用户名: 密码: 验证码:
掺杂型Bi系可见光催化材料的制备、表征及其应用工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,很多工业废水都具有有机物浓度高、难生物降解甚至有生物毒性等特点,尤其工业废水中的酚类物质对水体的危害最大,并且此危害具有持续性。因此,开发一种高效、实用、经济的含酚类物质废水处理技术迫在眉睫。光催化氧化有机污染物作为一个新兴的污染处理技术,是将化学氧化法进行强化与改进,与其它传统的水处理方法相比,具有工艺条件温和、处理成本低、氧化效果高、选择性好、反应速度快、可以将有机挥发酚氧化为无毒害的无机物、不产生二次污染等优点,受到人们的青睐。
     本文围绕光催化材料的设计合成及其光催化氧化处理含酚废水中的基本科学问题和技术问题,研究了Bi系列光催化材料的合成机理、结构特征以及光催化工艺过程,探索了Bi系列光催化材料在合成和应用过程中的一些基本理论、规律,可为含酚废水的光催化氧化处理技术提供一定的理论依据和借鉴。本论文主要研究成果:
     1、采用水热合成法制备了金属Cu掺杂改性的Bi2WO6光催化剂,使用XRD、XPS、DRS、SEM等表征手段对其进行了结构分析。结果表明,掺杂了金属Cu以后,样品的跃迁位置明显红移,并且对可见光的吸收强度高于Bi2W06。当金属Cu的掺杂量为0.5wt%时,Cu-Bi2WO6的特征衍射峰比较尖锐,其具有较高的结晶度。当前体液pH=0.6时,所制备的Cu-Bi2WO6的特征衍射峰最窄,峰强最大,样品为三维花球状结构,微孔尺寸大,比表面积为84.58m2/g。
     2、采用单因素讨论了各种因素对Cu-Bi2WO6光催化剂降解模拟含酚废水中的苯酚的影响,结果表明,在Cu-Bi2WO6催化剂(前体液pH为0.6,Cu掺杂量为0.5wt%)的用量为1.0mg/L,光源为300W金卤灯,空气流量为25mL/min时,Cu-Bi2WO6对模拟含酚废水中的苯酚降解效果最优。以Cu-Bi2WO6用量、空气流量、光照时间、光照强度为多因素考察对象,研究了多因素交互关系对苯酚的降解率的影响,结果表明所建立的回归模型是显著的,相关系数R2为0.9658。
     3、建立了基于兰缪尔和弗伦德利希的Cu-Bi2WO6表面吸附苯酚的模型方程式,分别为(?)和Qe=0.57298Ce0.66154,两种等温吸附模型能说明Cu-Bi2WO6对模拟含酚废水中的苯酚的吸附现象。建立了基于Langmuir-Hinshewood动力学模型的Cu-Bi2WO6光催化降解模拟含酚废水的动力学方程(?)+1.2306。4、采用水热合成法制备了金属Cu掺杂改性的BiVO4光催化剂,使用XRD、XPS、DRS、SEM等表征手段对其进行了结构分析。结果表明,在中性条件下所制备的Cu-BiVO4样品属于单斜晶系白钨矿,样品的特征衍射峰最窄,峰强最大,结晶度趋于成熟。当金属Cu的掺杂量为0.75wt%时,Cu-BiVO4样品的特征衍射峰比较尖锐,样品具有很高的结晶度。前体液pH=7时,合成的Cu-BiVO4样品为三维球状结构,表面形态复杂,比表面积为12.64m2/g。
     5、采用单因素讨论了各种因素对Cu-BiVO4光催化剂降解模拟含酚废水中的苯酚的影响,结果表明,在Cu-BiVO4催化剂(前体液pH为7,Cu掺杂量为0.75wt%)的用量为1.0mg/L,光源为300W氙灯,空气流量为30mL/min时,Cu-BiVO4对模拟含酚废水中的苯酚降解效果最优。以Cu-BiVO4用量、空气流量、光照时间、光照强度为多因素考察对象,研究了多因素交互关系对苯酚的降解率的影响,结果表明所建立的回归模型是显著的,相关系数R2为94.93%。
     6、建立了基于兰缪尔和弗伦德利希的Cu-BiVO4表面吸附苯酚的模型方程式,分别为(?)和Qe=0.760606Ce0.76684,两种等温吸附模型能说明Cu-BiVO4对模拟含酚废水中的苯酚的吸附现象。建立了基于Langmuir-Hinshewood动力学模型的Cu-BiVO4光催化降解模拟含酚废水的动力学方程(?)+2.1494。
     本论文所取得研究结果,不但为材料化学与环境科学提供了新的研究内容,而且为合成表面结构特殊且具有光催化性能的半导体金属复合材料提供了新的思路,同时也为半导体金属复合材料光催化综合治理工业含酚废水提供借鉴意义。
At present, many industrial wastewaters have lots of characteristics, such as high concentration of organic substance, biodegradable and biological toxicity. Especially, the phenolic compound in industrial wastewater is most harmful, and the harm is persistent. Therefore, to explore an effective treatment technology of phenol-containing wastewater is imminent. As a new pollution treatment technology, photocatalytic oxidation is an enhanced and improved chemical oxidation method. Compared with other traditional water treatment method, the photocatalytic oxidation have a lots of advantages, such as, mild reaction conditions, low treatment cost, high oxidation effect, good selectivity, fast reaction speed, and organic volatile phenol can be oxidized to non-harmfully inorganic compounds. So, the photocatalytic oxidation has been widely studied.
     The study mainly centers on the basic science and technology issues in the synthesis and photocatalytic oxidation application of photocatalytic materials. The synthesis mechanism, structure characteristics and photocatalysis process of Bi-containing photocatalysts are reasearched. Lots of basic theory and rules of synthesis process and application process of Bi-containing photocatalysts are explored. The results hereby can provide the theoretical reference for phenol wastewater treatment by photocatalytic oxidation. The following several aspects of research are discussed in this paper:
     1. The Cu doping Bi2WO6photocatalysts are prepared by hydrothermal method and characterized by XRD、XPS、DRS and SEM. The results show that, after doped Cu, the Cu-Bi2WO6photocatalysts has a significant red-shift in the absorption band, and the absorption intensity increases greatly in the visible region. When the amount of Cu doping is0.5wt%, diffraction peaks of Cu-Bi2WO6are sharp and Cu-Bi2WO6has a higher crystallinity. While the pH value of preparation is0.6, the diffraction peaks are most narrow and the peak intension is larger. The morphology and microstructure of Cu-Bi2WO6is3D flower spherical structure, the size of micro-porosity is large, and specific surface area is84.58m2/g.
     2. The various factors of photocatalytic degradation of phenol-containing wastewater over Cu-Bi2WO6photocatalysts are discussed by single factor experiment. The results show that the optimal degradation effect of phenol-containing wastewater could reach at a Cu-Bi2WO6catalyst (pH value of preparation is0.6, Cu doping is0.5wt%) dosage of1.0mg/L, and an air flow rate of25mL/min upon being illuminated with300W metal halide lamp. Cu-Bi2WO6dosage, air flow, light, light intensity as a multiple factor, the degradation effect is investigated by interaction of multiple factors, the results show that the establishment of the regression model was significant, orrelation coefficient R2is0.9658.
     3. The model equations of adsorption of phenol over Cu-Bi2WO6, Qe=0.31437Ce/1+0.02286Ce and Qe=0.57298Ce0.66154, are established. Both types of isothermal adsorption model can descript the adsorption phenomena of phenol over Cu-Bi2WO6.Based on Langmuir-Hinshewood model, the kinetics equation of photocatalytic degradation of phenol-containing wastewater is established. The correlation coefficient R2is0.9919, and kinetic parameters of Langmuir-Hinshewood model are k=0.8126, KL-H=0.0235
     4. The Cu doping BiVO4photocatalysts are prepared by hydrothermal method and characterized by XRD、XPS、DRS and SEM. The results show that, the Cu-BiVO4preparated at neutral conditions belongs to the monoclinic crystal system scheelite, the diffraction peaks are most narrow, the peak intension is larger. When the amount of Cu doping is0.75wt%, diffraction peaks of Cu-BiVO4are sharp and Cu-BiVO4has a higher crystallinity. While the pH value of preparation is7, the morphology and microstructure of Cu-BiVO4is3D spherical structure and has a complicated surface morphology, the size of micro-porosity is large, and specific surface area is12.64m2/g.
     5. The various factors of photocatalytic degradation of phenol-containing wastewater over Cu-BiVO4photocatalysts are discussed by single factor experiment. The results show that the optimal degradation effect of phenol-containing wastewater could reach at a Cu-BiVO4catalyst (pH value of preparation is7, Cu doping is0.75wt%) dosage of1.0mg/L, and an air flow rate of30mL/min upon being illuminated with300W xenon lamp. Cu-BiVO4dosage, air flow, light, light intensity as a multiple factor, the degradation effect is investigated by interaction of multiple factors, the results show that the establishment of the regression model was significant, orrelation coefficient R2is94.93%.
     6. The model equations of adsorption of phenol over Cu-BiVO4, Qe=0.83986Ce/1+0.01254Ce and Qe=0.760606Ce0.76684,are established. Both types of isothermal adsorption model can descript the adsorption phenomena of phenol over Cu-BiVO4Based on Langmuir-Hinshewood model, the kinetics equation of photocatalytic degradation of phenol-containing wastewater is established. The correlation coefficient R2is0.9961, and kinetic parameters of Langmuir-Hinshewood model are k=0.4652, KL-H=0.0695
     The obtained outcome of this study, not only enriches the contents of materials chemistry and environmental science, but also provides a new idea to prepare metal composite oxides materials with diverse surface structure and photocatalytic properties, and also provides a consulting effect to photocatalytic treatment of industrial wastewaters with metal composite oxides materials.
引文
[1]Thevenet F., Guaitella O., Hermann J. M., et al. Photocatalytic degradation of acetylene over various titanium dioxide-based photocatalysts[J]. Applied Catalysis B: Environmental,2005,61(1-2):58-68.
    [2]Addamo M., Augugliaro V., Garcfa-Lopez E., et al. Oxidation of oxalate ion in aqueous suspensions of TiO2 by photocatalysis and ozonation[J]. Catalysis. Today,2005, 107-108:612-618.
    [3]Beltran F. J., Rivas F. J., Gimeno O. Comparison between photocatalytic ozonation and other oxidation processes for the removal of phenols from water [J]. Journal of Chemical Technology and Biotechnology,2005,80(9):973-984.
    [4]Ilisz I., Bokros A., Dombi A. TiO2-Based Heterogeneous Photocatalytic Water Treatment Combined with Ozonation[J]. Ozone-Science & Engineering,2004,26 (6):585-594.
    [5]Hernandez-Alonso M. D., Coronado J. M., Maira A. J., et al. Ozone enhanced activity of aqueous titanium dioxide suspensions for photocatalytic oxidation of free cyanide ions[J]. Applied Catalysis B:Environmental,2002,39 (3):257-267.
    [6]Bahnemann D. W., Cunningham J., Fox M. A., et al. Aquatic Surface Photochemistry[M]. Boca Raton, Florida:Lewis Publishers,1994:261.
    [7]Poulios I., Tsachpinis I. Photodegradation of the textile dye Reactive Black 5 in the presence of semiconducting oxides[J]. Journal of Chemical Technology and Biotechnology,1999,74(4):349.
    [8]Tang W. Z., Huang C. P. Photocatalyzed oxidation pathways of 2,4-dichlorop-henol by CdS in basic and acidic aqueous solutions[J]. Water Research,1995,29 (2):745-756.
    [9]Tunesi S., Anderson M. Influence of chemisorption on the photodecomposition of salicylic acid and related compounds using suspended titania ceramic membranes[J]. Journal of Physical Chemistry,1991,95 (8):3399-3405.
    [10]Zheng S. R., Huang Q. G., Zhou J., et al. A study on dye photoremoval in TiO2 suspension solution[J]. Journal of Photochemistry and Photobiology A-Chemistry,1997, 108 (2-3):235-238.
    [11]Gonealves M. S. T., Oliveira-Campos A. M. F., Pinto E. M. M. S., et al. Photochemical treatment of solutions of azo dyes containing TiO2[J].Chemosphere,1999,39 (5): 781-786.
    [12]Galindo C, Jacques P., Kalt A. Photodegradation of the aminoazobenzene acid orange 52 by three advanced oxidation processes:UV/H2O2, UV/TiO2 and VIS/TiO2:Comparative mechanistic and kinetic investigations[J]. Journal of Photochemistry and Photobiology A-Chemistry,2000,130 (1):35-47
    [13]Sharma A., Rao P., Mathur R. P., et al. Photocatalytic reactions of xylidine ponceau on semiconducting zinc oxide powder[J]. Journal of Photochemistry and Photobiology A-Chemistry,1995,86 (1-3):197-200.
    [14]Sakthivel S., Neppolian B., Palanichamy M., et al. Photocatalytic degradation of leather dye, Acid green 16 using ZnO in the slurry and thin film forms[J]. Indian Journal of Chemical Technology,1999,6 (3):161-165.
    [15]Neppolian B., Choi H. C., Sakthivel S., et al. Solar light induced and TiO2 assisted degradation of textile dye reactive blue 4[J]. Chemosphere,2002,46 (8):1173-1181.
    [16]Tang W. Z., An H.. UV/TiO2 photocatalytic oxidation of commercial dyes in aqueous solutions [J]. Chemosphere,1995,31 (9):4157-4170.
    [17]So C. M., Cheng M. Y., Yu J. C., et al. Degradation of azo dye procion red MX-5B by photocatalytic oxidation [J]. Chemosphere,2002,46 (6):905-912.
    [18]Augugliaro V., Baiocchi C., Prevot A. B., et al. Azo-dyes photocatalytic degradation in aqueous suspension of TiO2 under solar irradiation[J]. Chemosphere,2002,49(10): 1223-1230.
    [19]Hustert K., Zepp R. G. Photocatalytic degradation of selected azo dyes [J]. Chemosphere, 1992,24 (3):335-342.
    [20]Guillard C, Lachheb H., Houas A., et al. Influence of chemical structure of dyes, of pH and of inorganic salts on their photocatalytic degradation by TiO2 comparison of the efficiency of powder and supported TiO2[J]. ournal of Photochemistry and Photobiootobiology A-chemistry,2003,158 (1):27-36.
    [21]Sakthivel S., Neppolian B., Shankar M. V., et al. Solar photocatalytic degradation of azo dye:comparison of photocatalytic efficiency of ZnO and TiO2[J].Solar Energy Materials Solar Cells,2003,77 (1):65-82.
    [22]Muller T. S., Sun Z. L., Kumar G, et al. The combination of photocatalysis and ozonolysis as a new approach for cleaning 2,4-dichlorophenoxy-aceticacid polluted water[J]. Chemosphere,1998,36 (9):2043-2055.
    [23]Saquib M., Muneer M.. TiO2-mediated photocatalytic degradation of a triphenylmethane dye (gentian violet), in aqueous suspensions[J].Dyes Pigments,2003,56 (1):37-49.
    [24]Prevot A. B., Baiocchi C., Brussino M. C., et al. Photocatalytic degradation of acid Blue 80 in aqueous solutions containing TiO2 suspensions[J]. Environmental. Science & Technology,2001,35(5):971-976.
    [25]Bandara J., Nadtochenko V., Kiwi J., et al. Dynamics of oxidant addition as a parameter in the modelling of dye mineralization (Orange II) via advanced oxidation technologies[J]. Water Science Technology,1997,35(4):87-93.
    [26]Epling G. A, Lin C. Investigation of retardation effects on the titanium dioxide photodegradation system[J]. Chemosphere,2002,46(6):937-944.
    [27]Wiszniowski J., Robert D., Surmacz-Gorska J., et al. Photocatalytic decomposition of humic acids on TiO2:Part I:Discussion of adsorption and mechanism[J]. Journal of Photochemistry and Photobiology A-Chemistry,2002,152 (1-3):267-273.
    [28]Bekbolet M., Suphandag A. S., Uyguner C. S. An investigation of the photocatalytic efficiencies of TiO2 powders on the decolourisation of humic acids[J]. Journal of Photochemistry and Photobiology A-Chemistry,2002,148(1-3):121-128.
    [29]Daneshvar N., Salari D., Khataee A. R. Photocatalytic degradation of azo dye acid red 14 in water:investigation of the effect of operational parameters[J]. Journal of Photochemistry and Photobiology A-Chemistry,2003,157 (1):111-116.
    [30]Renzi C., Guillard C., Herrmann J. M., et al. Effects of methanol, formamide, acetone and acetate ions on phenol disappearance rate and aromatic products in UV-irradiated TiO2 aqueous suspensions[J]. Chemosphere,1997,35(4):819-826.
    [31]Mills A., Lehunte S. An overview of semiconductor photocatalysis [J]. Journal of Photochemistry and Photobiology A-Chemistry,1997,108(1):1-35.
    [32]Kormann C., Bahnemann D. W., Hoffmann M. R. Photolysis of chloro-form and other organic molecules in aqueous TiO2 suspensions[J]. Environmental. Science & Technology,1991,25(3):494-500.
    [33]Sokmen M., Ozkan A., Decolourising textile wastewater with modified titania:the effects of inorganic anions on the photocatalysis[J]. Journal of Photochemistry and Photobiology A-Chemistry,2002,147 (1):77-81.
    [34]Abdullah M., Low G. K. C., Matthews R. W.. Effects of common inorganic anions on rates of photocatalytic oxidation of organic carbon over illuminated titanium dioxide[J]. Journal of Physical Chemistry,1990,94(17):6820-6825.
    [35]Hu C., Yu J. C., Hao Z., et al. Effects of acidity and inorganic ions on the photocatalytic degradation of different azo dyes[J]. Applied Catalysis B:Environmental.2003,46(1): 35-47.
    [36]Chen C. C, Li X. Z., Ma W. H., et al. Effect of transition metal ions on the TiO2-assisted photodegradation of dyes under visible irradiation:a probe for the interfacial electron transfer process and reaction mechanism[J]. Journal of Physical Chemistry B,2002, 106(2):318-324.
    [37]Irie H., Miura S., Nakamura R., et al. A novel visible-light-sensitive efficient photocatalyst, CrⅢ-grafted TiO2[J]. Chemistry Letters,2008,37(3):252-253.
    [38]Irie H., Miura S., Kamiya K., et al. Efficient visible light-sensitive photocatalysts: Grafting Cu(II) ions onto TiO2 and WO3 photocatalysts[J]. Chemical Physics Letters, 2008,457(1-3):202-205
    [39]Pelizzetti E., Schiavello M.. Photochemical conversion and storage of solar energy[M]. Dordrecht, Holland:Kluwer Academic Publisher,1991.
    [40]Ollis D. F., Al-Ekabi H.. Photocatalytic purification and treatment of water and air[M]. Amsterdam, Holland:Elsevier Publisher,1993.
    [41]Bouquet-Somrani C., Fajula F., Finiels A., et al. Photocatalytic degradative oxidation of Diuron in organic and semi-aqueous systems over titanium dioxide catalyst[J].New Journal of Chemistry,2000,24 (12):999-1002.
    [42]KrysovaH., Krysa J., MacounovaK., et al. Photocatalytic degradation of diuron [3-(3,4-dichlorophenyl)-1,1-dimethylurea] on the layer of TiO2 particles in the batch mode plate film reactor[J]. Journal of Chemical Technology and Biotechnology,1998, 72(2):169-175.
    [43]Matthews R. W.. Hydroxylation reactions induced by near-ultraviolet photolysis of aqueous titanium dioxide suspension[J]. Journal of the American Chemical Society, 1984,80(1):457-471.
    [44]Wilke K., Breuer H. D. The influence of transition metal doping on the physical and photocatalytic properties of titama [J]. Journal of Photochemistry and Photobiology A-Chemistry,1999.121(1):49-53.
    [45]Liu Z. Y., Zhang X. T., Nishimoto S., et al. Highly ordered TiO2 nanotube arrays with controllable length for photoelectrocatalytic degradation of phenol [J]. Journal of Physical Chemistry C,2008,112:253-259.
    [46]Chen T, Luo C. T., Wang D. S., et al. Effect of ion beam bombarding on stress in TiO2 thin films[J]. Physics Procedia,2011,18:136-142.
    [47]Yan J. K., Gan G. Y., Du J. H., et al. Formation mechanism of secondary phase in (La, Nb) codoped TiO2 ceramics varistor[J]. Procedia Engineering,2012,27:1271-1283.
    [48]Ubonchonlakate K., Sikong L., Saito F. Photocatalytic disinfection of paeruginosa bacterial Ag-doped TiO2 film[J].Procedia Engineering,2012,32:656-662.
    [49]Jo W. K., Kim J. T. Application of visible-light photocatalysis with nitrogen-doped or unmodified titanium dioxide for control of indoor-level volatile organic compounds [J]. Journal of Hazardous Materials,2009,164(1):360-366.
    [50]Sonawane R. S., Kale B. B., Dongare M. K. Preparation and photo-catalytic activity of Fe-TiO2 thin films prepared by sol-gel dip coating[J]. Materials Chemistry and Physics, 2004,85(1):52-57.
    [51]Nishimoto S., Kubo A., Zhang X. T., et al. Novel hydrophobic/hydrophilic patterning process by photocatalytic Ag nucleation on TiO2 thin film and electroless Cu deposition[J]. Applied Surface Science,2008,254 (18):5891-5894.
    [52]Ubolchonlakate K., Sikong L., Tontai T. Formaldehyde degradation by photocatalytic Ag-doped TiO2 film of glass fibre roving[J]. Journal of Nanoscience and Nanotechnology,2010,10:7522-7525.
    [53]Kim M. S., Liu G., Nam W. K., et al. Preparation of porous carbon-doped TiO2 film by sol-gel method and its application for the removal of gaseous toluene in the optical fiber reactor[J]. Journal of Indusrtial and Engeering Chemistry,2011,17(2):223-228.
    [54]Rengaraj S., Li X. Z.. Enhanced photocatalytic activity of TiO2 by doping with Ag for degradation of 2,4,6-trichlorophenol in Aqueous Suspension[J]. Journal Molecular Catalysis A-Chemical,2006,243(1):60-67
    [55]Ubonchonlakate K., Sikong L., Tontai T., et al. Aeruginosa Inactivation with silver and nickel doped TiO2 films coated on glass fibre roving[J]. Advanced Materials Research, 2011,150-151:1726-1731.
    [56]Ikeda S., Takata T., Kondo T., et al. Mechano-catalytic overall water splitting [J]. Chemical Communications,1998,20:2185-2186
    [57]Hara M., Kondo T., Komoda M., et al. Cu2O as a photo catalyst for overall water splitting under visible light irradiation [J]. Chemical Communications,1998,3:357-358.
    [58]Yang H. M., Yang J. O., Xiao Y, et al. Electrochemical synthesis and photocatalytic property of cuprous oxide nanoparticles[J]. Materials Research Bulletin,2006,41(7): 1310-1318.
    [59]Huang L., Peng F., Yu H., et al. Preparation of cuprous oxides with different sizes and their behaviors of adsorption, visible-light driven photocatalysis and photocorrosion[J]. Solid State Sciences,2009,11(1):129-138.
    [60]Zou X. L., Yu Y. Q., Li C. E, et al. Preparation of nano-Cu2O/pearl shell composites for treating organic dyes[J]. Chinese Journal of Catalysis,2011,32(6):950-956.
    [61]Sun W., Sun W. D., Zhuo Y. J., et al. Facile synthesis of Cu2O nanocube/polycarbazole composites and their high visible-light photocatalytic properties[J]. Journal of Solid State Chemistry,2011,184(7):638-1643.
    [62]Peng F., Wang H. J., Yu H., et al. Preparation of aluminum foil-supported nano-sized ZnO thin films and its photocatalytic degradation to phenol under visible light irradiation[J]. Materials Research Bulletin,2006,41(11):2123-2129.
    [63]Zhang Y. Y, Mu J. One-pot synthesis, photoluminescence, and photocatalysis of Ag/ZnO composites[J]. Journal of Colloid and Interface Science,2007,309(2):478-484
    [64]Ma S. S., Li R., Lv C. P., et al. Facile synthesis of ZnO nanorod arrays and hierarchical nanostructures for photocatalysis and gas sensor applications[J]. Journal of Hazardous Materials,2011,192(2):730-740
    [65]Mahmood M. Baruah A., S., Dutta J. Enhanced visible light photocatalysis by manganese doping or rapid crystallization with ZnO nanoparticles[J]. Materials Chemistry and Physics,2011,130(1-2):531-535
    [66]Xie J., Wang H., Duan M., et al. Synthesis and photocatalysis properties of ZnO structures with different morphologies via hydrothermal method[J]. Applied Surface Science,2011,257(15):6358-6363
    [67]Reutergadh L. B., Iangphasuk M. Photocatalytic decolourization of reactive azo dye:A comparison between TiO2 and us photocatalysis[J]. Chemosphere.1997,35(3):585-596.
    [68]Karunakaran C., Senthilvelan S. Solar photocatalysis:oxidation of aniline on CdS[J]. Solar Energy,2005,79(5):505-512.
    [69]Li X. P., Gao Y. N., Yu L., et al. Template-free synthesis of CdS hollow nanospheres based on an ionic liquid assisted hydrothermal process and their application in photocatalysis[J]. Journal of Solid State Chemistry,2010,183(6):1423-1432.
    [70]Huang Y. Y, Sun F. Q., Wu T. X., et al. Photochemical preparation of CdS hollow microspheres at room temperature and their use in visible-light photocatalysis [J]. Journal of Solid State Chemistry,2011,184(3):644-648.
    [71]Huang Z. X., Sun F. Q., Zhang Y, et al.Temperature-assisted photochemical construction of CdS-based ordered porous films with photocatalytic activities on solution surfaces[J]. Journal of Colloid and Interface Science,2011,356(2):783-789.
    [72]Andrade G R. S., Nascimento C. C., Neves E. C., et al. One-step preparation of CdS nanocrystals supported on thiolated silica-gel matrix and evaluation of photocatalytic performance[J]. Journal of Hazardous Materials,2012,203-204:151-157.
    [73]Liao S. J., Huang D. G, Yu D. H., et al. Preparation and characterization of ZnO/TiO2, SO42-/Zn0/Ti02 photocatalyst and their photocatalysis [J]. Journal of Photochemistry and Photobiology A-Chemistry,2004,168(1-2):7-13.
    [74]Tian J. T., Wang,J. F. Dai J. H., et al N-doped TiO2/ZnO composite powder and its photocatalytic performance for degradation of methyl orange[J]. Surface & Coatings Technology,2009,204(5):723-730.
    [75]He Z. Y, Li Y. G, Zhang Q. Z., et al. Capillary microchannel-based microreactors with highly durable ZnO/TiO2 nanorod arrays for rapid, high efficiency and continuous-flow photocatalysis[J]. Applied Catalysis B:Environmental,2010,93(3-4):376-382.
    [76]Zhang H. M., Quan X., Chen S., et al. Fabrication of photocatalytic membrane and evaluation its efficiency in removal of organic pollutants from water[J]. Separation and Purification Technology,2006,50(2):47-155
    [77]Li B. X., Wang Y. F. Synthesis, microstructure, and photocatalysis of ZnO/CdS nano-heterostructure[J]. Journal of Physics and Chemistry of Solids,2011,72(11): 1165-1169.
    [78]Wang X. W., Liu G., Lu G. Q., et al. Stable photocatalytic hydrogen evolution from water over ZnO-CdS core-shell nanorods[J]. International Jurnal of Hydrogen Energy, 2010,35(15):8199-8205.
    [79]Wilson W., Manivannan A., Subramanian V. R.. Heterogeneous photocatalytic degradation of recalcitrant pollutants over CdS-TiO2 nanotubes:Boosting effect of TiO2 nanoparticles at nanotube-CdS interface[J]. Applied Catalysis A-General,2012,441 442:1-9.
    [80]Liu Z. L., Deng J. C., Deng J. J., et al. Fabrication and photocatalysis of CuO/ZnO nano-composites via a new method[J]. Materials Science and Engineering B,2008, 150(2):99-104.
    [81]Li D., Haneda H.. Photocatalysis of sprayed nitrogen-containing Fe2O3-ZnO and WOg-ZnO composite powders in gas-phase acetaldehyde decomposition[J]. Journal of Photochemistry and Photobiology A-Chemistry,2003,160(3):203-212
    [82]Li D., Haneda H., Ohashi N., et al. Synthesis of nanosized nitrogen-containing MOx-ZnO (M= W, V, Fe) composite powders by spray pyrolysis and their visible-light-driven photocatalysis in gas-phase acetaldehyde decomposition[J]. Catalysis Today.2004, 93-95(1):895-901
    [83]Kudo A., Ueda K., Kato H., et al. Photocatalytic O2 evolution under visible light irradiation on BiVO4 in aqueous AgNO3 solution[J]. Catalysis Letters,1998,53(3-4): 229-230
    [84]Ke D. N., Peng T. Y., Ma L., et al. Effects of hydrothermal temperature on the microstructures of BFVO4 and its photocatalytic O2 Evolution activity under visible Light[J].Inorganic Chemistry,2009,48(11):4685-4691
    [85]Xie B. P., C. He, P. X. Cai, Y. Xiong. Preparation of monoclinic BiVO4 thin film by citrate route for photocatalytic application under visible light[J]. Thin Solid Films,2010, 518 (8):1958-1961
    [86]Ge L.. Novel visible-light-driven Pt/BiVO4 photocatalyst for efficient degradation of methyl orange[J]. Journal Molecular Catalysis A-Chemical,2008,282(1-2):62-66
    [87]Zhang A. P., Zhang J. Z.. Characterization and photocatalytic properties of Au/BiVO4 composites[J]. Journal of Alloys and Compounds,2010,491(1-2),631-635
    [88]Li L. Z., Yan B.. BiVO4/Bi2O3 submicrometer sphere composite:Microstructure and photocatalytic activity under visible-light irradiation[J]. Journal of Alloys and Compounds,2009,476(1-2):624-628
    [89]Lee D. K., Cho I. S., Lee S. W., et al. Effects of carbon content on the photocatalytic activity of C/BiVO4 composites under visible light irradiation[J]. Materials Chemistry and Physics,2010,119(1-2):106-111
    [90]Cruz A. M. L., Perez U. M. G. Photocatalytic properties of BiVO4 prepared by the co-precipitation method:degradation of rhodamine B and possible reaction mechanisms under visible irradiation[J]. Materials Research Bulletin,2010,45(2):135-141
    [91]Sun Y. F., Xie Y., Wu C. Z., et al. Aqueous synthesis of mesostructured BiVO4 quantum tubes with excellent dual response to visible light and temperature [J]. Nano Research. 2010,3(9):620-631
    [92]Guan M. L., Ma D. K., Hu S. W., et al. From Hollow Olive-Shaped BiVO4 to n-p Core-Shell BiVO4@Bi2O3 Microspheres:Controlled Synthesis and Enhanced Visible-Light-Responsive Photocatalytic Properties [J]. Inorganic Chemistry,2011,50(3): 800-805
    [93]Liu Y. Y., Wang Z. Y., Huang B. B., et al. Enhanced photocatalytic degradation of organic pollutants over basic bismuth (Ⅲ) nitrate/BiVO4 composite[J]. Journal of Alloys and Compounds,2010,348(1):211-215
    [94]Strobel R., Metz H. J., Pratsinis S. E. Brilliant Yellow, Transparent Pure, and SiO2-Coated BiVO4 Nanoparticles Made in Flames[J]. Chemistry of Materials,2008, 20(20):6346-6351
    [95]Zhang X.F., Quan X., Chen S., et al. Effect of Si doping on photoelectrocatalytic decomposition of phenol of BiVO4 film under visible light[J]. Journal of Hazardous Materials,2010,177(1-3):914-917
    [96]Zhou B., Zhao X., Liu H. J., et al. Visible-light sensitive cobalt-doped BiVO4 (Co-BiVO4) photocatalytic composites for the degradation of methylene blue dye in dilute aqueous solutions[J]. Applied Catalysis B:Environmental,2010,99(1-2):214-221
    [97]Ye J. H., Zou Z. G, Oshikiri M., et al. A novel hydrogen-evolving photocatalyst InVO4 active under visible light irradiation[J]. Chemical Physics Letters,2002,356(3-4): 221-226
    [98]Fang H. B., Xu M. X., Ge L., et al. Synthesis and photocatalytic properties of InVO4 sol containing nanocrystals by mild hydrothermal processing [J]. Transactions of Nonferrous Metals Society of China,2006,16:s373-s376
    [99]L. W. Zhang, H. B. Fu, C. Zhang, Y. F. Zhu. Synthesis, characterization, and photocatalytic properties of InVO4 nanoparticles[J]. J. Solid State Chem.,2006,179(3): 804-811
    [100]Wang Y, Cao G. Z.. Synthesis and electrochemical properties of InVO4 nanotube arrays[J]. Journal Materterials Chemistry,2007,17(9):894-899
    [101]Ye J., Zou Z., Arakawa H., et al. Correlation of crystal and electronic structures with photophysical properties of water splitting photocatalysts InMO4(M=V5+,Nb5+,Ta5+)[J]. Journal of Photochemistry and Photobiology A-Chemistry,2002,148(1-3):79-83
    [102]Hu X. X., Hu C. Preparation and visible-light photocatalytic activity of Ag3VO4 powders[J]. Journal of Solid State Chemistry,2007,180(2):725-732
    [103]Wang G., Ren Y., Zhou G. J., et al. Synthesis of highly efficient visible light Ag@Ag3VO4 plasmonic photocatalysts [J]. Surface & Coatings Technology,6 June 2012, In Press,
    [104]王敏,王里奥,张文杰.液相沉淀法制备FeVO4新型可见光催化剂及其性能研究[J].材料导报,2009,23(4):24-37.
    [105]王敏,王里奥,贺健,张东,张文杰.Cu掺杂FeVO4光催化剂的制备及其光催化性能[J].材料科学与工艺,2010,18(5):670-674.
    [106]Kudo A., Hijii S. H2 or O2 evolution from aqueous solutions on layered oxide photocatalysts consisting of Bi3+with 6s2 configuration and d0 transition metal ions[J]. Chemistry Letters,1999,28(10):1103-1104.
    [107]Zhang S. C., Zhang C., Man Y, et al. Visible-light-driven photocatalyst of Bi2WO6 nanoparticles prepared via amorphous complex precursor and hotocatalytic properties[J]. Journal of Solid State Chemistry,2006,179(1):62-69
    [108]Fu H. B., Yao W. Q., Zhang L. W., et al.The enhanced photoactivity of nanosized Bi2WOe catalyst for the degradation of 4-chlorophenol[J]. Materials Research Bulletin, 2008,43(10):2617-2625
    [109]Zhang G. K., Lv F., Li M., et al. Synthesis of nanometer Bi2WO6 synthesized by sol-gel method and its visible-light photocatalytic activity for degradation of 4BS[J]. Journal of Physics and Chemistry Solids,2010,71(4):579-582
    [110]Zhang Z. J., Wang W. Z., Shang M., et al. Low-temperature combustion synthesis of Bi2WO6 nanoparticles as a visible-light-driven photocatalyst[J]. Journal of Hazardous Materials,2010,177(1-3):1013-1018
    [111]Duan F., Zheng Y, Chen M. Q.. Flower like PtCl4/Bi2WO6 composite photocatalystwithenhanced visible-light-induced photocatalytic activity [J]. Applied Surface Science,2011,257(6):1972-1978
    [112]Xiao Q., Zhang J., Xiao C., X. et al. Photocatalytic degradation of methylene blue over Co3O4/Bi2WO6 composite under visible light irradiation[J]. Catalysis Communications, 2008,9(6):1247-1253
    [113]Zhang L. W., ang Y. J., Cheng H. Y, et al. Synthesis of Porous Bi2WO6 Thin Films as Efficient Visible-Light-Active Photocatalysts[J]. Advanced Materials,2009,21(12): 1286-1290
    [114]Zhang L. S., Wong K. H., Chen Z. G, et al. AgBr-Ag-Bi2WO6 nanojunction system:A novel and efficient photocatalyst with double visible-light active components[J]. Applied Catalysis A-General,2009,363(1-2):221-229
    [115]Xie H. D., Shen D. Z., Wang X. Q., et al. Microwave hydrothermal synthesis and visible-light photocatalytic activity of Bi2WO6 nanoplates[J]. Materials Chemistry and Physics,2007,103(2-3):334-339
    [116]Yu J. G, Xiong J. F., Cheng B., et al. Hydrothermal preparation and visible-light photocatalytic activity of Bi2WO6powders[J]. Journal of Solid State Chemistry,2005, 178(6):1968-1972
    [117]Fu H. B., Zhang L. W., Yao W. Q., et al. Photocatalytic properties of nanosized Bi2WO6 catalysts synthesized via a hydrothermal process[J]. Applied Catalysis B-Environmental, 2006,66(1-2):100-110
    [118]Xia J. X., Li H. M., Luo Z. J., et al. Self-assembly and enhanced optical absorption of Bi2WO6 nests via ionic liquid-assisted hydrothermal method [J]. Materials Chemistry and Physics,2010,121(1):6-9
    [119]Alfaro S. O., Cruz A. M. L. Synthesis, characterization and visible-light photocatalytic properties of Bi2WO6 and Bi2W2O9 obtained by co-precipitation method[J]. Applied Catalysis A-General,2010,383(1-2):128-133
    [120]Zhang L., Wang W. Z., Shang M., et al. Bi2WO6@carbon/Fe3O4 microspheres: Preparation, growth mechanism and application in water treatment[J]. Journal of Hazardous Materials,2009,172(2-3):1193-1197.
    [121]An H. Z., Du Y., Wang T. M., et al. Photocatalytic properties of BiOX (X= Cl, Br, and I) [J]. Rare Metals,2008,27(3):243-250
    [122]Tang J. W., Zou Z. G., Ye J. H.. Efficient phot ocatalytic decomposition of organic contaminants over CaBi2O4 under visible light irradiation[J]. Angewandte Chemie International Edition,2004,43(34):4463-4466
    [123]Hu X. L., Li G. S., Yu J. C. Design, Fabrication, and modification of nanostructured semiconductor materials for environmental and energy applications [J]. Langmuir,2010, 26(5):3031-3039
    [124]Fujihira M., Satoh Y., Osa T.. Heterogeneous photocatalytic oxidation of aromatic compounds on TiO2[J]. Nature,1981,293:206-208
    [125]Crittenden J. C., Suri R. P. S., Perram D. L., et al. Decontamination of regenaration of absorbent using advanced oxidation, United States Patent,51820302
    [126]Franke R., Franke C. Model reactor for photocatalytic degradation of persistent chemicals in ponds and wastewater[J]. Chemosphere,1999,39(6):2651-2659.
    [127]Zhang X. F., Zhang Y. B., Quan X., et al. Preparation of Ag doped BiVO4 film and its enhanced photoelectrocatalytic(PEC) ability of phenol degradation under visible light[J]. Journal of Hazardous Materials,2009,167(1-3):911-914
    [128]Zhang Z. J., Wang W. Z., Shang M., et al. Photocatalytic degradation of rhodamine B and phenol synthesized BiVO4 photocatalyst[J]. Catalysis Communications,2010, 11(11):982-986
    [129]Zhang G. Q., Chang N., Han D. Q., et al. The enhanced visible light photocatalytic activity of nanosheet-like Bi2WO6 obtained by acid treatment for the degradation of rhodamine B[J]. Materials Letters,2010,64 (19):2135-2137
    [130]Zhao X., Wu Y., Yao W. Q., et al. Photoelectrochemical properties of thin Bi2WO6 films[J].Thin Solid Films,2007,515 (11):4753-4757
    [131]梁宇宁,黄智,覃思晗,等.Cu20光催化降解水中对硝基苯酚的研究[J].环境污染治理技术与设备,2003,10(4):36-39
    [132]Li P. Q., Zhao G. H., Zhao K. J., et al. An efficient and energy saving approach to photocatalytic degradation of opaque high-chroma methylene blue wastewater by electrocatalytic pre-oxidation[J]. Dyes and Pigments,2012,92(3):923-928
    [133]Zhang X., Song L., Zeng X. L., et al. Effects of Electron Donors on the TiO2 Photocatalytic Reduction of Heavy Metal Ions under Visible Light[J]. Energy Procedia, 2012,17, Part A:422-428
    [134]Ma T. Y., Zhang X. J., Yuan Z. Y.. Hierarchically meso-/macroporous titanium tetraphosphonate materials:Synthesis, photocatalytic activity and heavy metal ion adsorption[J]. Microporous and Mesoporous Materials,2009,123(1-3):234-242
    [135]Dozzi M. V., Saccomanni A., Selli E.. Cr(VI) photocatalytic reduction:Effects of simultaneous organics oxidation and of gold nanoparticles photodeposition on TiO2[J]. Journal of Hazardous Materials,2012,211-212:188-195
    [136]Horii Y, Onuki H., Doi S., et al. Desulfurization and denitration of light oil by extraction, United States Patent,5,494,572,1996
    [137]Gore W., Method of desulfurization of hydrocarbons, United States Patent,6,160,193, 2000
    [138]Shiraishi Y, Tachibana K., Hirai T., et al. Desulfurization and denitrogenation process for light oils based on chemical oxidation followed by liquid-liquid extraction[J]. Industrial & Engeering Chemistry Research,2002,41 (17):4362-4375
    [139]Song C. S., Ma X. L. New design approaches to ultra-clean diesel fuels by deep desulfurization and deep dearomatization[J]. Applied Catalysis B-Environmental,2003, 41 (1-2):207-238
    [140]Matsuzawa S., Tanaka J., Sato S., et al. Photocatalytic oxidation of dibenzothiophenes in acetonitrile using TiO2:effect of hydrogen peroxide and ultrasound irradiation[J]. Journal of Photochemistry and Photobiology A-Chemistry,2002,149 (1-3):183-189
    [141]Zhang J., Zhao D. S., Yang L. Y., et al. Photocatalytic oxidation dibenzothiophene using TS-1[J]. Chemical Engineering Journal,2010,156(3):528-531
    [142]Prasad G. K., Ramacharyulu P. V. R. K., Singh B., et al. Sun light assisted photocatalytic decontamination of sulfur mustard using ZnO nanoparticles[J]. Journal of Molecular Catalysis A-Chemical,2011,349(1-2):55-62
    [143]Shiraishi Y., Hirai T., Komasawa I. A Deep Desulfurization Process for Light Oil by Photochemical Reaction in an Organic Two-Phase Liquid-Liquid Extraction System[J]. Industrial & Engineering Chemistry Research,1998,37(1):203-211.
    [144]Shiraishi Y, Taki Y, Hirai T, et al. Visible Light-Induced Deep Desulfurization Process for Light Oils by Photochemical Electron-Transfer Oxidation in an Organic Two-Phase Extraction System[J]. Industrial & Engeering Chemistry Research,1999,38(9): 3310-3318
    [145]Shiraishi Y, Taki Y, Hirai T, et al. Visible Light-Induced Desulfurization Process for Catalytic-Cracked Gasoline Using an Organic Two-Phase Extraction System[J]. Industrial & Engeering Chemistry Research,1999,38(12):4538-4544
    [146]Shiraishi Y., Hirai T., Komasawa I. Photochemical Desulfurization and Denitrogenation Process for Vacuum Gas Oil Using an Organic Two-Phase Extraction System[J]. Industrial& Engeering Chemistry Research,2001,40(1):293-303
    [147]Kudo A., Omori K., Kato H.. A Novel Aqueous Process for Preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties[J]. Journal of Chemistry Society,1999,121(49):11459-11467
    [148]D. W. Jing, L. J. Guo. Hydrogen production over Fe-doped tantalum oxide from an aqueous methanol solution under the light irradiation[J]. Journal of Physics and Chemistry of Solids,2007,68 (12):2363-2369.
    [149]Berglund S. P., Flaherty D. W., Hahn N. T., et al. Photoelectrochemical Oxidation of Water Using Nanostructured BiVO4 Films[J]. Journal of Physical Chemistry C,2011, 115:3794-3802
    [150]Sayama K., Nomura A., Arai T., et al. Photoelectrochemical Decomposition of Water into H2 and O2 on Porous BiVO4 Thin-Film Electrodes under Visible Light and Significant Effect of Ag Ion Treatment[J]. Journal of Physical Chemistry B,2006, 110(23):11352-11360
    [151]Wang H.Q., Yan J. P., Chang W. F., et al. Practical synthesis of aromatic amines by photocatalytic reduction of aromatic nitro compounds on nanoparticles N-doped TiO2[J]. Catalysis Communications,2009,10(6):989-994
    [152]Andronic L., Isac L., Duta A.. Photochemical synthesis of copper sulphide/titanium oxide photocatalyst[J]. Journal of Photochemistry and Photobiology A-Chemistry,2011, 221(1):30-37.
    [153]Ghosh S., Das J.. A novel photochemical Wittig reaction for the synthesis of 2-aryl/alkylbenzofurans[J]. Tetrahedron Letters,2011,52(10):1112-1116
    [154]赵天亮,陈芳媛,宁平,等.工业含酚废水治理进展及前景[J].环境科学与技术,2008,31(6):64-66.
    [155]王韬,李鑫钢,杜启云.含酚废水治理技术研究进展[J].化工进展,2008,27(2):231-235.
    [156]郭桥生.活性碳纤维负载铁酞菁的制备及催化降解酚类化合物性能出处[D].浙江理工大学,2009.
    [157]张妍.磁场作用下恶臭假单胞菌降解高浓度苯酚的特性及其动力学研究[D].天津大学,2007.
    [158]亓瑞倩.石化源污水中混合酚细菌降解过程及机理研究[D].中国石油大学,2010.
    [159]Zhang S. N., Jiang G. Y., Zhu T. J., et al. Doping effect on thermoelectric properties of nonstoichiometric AgSbTe2 compounds[J]. International Journal of Minerals Metallurgy and Materials,2011,8(3):352-356
    [160]Ahn K. S., Deutsch T., Fan Y., et al. Synthesis of band-gap-reduced p-type ZnO film s by Cu incorporation[J]. Journal of Applied Physics,2007,102(2):023517-1-3
    [161]王泽高,郑树楠,贾春阳,等,Cu掺杂Ti02及其纳米管的制备、表征与光催化性能[J].无机化学学报,2010,26(5):875-878
    [162]齐帅,刘义新,孟丽华,等.掺铜Ti02薄膜光催化降解碱性品红的研究[J].工业水处理,2009,29(5):50-53
    [163]张浩,赵江平,王智懿.模拟室内环境下掺杂Ti02纳米晶体的光催化性能[J].环境工程学报,2009,9(3):1643-1647
    [164]张爱平,张进治.Cu、Ag、Au掺杂BiVO4可见光催化剂的制备及性能研究[J].分子催化,2010,24(1):51-56
    [165]Xu H., Li H. M., Wu C. D., et al. Preparation, characterization and photocatalytic properties of Cu-loaded BiVO4[J]. Journal of Hazard Materials,2008,153 (1-2): 877-884
    [166]Kim N., Annier R. N., Grey C. P. Detecting different oxygen-ion jump pathways in Bi2WO6 with 1-and 2-dimensional 17O MAS NMR spectroscopy[J]. Chemistry of Materials,2005,17(19):1952-1958
    [167]Daniel M. F., Desbat B., Lassegus J. C. Infrared and raman spectroscopies of rf sputtered tungsten oxide films[J]. Journal of Solid State Chemistry,1988,73(1):127-139
    [168]Calzada M. L., Sirera R., Carmona F. Investigations of a diol-based sol-gel process for the preparation of lead titanate materials[J]. Journal of the American Ceramic Society, 1995,78(7):1802-1808.
    [169]挥发酚的测定:蒸馏后4-氨基安替比林分光光度法,GB7490-87
    [170]赵宗彦,柳清菊,朱忠其,等.S掺杂对锐钛矿相Ti02电子结构与光催化性能的影响[J].物理学报,2008,57(6):3760-3768
    [171]陈渊,周科朝,黄苏萍,等.水热法制备Cu掺杂可见光催化剂BiV04及其光催化性能研究[J].无机材料学报,2012,27(1):19-25
    [172]李海斌.新型光催化及抗菌材料的湿化学法制备与性能研究[D].中南大学,2008
    [173]龚丽芬,余彬彬,陈曦.光敏剂修饰纳米Ce/TiO2在可见光下光催化降解有机氯农药[J].厦门大学学报(自然科学版),2008,47(1):79-82
    [174]李翠霞,杨志忠,顾玉芬,等.复合催化剂Fe/ZnO-TiO2的制备及其光催化活性[J].兰州理工大学学报,2008,34(5):28-31
    [175](a) Yin W. J., Wei S. H., Al-Jassim M. M., et al. Doping properties of monoclinic BiVO4 studied by first-principles density-functional theory[J]. Physical Review B:Condensed Matterials,2011,83(15):1-7 (b)刘红岩,余蓉蓉,吴秋芳.柠檬酸络合法制备可见光 响应型光催化剂ICuO/BiVO4硅酸盐学报[J].2011,9(12):1974-1980
    [176]Kohtani S., Tomohiro M., Tokumura K., et al. Photooxidation reactions of polycyclic aromatic hydrocarbons over pure and Ag-loaded BiVO4 photocatalysts[J]. Applied Catalysis B-Environmental,2005,58(3-4):265-272
    [177]Sayama K., Nomura A., Arai T., et al. Photoelectrochemical decomposition of water into H2 and O2 on porous BiVO4 thin-film electrodes under visible light and significant effect of Ag ion treatment[J]. Journal of Physical Chemistry B,2006,110(23): 11352-11360
    [178]Chatchai P., Murakami Y., Kishioka S. Y., et al. Efficient photocatalytic activity of water oxidation over WO3/BiVO4 composite under visible light irradiation[J]. Electrochimica Acta,2009,54(3):1147-1152
    [179]Garcia J., Lopez T., Alvarez M., et al. Spectroscopic, structural and textural properties of CaO and CaO-SiO2 materials synthesized by sol-gel with different acid catalysts[J]. Journal of Non-Crstalline Solids,2008,354(2-9):729-732
    [180]Li H. B., Liu G. C., Duan X. C.. Monoclinic BiVO4 with regular morphologies: Hydrothermal synthesis, characterization and photocatalytic properties [J]. Materials Chemistry and Physics,2009,115(1):9-13
    [181]Kohtani S., Hiro J., Yamamoto N., et al. Adsorptive and photocatalytic properties of Ag-loaded BiVO4 on the degradation of 4-n-alkylphenols under visible light irradiation [J]. Catalysis Communications,2005,6(3):185-189
    [182]Kanagadurai R., Sankar R., Sivanesan G., et al. Growth and characterization studies of ferroelectric diglycine nitrate (DGN) single crystals [J]. Materials Chemistry and Physics, 2008,108(2-3):170-175
    [183]Liu J. B., Wang H., Wang S., et-al. Hydrothermal preparation of BiVO4 powders[J]. Materials Science and Engineering B,2003,104 (1-2):36-39
    [184]Zhang L., Chen D. R., Jiao X. L. Monoclinic structured BiVO4 nanosheets:□ hydrothermal preparation, formation mechanism, and coloristic and photocatalytic properties[J]. Journal of Physical Chemistry B,2006,110(6):2668-2673
    [185]Gotic M., Music S., Ivanda M., et al. Synthesis and characterisation of bismuth(Ⅲ) vanadate[J]. Journal of Molecular Structure,2005,744:535-540
    [186]Wood P., Glasser F. R. Preparation and properties of pigmentary grade BiVO4 precipitated from aqueous solution[J]. Ceramics International,2004,30(6):875-882
    [187]陈渊,周科朝,黄苏萍,等.水热法制备Cu掺杂可见光催化剂及其光催化性BiVO4能研究[J].无机材料学报,2012,27(1):19-25[192]刘守新,刘鸿.光催化及光电催化基础与应用[M].化学工业出版社,2006
    [188]Kohtani S., Tomohiro M., Tokumura K., et al. Photooxidation of polycyclic armatic hydrocarbons over pure and Ag-loaded BiVO4 photocatalysts[J]. Applied Catalysis B-Environmental,2005,58(3-4):265-272
    [189]Guan M. L., Ma D. K., Hu S. W., et al. From hollow olive-shaped BiVO4 to n-p core-shell BiVO4@Bi2O3 microspheres:controlled synthesis and enhanced visible-light-responsive photocatalytic properties [J]. Inorganic Chemistry,2011,50(3): 800-805
    [190]Zhang C, Zhu Y. F.. Synthesis of square Bi2WO6 nanoplates as high activity visible light driven photocatalysts[J]. Chemistry of Materials,2005,17(13):3537-3545
    [191]Liu Y., Ma J. F., Liu Z. S., et al. Low-temperature synthesis of BiVO4 crystallites in molten salt medium and their UV-vis absorption[J]. Ceramics International,2010,36(7): 2073-2077
    [193]王怡中,胡春,汤鸿霄,等.在TiO2催化剂上苯酚光催化氧化反应研究[J].环境科
    学学报,1995,15(4):472-478[194]苗秀生,储少岗,徐晓白,等.黄磷诱发氧化水中苯酚的机理研究[J].中国环境科
    学,1996,16(5):373-376
    [195]Schwitzgebel J., Ekerdt J. G., Gerisher H., et al. Role of the oxygen molecule and of the photogenerated electron in TiO2-photocatalyzed air oxidation reactions [J]. Journal of Physical Chemistry,1995,99(15):5633-5638
    [196]Hashimoto K., Kawai T., Sakata T. Photocatalytic reactions of hydrocarbons and fossil fuels with water. Hydrogen production and oxidation[J]. Journal of Physical Chemistry, 1984,88(18):4083-4088
    [197]Sun R. D., Nakajima A., Fujishima A., et al. Photoinduced Surface Wettability Conversion of ZnO and TiO2 Thin Films[J]. Journal of Physical Chemistry B,2001, 105(10):1984-1990

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700