用户名: 密码: 验证码:
多孔介质内CO_2与油相态变化和渗流特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二氧化碳提高原油采收率(CO2-EOR)是改善全球环境和增加国内石油能源供给的重要技术。在CO2-EOR技术中,CO2与油的最小混相压力和在多孔介质中的渗流特性是影响油采收率的关键问题。传统的测试方法难以得到多孔介质内流体在相互作用区域的速度和过渡带面积,限制了数值模拟中这些参数的确定。本文开发了多孔介质中C02与油相态和渗流的核磁共振成像(MRI)和X射线CT可视化测量方法,开展了测量C02与油的最小混相压力、观测多孔介质内C02与油的相态变化和探明近混相驱替中C02与油的渗流特性等方面的实验研究。
     首先,根据MRI理论和油气混相原理,提出了测量油气最小混相压力(MMP)的MRI方法,建立了MRI实验系统,探索了MRI法测CO2与油MMP的可行性。定量测量了CO2/正烷烃体系MMP,建立了C02/正烷烃体系MMP的预测关系式,获得了CO2/正烷烃体系MMP与平均含碳量的关系。同时观测了C02/正烷烃体系在PVT筒中的相态变化,结果显示:压力升高,CO2/正癸烷体系气液界面按半球形、碟形、平面到消失依次变化;两相接触角增大,同时液相体积增大,在接近MMP时膨胀剧烈。
     建立了多孔介质内X射线CT相态变化测试系统,直接观测了填砂多孔介质内CO2/正癸烷体系相态随压力的变化。研究发现:孔隙越小,气液灰度差减小的趋势越缓慢,多孔介质减小了油气相互扩散的速度,实验证明了多孔介质对C02/正癸烷体系的最小混相压力的影响,多孔介质的粒径越小,体系最小混相压力越高。
     系统地研究了CO2与正癸烷在单管、并联管以及填砂和砂岩岩心等多孔介质中的近混相渗流特性。阐明了多孔介质内C02与正癸烷两相过渡区域速度和面积随压力的变化规律,为油气藏开采的数值模拟研究中参数的确定提供了有力的实验基础。在单管和并联管中,发现了只有当注气速度大于临界注气速度时,C02与油的界面才能向驱替方向推进。在填砂模型中,CO2与油的过渡区域面积随着压力的升高逐减小,并在压力大于等于MMP时减小为一薄层;过渡区域的速度与体积速度的比值随着压力的增大而趋向于一定值。在人造岩心中,正癸烷驱替效率的拐点对应压力略大于体系在PVT筒中的MMP,进一步证明了多孔介质对CO2/正癸烷体系的最小混相压力的影响;驱替前沿速度与体积速度比值随压力变化趋于一定值,该定值与渗透率正相关;油气混相后流动性增大、同时在岩心渗透率各向异性等多种因素的作用下,流体产生明显的指进现象,实验值与指进长度的估算值相符。
Carbon dioxide enhanced oil recovery (CO2-EOR) is the important technique for the global environment improvement and domestic oil energy supply increasement. It is the key for CO2-EOR to study on the phase state change and seepage characteristics of CO2/oil system in porous media. Nevertheness, for the fluids invisibility in porous media, the phase state and seepage parameters can not be measured precisely. Therefore, Magnetic Resonance Imaging (MRI) and X-ray CT were applied for visualization measurement of the phase state change and seepage characteristics of CO2/oil system, based on the traditional minimum miscibility pressure (MMP) measuring methods.
     According to MRI theory and gas/oil miscible principle, MRI technique was proposed in this study for determination of the MMP. MRI technique was verified by comparing the MMP values with those obtained by traditional methods. The MMP of CO2/n-decane system was modeling. The correlation between MMPs of CO2/n-alkane and the average carbon number was obtained. The results presented that the interface pattern was hemispherical at normal pressure and then changed from dish like to flat as pressure increased, and at last disappeared. The contact angle of the two phases and the volume of liquid phase enlarged as pressure increased.
     The phase state of CO2/n-decane system in glass bead packed column was visualized by using X-ray CT. In bulk fluid, the gray values of the images are proportional to the fluid densities. Mutual solubilities of CO2/n-decane system were calculated by modified PR EOS. In the porous media, the the gray values difference between the gas and liquid phases reduces as the pore scale decreases, which indicates a delay diffusion process and larger MMP of CO2/n-decane system.
     Near miscible displacement of CO2/n-decane in the single and parallel narrow channels, glass bead packed column and synthetic sandstone cores were conducted. In the single and parallel narrow channel, the injection rate should be concrolled more than a critical value to ensure the migration velocity of the interface of CO2and oil more than the oil expansion velocity. In the glass bead packed column, the transition zone area of the two phases decreases with the growing pressure. The ratio of the velocities of the transition zone and the "volumetric front" grows with the increaseing pressure to a certain value. In the synthetic sandstone cores, the recovery efficiency increases with the larger injection rate in the same permeablity cores. The cross pressure of the fit line of the recovery efficiency is larger than the MMP. Also, the ratio between the velocities of the transition zone and the " volumetric front" grows with the increaseing pressure to a certain value which increases with the permeability. Fingering performs during the miscible displacement because of the fluids properties, small permeability, large ratio between the diameter and the length of the core, along with the small ratio between the diameter of inlet/outlet and the core. The wavelength values estimated are just in good agreement with the experimentally observation values.
引文
[1]俞凯.浅析2020年我国石油能源需求及对策[Z].中国江苏南京:2005337-341.
    [2]裘怿楠,薛叔浩,应风祥.中国陆相油气储集层[M].北京:石油工业出版社,1997.
    [3]核心撰写组Pachauri R. K和reisinger A.编辑.气候变化2007:综合报告.政府间气候变化专门委员会第四次评估报告第一、第二和第三工作组的报告[R].瑞士,日内瓦:IPCC,2007.
    [4]Span R, Wagner W. A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa[J]. Journal of Physical and Chemical Reference Data.1996,25(6):1509-1596.
    [5]Robel R J. Enhanced oil recovery potential in the United States[J]. Interstate Oil Compact Comm. Com. Bull.1978,20(2):1-238.
    [6]马涛,汤达祯,蒋平,等.注C02提高采收率技术现状[J].油田化学.2007(4):379-383.
    [7]朱仲义,李延军.C02驱提高原油采收率研究进展[J].内蒙古石油化工.2008(7):16-18.
    [8]张银.江苏草舍油田CO2-EOR及地质埋存研究[D].中国石油大学,2010.
    [9]江怀友,沈平平,卢颖,等.C02提高世界油气资源采收率现状研究[J].特种油气藏.2010,17(2):5-10.
    [10]李士伦,周守信,杜建芬,等.国内外注气提高石油采收率技术回顾与展望[J].油气地质与采收率.2002,9(2):1-5.
    [11]眭纯华,厉华,毕新忠.世界三次采油现状及发展趋势[J].国外油田工程.2010,26(12):13-16.
    [12]张冬玉,姜婷,王秋语,等.提高采收率技术的应用及其发展趋势[J].国外油田工程.2010,26(10):13-16.
    [13]Grigg R B. Chapter 11-Long-term CO2 storage:using petroleum industry experience[M]. Carbon Dioxide Capture for Storage in Deep Geologic Formations, Amsterdam:Elsevier Science,2005, 853-865.
    [14]柯文奇,张岩,陈大钊.不同压力下原油和C02的相互作用研究[J].国外油田工程.2009,25(4):3-7.
    [15]杨学锋.油藏注气最小混相压力研究[D].西南石油学院,2003.
    [16]Holm L W. Miscibility and miscible displacement[J]. Journal of Petroleum Technology.1986,38(8): 817-818.
    [17]Orr Jr F, Silva M, Lien C L. Equilibrium phase compositions of CO2/crude oil mixtures-Part 2: Comparison of continuous multiple-contact and slim-tube displacement tests[J]. Old SPE Journal. 1983,23(2):281-291.
    [18]Metcalfe R S. Effects of impurities on minimum miscibility pressures and minimum enrichment levels for CO2 and rich-gas displacements[J]. Old SPE Journal.1982,22(2):219-225.
    [19]Alston R B, Kokolis G P, James C F. CO2 Minimum Miscibility Pressure-A correlation for impure CO2 streams and live oil systems[J]. Society of Petroleum Engineers Journal.1985,25(2):268-274.
    [20]杨学锋,郭平,杜志敏,等.细管模拟确定混相压力影响因素评价[J].西南石油学院学报.2004,26(3):41-44.
    [21]毛振强,陈凤莲.C02混相驱最小混相压力确定方法研究[J].成都理工大学学报(自然科学版).2005,32(1):61-64.
    [22]郝永卯,陈月明,于会利.CO2驱最小混相压力的测定与预测[J].油气地质与采收率.2005,12(6):64-66.
    [23]苗国锋.龙虎泡油田高台子油层二氧化碳驱最小混相压力研究[J].石油地质与工程.2010,24(3):70-72.
    [24]Yellig W F, Metcalfe R S. Determination and prediction of CO2 minimum miscibility pressures[J]. Journal of Petroleum Technology.1980,32(1):160-168.
    [25]Holm L W, Josendal V A. Effect of oil composition on miscible-type displacement by carbon dioxide[J]. SPE Journal.1982,22(1):87-98.
    [26]许瀚元,熊钰.细管实验法确定最小混相压力的方法[J].内江科技.2012,06:92-93.
    [27]Christiansen R, Haines H. Rapid measurement of minimum miscibility pressure with the rising-bubble apparatus[J]. SPE Reservoir Engineering.1987,2(4):523-527.
    [28]Mihcakan M. Minimum miscibility pressure, rising bubble apparatus, and phase behavior[C]. SPE/DOE Ninth Symposium on improved Oil Recovery held In Tulsa, Oklahoma, U.S.A.,17-20 April 1994.
    [29]Srivastava R K, Huang S S. New interpretation technique for determining minimum miscibility pressure by rising bubble apparatus for enriched-gas drives[C]. SPE India Oil and Gas Conference and Exhibition held in New Delhi, India,17-19 February 1998.
    [30]韩培慧.一种快速测量气/油体系最小混相压力的方法[J].油田化学.1991,8(1):79-82.
    [31]Christiansen R L, Kim H. Apparatus and method for determining minimum miscibility pressure of a gas in a liquid[P]. US 06/770,819.1986年12月9日.
    [32]Dong M Z, Huang S, Dyer S B, et al. A comparison of CO2 minimum miscibility pressure determinations for Weyburn crude oil[J]. Journal of Petroleum Science and Engineering.2001,31(1): 13-22.
    [33]Elsharkawy A M, Poettmann F H, Christiansen R L. Measuring CO2 minimum miscibility pressures: Slim-tube or rising-bubble method?[J]. Energy & Fuels.1996,10(2):443-449.
    [34]Harmon R A, Grigg R B. Vapor-density measurement for estimating minimum miscibility pressure[J]. SPE Reservoir Engineering.1988,3(4):1215-1220.
    [35]Rao D N. A new technique of vanishing interfacial tension for miscibility determination[J]. Fluid Phase Equilibria.1997,139(1-2):311-324.
    [36]Shaver R D, Robinson R L, Gasem K. An automated apparatus for equilibrium phase compositions, densities, and interfacial tensions:data for carbon dioxide plus decane[J]. Fluid Phase Equilibria. 2001,179(1-2):43-66.
    [37]Rao D N, Lee J I. Application of the new vanishing interfacial tension technique to evaluate miscibility conditions for the Terra Nova Offshore Project[J]. Journal of Petroleum Science and Engineering.2002,35(3-4):247-262.
    [38]Rao D N, Lee J 1. Determination of gas-oil miscibility conditions by interfacial tension measurements[J]. Journal of Colloid and Interface Science.2003,262(2):474-482.
    [39]Ayirala S C, Xu W, Rao D N. Interfacial behaviour of complex hydrocarbon fluids at elevated pressures and temperatures[J]. Canadian Journal of Chemical Engineering.2006,84(1):22-32.
    [40]Ayirala S C, Rao D N. Solubility, miscibility and their relation to interfacial tension in ternary liquid systems[J]. Fluid Phase Equilibria.2006,249(1-2):82-91.
    [41]Orr F M, Jessen K. An analysis of the vanishing interfacial tension technique for determination of minimum miscibility pressure[J]. Fluid Phase Equilibria.2007,255(2):99-109.
    [42]Nobakht M, Moghadam S, Gu Y G. Determination of CO2 Minimum Miscibility Pressure from Measured and Predicted Equilibrium Interfacial Tensions[J]. Industrial & Engineering Chemistry Research.2008,47(22):8918-8925.
    [43]Jessen K, Orr F M. On Interfacial-Tension Measurements To Estimate Minimum Miscibility Pressures[J]. SPE Reservoir Evaluation & Engineering.2008,11(5):933-939.
    [44]彭宝仔,罗虎,陈光进,等.用界面张力法测定CO2与原油的最小混相压力[J].石油学报.2007.28(3):93-95.
    [45]滕加丰.CO2-原油最小混相压力实验研究[J].价值工程.2010.29(3):31-32.
    [46]Leverett M C. Capillary behavior in porous solids[J]. Transaction of American Institute of Mining, Metallurgical, and Petroleum Engineers (Trans. AIME.) 1940,142:152-169.
    [47]Weinaug C F, Cordell J C. Revaporization of butane and pentane from sand[J]. Transaction of American Institute of Mining, Metallurgical, and Petroleum Engineers (Trans. AIME.) 1948,179: 303-314.
    [48]Smith Lowell R, Yarborough L. Equilibrium revaporization of retrograde condensate by gas injection[J]. Society of Petroleum Engineers Journal.1968,18(1):87-94.
    [49]Clark C R. Adsorption and Desorption of Light Paraffinic Hydrocarbons in Dry and Water-Saturated Sand-Clay Packs:Studies to Determine the Effect of These Phenomena on the PVT Behavior of Natural Gases and Gas Condensates in the Reservoir[D]. University of Kansas, Chemical and Petroleum Engineering,1969.
    [50]Sigmund P M, Dranchuk P M, Morrow N R, et al. Retragrade condensation in porous media[J]. Society of Petroleum Engineers Journal.1973,13(2):93-104.
    [51]Saeidi A, Handy L L. Flow and phase behavior of gas condensate and volatile oils in porous media[C]. San Francisco:1974.
    [52]Tindy R, Raynal M. Are Test-cell saturation pressure accurate enough[J]. Oil & Gas J.1966,64(49): 126-139.
    [53]Gimatudinov S K, Seldovsky A N. Gas saturation of oil in a porous medium[J]. Neft'i Gaz.1963,3(2): 221-232.
    [54]Trebin F A, Zadora G I. Experiment study of the effect of a porous media on phase changes in gas condensate systems[J]. Neft's Gaz.1968,8(1):37-41.
    [55]Williams J, Dawe R. Near critical condensate fluid behavior in porous media-a modeling approach[J]. SPE Reservoir Engineering.1989,4(2):221-227.
    [56]Lee S T. Capillary-gravity equilibria for hydrocarbon fluids in porous media[C]. The 64th Annual Technical Conference and Exhibition of the Society of Petroleum Engineers held in San Antonio, TX, 8-11 October,1989.
    [57]Brusilovsky A I. Mathematical simulation of phase behavior of natural multicomponent systems at high pressures with an equation of state[J]. SPE reservoir engineering.1992,7(1):117-122.
    [58]阎庆来,何秋轩,刘易非.凝析油气在多孔介质中的相变特征[J].西安石油大学学报(自然科学版).1988,3(2):15-22.
    [59]郭平,孙良田,孙雷.多孔介质毛细管压力对凝析油气相态影响研究[J].石油勘探与开发.1994,21(4):64-69.
    [60]杨金海,李士伦,郭平,等.孔隙介质中气体相变超声波测试方法研究[J].西南石油学院学报.1999,21(3):22-24.
    [61]童敏,李相方,程时清.近井地带凝析油聚集机理研究综述[J].力学进展.2003,33(4):499-506.
    [62]李敬松,李相方,童敏,等.多孔介质中凝析气液相变实验新方法研究[J].石油勘探与开发.2004,31(6):101-103.
    [63]李敬松,李相方,童敏,等.多孔介质中凝析气相变实验的新方法[J].新疆石油地质.2004,25(6):673-675.
    [64]童敏,李相方,程红卫,等.毛细管压力对凝析气相态的影响[J].石油钻采工艺.2004,26(6):41-44.
    [65]童敏,胡永乐,李相方,等.毛细管数效应对凝析气井流入动态的影响[J].新疆石油地质.2006,27(2):194-196.
    [66]石德佩,孙雷,刘建仪,等.高温高压含水凝析气相态特征研究[J].天然气工业.2006,26(3):95-97.
    [67]王志伟,李相方,童敏.凝析气藏气液相变三区扩展模型研究[J].西安石油大学学报(自然科学版).2005,20(5):37-39.
    [68]王志伟,李相方,童敏,等.基于凝析气相变的凝析油聚集规律[J].石油钻采工艺.2005,27(4):48-50
    [69]王志伟,李相方,程时清,等.多孔介质凝析气相变的影响因素[J].天然气工业.2006,26(1):90-92.
    [70]王志伟,李相方.凝析气相变微观孔隙模型实验研究[J].工程热物理学报.2006,27(2):251-254.
    [71]Zick A A. A combined condensing/vaporizing mechanism in the displacement of oil by enriched gases[Z]. New Orleans, Louisiana:Society of Petroleum Engineers,1986.
    [72]Shyeh-Yung J G J. Mechanisms of miscible oil recovery:Effects of pressure on miscible and near-miscible displacements of oil by carbon dioxide[C]. The 66th Annual Technical Conference and Exhibition of the Society of Petroleum Engineers held in Dallas, TX, October 6-9,1991.
    [73]Wylie P, Mohanty K. Effect of water saturation on oil recovery by near-miscible gas injection[J]. SPE Reservoir Engineering.1997,12(4):264-268.
    [74]Wylie P, Mohanty K. Effect of wettability on oil recovery by near-miscible gas injection[C]. SPE Reservoir Evaluation & Engineering.1999,2(6):558-564.
    [75]Dong M, Huang S S, Srivastava R. A laboratory study on near-miscible CO2 injection in Steelman Reaervoir[J]. Journal of Canadian Petroleum Technology.2001,40(2):53-61.
    [76]Polikhronidi N G, Batyrova R G, Abdulagatov I M, et al. Isochoric heat capacity measurements for a CO2+n-decane mixture in the near-critical and supercritical regions[J]. The Journal of Supercritical Fluids.2005,33(3):209-222.
    [77]Polikhronidi N G, Batyrova R G, Abdulagatov I M, et al. Isochoric heat capacity of CO2+n-decane mixtures in the critical region[J]. International Journal of Thermophysics.2006,27(3):729-759.
    [78]Asheghi H A, Esmaiel T, Kruijsdijk C. Exploring dispersion effects and crossflow mechanisms in the nearly miscible gas drives[C]. SPE Internatonal Improved Oil Recovery Conference in Asia Pacific held in Kuala Lumpur, Malaysia,5-6 December 2005.
    [79]Bui L H. Near miscible CO2 application to improve oil recovery[D]. University of Kansas,2010.
    [80]文思.近混相理论的研究[J].石油学报.1993,8(3):29.
    [81]庞进,孙雷,孙良田,等.注伴生富化气近混相多级接触驱替机理研究[J].西南石油大学学报.2007,29(01):88-91.
    [82]雷霄,邓传忠,米洪刚,等.涠洲12-1油田注伴生气近混相驱替机理实验及模拟研究[J].石油钻采工艺.2007,29(6):32-34.
    [83]郭平,徐阳,牛保伦,等.胜利油田高89区块低渗油藏C02近混相驱替机理研究[J].特种油气藏.2012,19(02):104-106.
    [84]Werth C J, Zhang C, Brusseau M L, et al. A review of non-invasive imaging methods and applications in contaminant hydrogeology research[J]. Journal of Contaminant Hydrology.2010,113(1-4):1-24.
    [85]赵喜平.磁共振成像系统的原理及其应用[M].北京:科学出版社,2000.
    [86]Haacke E M, Brown R W, Thompson M R, et al. Magnetic resonance imaging:physical principles and sequence design[M]. Wiley-Liss New York,1999.
    [87]俎栋林.核磁共振成像学[M].高等教育出版社,2004.
    [88]张定华,黄魁东,程云勇.锥束CT技术及其应用[M].西安:西北工业大学出版社,2010.
    [89]Song Y Q, Cho H, Hopper T, et al. Magnetic resonance in porous media:Recent progress[J]. Journal of Chemical Physics.2008,128:052212.
    [90]Johns M L, Gladden L F. Magnetic Resonance Imaging study of the dissolution kinetics of octanol in porous media[J]. Journal of Colloid and Interface Science.1999,210(2):261-270.
    [91]Suekane T, Furukawa N, Tsushima S, et al. Application of MRI in the measurement of two-phase flow of supercritical CO2 and water in porous rocks[J]. Journal of Porous Media.2009,12(2):143-154.
    [92]Becker M W, Pelc M, Mazurchuk R V, et al. Magnetic resonance imaging of dense and light non-aqueous phase liquid in a rock fracture[J]. Geophysical research letters.2003,30(12):1646.
    [93]Zhang C Y, Werth C J, Webb A G. A magnetic resonance imaging study of dense nonaqueous phase liquid dissolution from angular porous media[J]. Environmental Science & Technology.2002,36(15): 3310-3317.
    [94]Baumann T, Werth C J. Visualization of colloid transport through heterogeneous porous media using magnetic resonance imaging[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects. 2005,265(1-3):2-10.
    [95]Simpson M J, Simpson A J, Gross D, et al. H-1 and F-19 nuclear magnetic resonance microimaging of water and chemical distribution in soil columns[J]. Environmental Toxicology and Chemistry.2007, 26(7):1340-1348.
    [96]Reeves A D, Chudek J A. Nuclear magnetic resonance imaging (MRI) of diesel oil migration in estuarine sediment samples[J]. Journal of Industrial Microbiology and Biotechnology.2001,26(1-2): 77-82.
    [97]Zhang C. Impacts of source zone architecture on nonaqueous phase liquid dissolution and cleanup:A magnetic resonance imaging study[Z]. University of Illinois at Urbana-Champaign.2006:67.
    [98]Zhang C, Werth C J, Webb A G. Characterization of NAPL source zone architecture and dissolution kinetics in heterogeneous porous media using magnetic resonance imaging[J]. Environmental science & technology.2007,41(10):3672-3678.
    [99]Zhang C, Yoon H, Werth C J, et al. Evaluation of simplified mass transfer models to simulate the impacts of source zone architecture on nonaqueous phase liquid dissolution in heterogeneous porous media[J]. Journal of Contaminant Hydrology.2008,102(1):49-60.
    [100]Chu Y, Werth C J, Valocchi A J, et al. Magnetic resonance imaging of nonaqueous phase liquid during soil vapor extraction in heterogeneous porous media[J]. Journal of Contaminant Hydrology. 2004,73(1):15-37.
    [101]Kutsovsky Y E, Scriven L E, Davis H T, et al. NMR imaging of velocity profiles and velocity distributions in bead packs[J]. Physics of Fluids.1996,8(4):863-871.
    [102]Manz B, Gladden L F, Warren P B. Flow and dispersion in porous media:Lattice-Boltzmann and NMR studies[J]. AICHE Journal.1999,45(9):1845-1854.
    [103]Deurer M, Vogeler I, Clothier B E, et al. Magnetic resonance imaging of hydrodynamic dispersion in a saturated porous medium[J]. Transport in Porous Media.2004,54(2):145-166.
    [104]Song Y C, Jiang L L, Liu Y, et al. An experimental study on CO2/water displacement in porous media using high-resolution Magnetic Resonance Imaging[J]. International Journal of Greenhouse Gas Control.2012,10:501-509.
    [105]Suekane T, Zhou N, Hosokawa T, et al. Direct observation of trapped gas bubbles by capillarity in sandy porous media[J]. Transport in Porous Media.2010,82(1):111-122.
    [106]Zhao Y, Song Y, Liu Y, et al. Visualization and measurement of CO2 flooding in porous media using MRI[J]. Industrial & Engineering Chemistry Research.2011,50(8):4707-4715.
    [107]Liu Y, Zhao Y, Zhao J, et al. Magnetic resonance imaging on CO2 miscible and immiscible displacement in oil-saturated glass beads pack[J]. Magnetic Resonance Imaging.2011,29(8): 1110-1118.
    [108]Pearl Z, Magaritz M, Bendel P. Measuring diffusion coefficients of solutes in porous media by NMR imaging[J]. Journal of Magnetic Resonance (1969).1991,95(3):597-602.
    [109]Baumann T, Petsch R, Niessner R. Direct 3D measurement of the flow velocity in porous media using magnetic resonance tomography [J]. Environmental Science & Technology.2000,34(19): 4242-4248.
    [110]Mair R W, Wong G P, Hoffmann D, et al. Probing porous media with gas diffusion NMR[J]. Physical Review Letters.1999,83(16):3324-3327.
    [111]Amin M, Gibbs S J, Chorley R J, et al. Study of flow and hydrodynamic dispersion in a porous medium using pulsed-field-gradient magnetic resonance[J]. Proceedings Of The Royal Society of London Series A-Mathematical Physical and Engineering Sciences.1997,453(1958):489-513.
    [112]Seymour J D, Callaghan P T. "Flow-Diffraction" Structural Characterization and Measurement of Hydrodynamic Dispersion in Porous Media by PGSE NMR[J]. Journal of Magnetic Resonance, Series A.1996,122(1):90-93.
    [113]Pearl Z, Magaritz M, Bendel P. Nuclear magnetic resonance imaging of miscible fingering in porous media[J]. Transport in Porous Media.1993,12(2):107-123.
    [114]Hoffman F, Ronen D, Pearl Z. Evaluation of flow characteristics of a sand column using magnetic resonance imaging[J]. Journal of Contaminant Hydrology.1996,22(1):95-107.
    [115]Oswald S E, Scheidegger M B, Kinzelbach W. Time-dependent measurement of strongly density-dependent flow in a porous medium via nuclear magnetic resonance imaging[J]. Transport in Porous Media.2002,47(2):169-193.
    [116]Oswald S E, Kinzelbach W. Three-dimensional physical benchmark experiments to test variable-density flow models[J]. Journal of Hydrology.2004,290(1):22-42.
    [117]Wang S Y, Ayral S, Castellana F S, et al. Reconstruction of oil saturation distribution histories during immiscible liquid-liquid displacement by computer-assisted tomography[J]. AIChE journal.1984, 30(4):642-646.
    [118]Hove A O, Ringen J K, Read P A. Visualization of laboratory corefloods with the aid of computerized tomography of X-rays[J]. SPE Reservoir Engineering.1987,2(2):148-154.
    [119]Vinegar H J, Wellington S L. Tomographic imaging of three-phase flow experiments[J]. Review of Scientific Instruments.1987,58(1):96-107.
    [120]Wellington S L, Vinegar H J. X-ray computerized tomography [J]. Journal of Petroleum Technology. 1987,39(8):885-898.
    [121]Withjack E M. Computed tomography for rock-property determination and fluid-flow visualization[J]. SPE Formation Evaluation.1988,3(4):696-704.
    [122]Hicks Jr. P J, Deans H A, Narayanan K. Distribution of residual oil in heterogeneous carbonate cores using X-ray computerized CT[J]. SPE Formation Eval.1992,7(3):235-240.
    [123]Al-Raoush R I, Willson C S. Extraction of physically realistic pore network properties from three-dimensional synchrotron X-ray microtomography images of unconsolidated porous media systems[J]. Journal of Hydrology.2005,300(1):44-64.
    [124]Schnaar G, Brusseau M L. Pore-scale characterization of organic immiscible-liquid morphology in natural porous media using synchrotron X-ray microtomography[J]. Environmental science & technology.2005,39(21):8403-8410.
    [125]Prodanovi C M, Lindquist W B, Seright R S. Porous structure and fluid partitioning in polyethylene cores from 3D X-ray microtomographic imaging[J]. Journal of Colloid and Interface Science.2006, 298(1):282-297.
    [126]Prodanovi C M, Lindquist W B, Seright R S.3D image-based characterization of fluid displacement in a Berea core[J]. Advances in Water Resources.2007,30(2):214-226.
    [127]Coles M E, Hazlett R D, Muegge E L, et al. Developments in synchrotron X-ray microtomography with applications to flow in porous media[J]. SPE Reservoir Evaluation & Engineering.1998,1(4): 288-296.
    [128]Coles M E, Hazlett R D, Spanne P, et al. Pore level imaging of fluid transport using synchrotron X-ray microtomography[J]. Journal of Petroleum Science and Engineering.1998,19(1-2):55-63.
    [129]Seright R S, Liang J, Lindquist W, et al. Characterizing disproportionate permeability reduction using synchrotron X-ray computed microtomography[J]. SPE Reservoir Evaluation & Engineering.2002, 5(5):355-364.
    [130]Seright R S, Liang J, Lindquist W B, et al. Use of X-ray computed microtomography to understand why gels reduce relative permeability to water more than that to oil[J]. Journal of Petroleum Science and Engineering.2003,39(3-4):217-230.
    [131]Prodanovi C M, Lindquist W B, Seright R S.3D image-based characterization of fluid displacement in a Berea core[J]. Advances in Water Resources.2007,30(2):214-226.
    [132]Turner M L, Kn U Fing L, Arns C H, et al. Three-dimensional imaging of multiphase flow in porous media[J]. Physica A:Statistical Mechanics and its Applications.2004,339(1):166-172.
    [133]Al-Raoush R I, Willson C S. A pore-scale investigation of a multiphase porous media system[J]. Journal of Contaminant Hydrology.2005,77(1):67-89.
    [134]Wildenschild D, Hopmans J W, Rivers M L, et al. Quantitative analysis of flow processes in a sand using synchrotron-based X-ray microtomography[J]. Vadose Zone Journal.2005,4(1):112-126.
    [135]Culligan K A, Wildenschild D, Christensen B S O J, et al. Pore-scale characteristics of multiphase flow in porous media:a comparison of air-water and oil-water experiments[J]. Advances in Water Resources.2006,29(2):227-238.
    [136]Schnaar G, Brusseau M L. Characterizing pore-scale dissolution of organic immiscible liquid in natural porous media using synchrotron X-ray microtomography[J]. Environmental Science & Technology.2006,40(21):6622-6629.
    [137]Orr F M, Jessen K. Response to comments on "An analysis of the vanishing interfacial tension technique for determination of minimum miscibility pressure"[J]. Fluid Phase Equilibria.2007, 259(2):238.
    [138]Rao D N, Ayirala S C. Authors' response to the comments on "A new mechanistic Parachor model to predict dynamic interfacial tension and miscibility in multicomponent hydrocarbon systems" by F.M. Orr and K. Jessen[J]. Journal of Colloid and Interface Science.2007,307(2):559-562.
    [139]Rao D N, Ayirala S C. Comments on "An analysis of the vanishing interfacial tension technique for determination of minimum miscibility pressure" by F.M. Orr and K. Jessen [Fluid Phase Equilib. 255 (2007) 99-109][J]. Fluid Phase Equilibria.2007,259(2):235-237.
    [140]Asghari K, Torabi F. Effect of miscible and immiscible CO2 flooding on gravity drainage: Experimental and simulation results[C]. SPE/DOE Improved Oil Recovery Symposium held in Tulsa, Oklahoma, U.S.A.,19-23 April 2008.
    [141]Nagarajan N, Jr. Robinson R L. Equilibrium phase compositions, phase densities, and interfacial tensions for CO2+ Hydrocarbon Systems.2. CO2+ n-decane[J]. Journal of Chemical and Engineering Data.1986,31(2):168-171.
    [142]Peng D, Robinson D B. A new two-constant equation of state[J]. Industrial & Engineering Chemistry Fundamentals.1976,15(1):59-64.
    [143]Song Y C, Jian W W, Zhang Y, et al. Densities and volumetric characteristics of binary system of CO2+ decane from (303.15 to 353.15) K and pressures up to 19 MPa[J]. Journal of Chemical and Engineering Data.2012,57(12):3399-3407.
    [144]Zuniga-Moreno A, Galicia-Luna L A, Camacho-Camacho L E. Compressed liquid densities and excess volumes of CO2+ decane mixtures from (313 to 363) K and pressures up to 25 MPa[J]. Journal of Chemical and Engineering Data.2005,50(3):1030-1037.
    [145]Reamer H H, Sage B H. Phase equilibria in hydrocarbon systems. Volumetric and phase behavior of the n-Decane-CO2 system.[J]. Journal of Chemical and Engineering Data.1963,8(4):508-513.
    [146]Ruith M, Meiburg E. Miscible rectilinear displacements with gravity override. Part 1. Homogeneous porous medium[J]. Journal of Fluid Mechanics.2000,420:225-257.
    [147]Jiao C, Maxworthy T. An experimental study of miscible displacement with gravity-override and viscosity-contrast in a Hele Shaw cell[J]. Experiments in Fluids.2008,44(5):781-794.
    [148]Riaz A, Meiburg E. Three-dimensional miscible displacement simulations in homogeneous porous media with gravity override[J]. Journal of Fluid Mechanics.2003,494:95-117.
    [149]Berg S, Oedai S, Landman A J, et al. Miscible displacement of oils by carbon disulfide in porous media:Experiments and analysis[J]. Physics of Fluids.2010,22(11):113102.
    [150]De Wit A. Miscible density fingering of chemical fronts in porous media:Nonlinear simulations[J]. Physics of fluids.2004,16(1):163.
    [151]Tan C T, Homsy G M. Stability of miscible displacements in porous media:Rectilinear flow[J]. Physics of Fluids.1986,29(11):3549.
    [152]Shaw J, Bachu S. Screening, evaluation, and ranking of oil reservoirs suitable for CO2-flood EOR and carbon dioxide sequestration[J]. Journal of Canadian Petroleum Technology.2002,41(9): 51-61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700