011,27(8):2371-2380
    [230]寿建峰,朱国华.砂岩储层孔隙保存的定量预测研究[J].地质科学,1998,33(2):244-250
    [231]寿建峰,斯春松,张达.库车坳陷下侏罗统岩石古应力场与砂岩储层性质[J].地球学报,2004,25(4):447-452
    [232]杨俊生,孟元林,张洪,等.石英胶结作用化学动力学模型及应用[J].石油实验地质,2002,24(4):372-376
    [233]朱国华.成岩作用与砂层(岩)孔隙的演化[J].石油与天然气地质,1982,3(3):195-205
    [234]朱国华.碎屑岩储集层孔隙的形成、演化和预测[J].沉积学报,1992,10(3):114-123
    [235]朱国华,袭亦楠.成岩作用对砂岩储层孔隙结构的影响[J].沉积学报,1984,2(1):1-17
    [236]Ajdukiewicz J M, Lander R H. Sandstone reservoir quality prediction:The state of the art[J]. AAPG Bulletin,2010,v94(8):1083-1091
    [237]Schmoker J W, Gautier D L. Sandstone porosity as a function of thermal maturity[J]. Geology,1988,v16:1007-1010
    [238]能源,杨桥,张克鑫,等.苏北盆地高邮凹陷晚白垩世-新生代构造沉降史分析与构造演化[J].沉积与特提斯地质,2009,29(2):25-32
    [239]李儒峰,陈莉琼,李亚军,等.苏北盆地高邮凹陷热史恢复与成藏期判识[J].地学前缘,2010,17(4):151-159
    [240]唐焰,陈安定,冯武军.包裹体测温资料在苏北盆地高邮、金湖凹陷油气成藏期研究中的应用[J].石油天然气学报,2005,27(1):19-20
    [241]McBride E F, Picard M D, Milliken K. Calcite-cemented concretions in Cretaceous sandstone, Wyoming and Utah, USA[J]. Journal of sedimentary research,2003,v73(3): 462-483
    [242]范明,蒋小琼,刘伟新,等.不同温度条件下CO2水溶液对碳酸盐岩的溶蚀作用[J].沉积学报,2007,25(6):825-830
    [243]杨俊杰,黄思静,张文正,等.表生和埋藏成岩作用的温压条件下不同组成碳酸盐岩溶蚀成岩过程的实验模拟[J].沉积学报,1995,13(4):49-54
    [244]曹青,柳益群.三塘湖盆地流体包裹体研究及其应用[J].岩石学报,2007,23(9):2309-2314
    [245]李红,柳益群,刘延莉,等.三塘湖盆地条湖、马朗凹陷沉降史分析[J].西北大学学报(自然科学版),2004,34(6):721-725
    [246]刘学锋,张或丹.三塘湖盆地中新生代沉降史分析[J].西南石油学院学报,1997,19(4):36-43
    [247]柳益群,袁明生,周鼎武,等.新疆吐鲁番-哈密盆地地质热历史研究新进展[J].中国科学(D辑),2001,31(3):257-264
    [248]郝建荣,柳益群,曹青,等.新疆三塘湖盆地侏罗系流体包裹体研究[J].石油实验地质,2006,28(4):391-394
    [249]柳益群,吴涛,崔早云,等.新疆吐鲁番-哈密盆地的古地温梯度及地质热历史[J].中国科学(DD辑),1997,27(5):431-436
    [250]郝建荣,柳益群,冯乔,等.新疆三塘湖盆地构造-热史研究[J].西北大学学报(自然科学版),2006,36(2):290-294
    [251]任战利,张盛,高胜利,等.鄂尔多斯盆地构造热演化史及其成藏成矿意义[J].中国科学(D辑),2007,47(增刊I):23-32
    [252]于强,任战利,王宝江,等.鄂尔多斯盆地延长探区上古生界热演化史[J].地质论评,2012,58(2):303-308
    [253]任战利,张盛,高胜利,等.鄂尔多斯盆地热演化程度异常分布区及形成时期探讨[J].地质学报,2004,80(5):674-684
    [254]Maast T E, Jahren J, BJ(?)rlykke K. Diagenetic controls on reservoir quality in Middle to Upper Jurassic sandstones in the South Viking Graben, North Sea [J]. AAPG Bulletin, 2011 v95(11):1883-1905
    [255]Sclater J G, and Christie R A. Continental stretching:an explanation of the post-mid-Cretaceous subsidence of the central North Sea basin[J]. Journal of Geophysical Research,1980 v85:3711-3739
    [256]Maxwell J C. Influence of depth, temperature, and geologic age on porosity of quartzose sandstone[J].AAPG Bulletin,1964,v48:697-709
    [257]Baldwin B, Butler C O. Compaction Curves[J]. AAPG Bulletin,1985,v69(4):622-626
    [258]魏茂安,陈潮,王延江,等.地层孔隙压力预测新方法[J].石油与天然气地质,2007,28(3):395-400
    [259]樊洪海.适于检测砂泥岩地层孔隙压力的综合解释方法[J].石油勘探与开发,2002,29(1):90-92
    [260]王冰洁,何生,宋国奇,等.东营凹陷不同超压成因的有效应力特征[J].地质科技情报,2012,31(2):72-79
    [261]陈荷立.油气运移研究的有效途径[J].石油与天然气地质,1995,16(2):126-131
    [262]贝丰,王允诚.沉积物的压实作用与烃类的初次运移[M].北京:石油工业出版社,1985:27-264.
    [263]李军,张超谟,李进福,等.库车前陆盆地构造压实作用及其对储集层的影响[J].石油勘探与开发,2011,38(1):47-51
    [264]寿建峰,张惠良,沈扬,等.中国油气盆地砂岩储层的成岩压实机制分析[J].岩石学报,2006,22(8):2165-2170
    [265]Lundegard P D, Land L S, Galloway W E. Problem of secondary porosity:Frio Formation (Oligocene), Texas Gulf Coast.[J].Geogoly,1984 v12:399-402
    [266]Thyne T, Boudreau B P, Ramm M, et al. Simulation of potassium feldspar dissolution and illitization in the Statfjord Formation, North Sea[J]. AAPG Bulletin,2001,v85 (4): 621-635
    [267]Parsons I, Thompson P, Lee M R, et al. Alkali feldspar microtextures as provenance indications in siliciclaatic rocks and their role in feldspar dissolution during transport and diagenesis[J]. Journal of sedimentary research,2005,v75:921-942

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700