用户名: 密码: 验证码:
压实红粘土的工程特征与湿热耦合效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
红粘土在我国是一种分布十分广泛的特殊粘土,具有失水开裂、遇水泥化的典型水敏性特征,其中在湖南和广西地区覆盖面很广。大量交通基础设施建设难以回避使用红粘土作为路基填料,但因其天然含水量较高致使填筑阶段很难达到重型压实标准,同时又因其典型的水敏性可能引起运营阶段路基的性能弱化。因此,需要深入研究路基填筑阶段的压实度控制指标与外部营力对其长期性能的作用机制。
     论文以厦门至成都高速公路湖南郴州段的红粘土为研究对象,以环境因素作用下红粘土路基的变形特征与防护方法为研究目的,通过室内试验研究了不同压实度红粘土的持水性能、毛细上升、湿热耦合迁移及湿化变形等特征,借助郴州地区连续两年的气象数据,模拟在地下水和大气的共同作用下路基内部红粘土水分迁移与路基变形的耦合过程,主要研究内容及结论如下:
     (1)针对不同压实度的红粘土,系统开展了其渗透、固结、收缩、剪切等试验研究。在分析上述特性指标随压实度变化规律的基础上,以红粘土特征指标随压实度变化的敏感程度作为路基压实度能否降低的判别依据,指出将各指标随压实度变化曲线上的拐点特征值作为适当降低压实度的临界参考值,为确定红粘土路基填筑压实度控制指标提供了依据。
     (2)利用压力板仪研究了四种压实度试样的持水性能,发现与其它粘土的土水特征曲线相比有很大的不同,压实红粘土的土水特征曲线在吸力增大的过程中出现了类似于进气值前和残余含水量后的水平阶段。水平阶段的性状与试样的干密度有很大的关系,干密度越小水平阶段持续越长。通过液氮冷冻干燥和压汞相结合的方法测试了四种压实度试样的孔隙分布特征。发现孔隙孔径分布曲线存在两个峰值,不同干密度试样对应的小孔径及其孔隙分布密度差别不大,但对应的大孔径及其分布差别迥然。根据不同压实度试样的孔隙分布特征解释了对应压实度试样的持水。
     (3)为模拟地下水作用下路基底部土体的毛细效应,自制了毛细上升试验装置。在常地下水位边界条件下,获得了三种不同压实度土体的含水量随高度的分布规律,并利用Bruce推导的方法计算了等温水分扩散系数。
     (4)为了解大气温度作用下路基内部土体的水分迁移规律,自行设计加工了一套湿热耦合试验装置。研究了绝湿边界条件下三种压实度和三种初始含水量试样的水分传输特征,发现水分的绝对迁移量与土体初始含水量有关,初始含水量过高和过低都不能产生大量的水分迁移,而存在一个“最优含水量”迁移点,这为潮湿地区红粘土偏湿碾压提供了一定的理论支持。最后,采用任奋芝推导的公式计算了热湿扩散系数。
     (5)在三轴仪的基础上改装了一套可供湿化变形试验的仪器,并对传统的单线和双线试验法进行了修正。模拟了不同压实度试样在水分湿化作用下的变形特征,提出了丧失基质吸力与湿化变形的本构关系。
     (6)以Philip&de Vries湿热耦合模型为基础,考虑了湿化变形对体积含水量的影响,实现了温度、水分、变形三场之间的耦合,利用有限元计算方法模拟了环境因素作用下路基的温度、水分、变形场的演化规律,并针对性地提出了路基病害的防治方法。
Laterite soil is a kind of special clay,which is widely distributed in most parts of our country,,especially in Hunan and Guangxi provinces.It features water sensitivity of losing-water shrink cracks and softening by absorbing water.With the undertaking of a large number of communication infrastructure construction,the use of Laterite soil as roadbed filling is becoming an inevitable project problem.However,it's difficult to achieve the heavy compaction standard in construction stage as a result of the high nature moistuer content;meanwhile,it may cause the performance attenuation during using period due to the water sensitivity.Therefore,the compaction control index at the subgrade filling stage as well as the long-term stability of the subgrade under the effects of environment factors have been studied in this paper.
     In this paper,Laterite soil adjacent to some stake of the highway in Chenzhou, Hunan section from Xiamen to Chengdu was used to investigate the deformation characteristics and protection methods of the Laterite soil subgrade under the influence of environment factors.Properties like water-holding capacity,capillary rise, coupled heat-moisture transfer and wetting deformation of samples under different compactness were studied through a series of laboratory tests.In addition,by using meteorological data of two consecutive years in Chenzhou,coupled process of moisture transfer and subgrade deformation was stimulated under the impacts of groundwater and the atmosphere.Specific work done in this paper is as follows:
     (1) Samples under different compactness were subjected to a series of conventional laboratory tests,such as permeability,consolidation,contraction,shear test and etc.Based on these test results,relationships between mechanical indexes obtained from the above tests versus compactness have been analyzed in this paper. And the sensitivity of the index changes with respect to compactness changes is referred to as the distinguish basis for the decreasing of subgrade compactness—values with a little lower than that of the inflection points of these curves are seen as the critical reference values of the decreasing of subgrade compactness,which provides a reference method for the control of compactness of roadbed filling of the Laterite soil.
     (2) Pressure plate extractor was used to study the soil-water characteristic curves(SWCC) of specimens under four different compactness and the obtained SWCC were distinctly different from those of the other clays.In the SWCC,there has appeared plateau stage in the process of suction increasing.What's more,the length of the plateau stage is intimately related to the dry density of samples—the lower the dry density is,the longer the length of the plateau stage is.Through the combination of test methods of freeze at liquid nitrogen and mercury injection,pore size distributions of samples under four different compactness have been measured.It was found that there are two peaks in the distribution curves and that small pore sizes and the corresponding distribution density are not sensitive to dry density of soils whereas big pore sizes and the corresponding distribution density are interrelated with dry density of soils.Based on this study,the water holding capacity of specimens under different compactness is also explained with it.
     (3) A capillary rise apparatus was self-made to stimulate the capillary-effect of subsoils under the impact of groundwater.Under constant groundwater table boundary condition,water content distributions along the heights of capillary rise of samples under three different compactness are presented in this paper.And the isothermal moisture diffusion coefficient was also obtained by Bruce method.
     (4) To investigate the mechanism of moisture transfer of the subsoils under the influence of atmospheric temperature,a coupled heat-moisture apparatus has been self-designed and processed.Under adiabatic boundary condition,water transport characteristics were studied for specimens of three different water contents and compactness.It can be found that the absolute moisture transport of soils are related to their initial water contents.Lots of moisture transport will appear once the optimum water content is reached,which provides a theoretical basis for the practice of the Laterite soil rolling under a wetter condition.In the end,heat and moisture diffusion coefficient was obtained by REN-Fenzhi method.
     (5) A new moistening deformation apparatus were made based on the theory of triaxial apparatus and the traditional single line and double line testing methods were modified.By using the moistening deformation apparatus,the deformation characteristics of specimens of different compactness were stimulated under the effects of water humidification,and a constitutive model of matric suction and wetting deformation were thus proposed.
     (6) Based on the Philip&de Vries heat-moisture coupling model and taking into account the impacts of wetting deformation on the volumetric water content of soils, the evolution law of temperature,moisture,and deformation fields of subgrade under the influence environmental factors were stimulated by using finite element calculation method and the corresponding protection methods of roadbed diseases were proposed on this basis.
引文
[1]孔令伟,赵颖文.原状红粘土脱湿过程的工程性状与机理分析[A].中国土木工程学会第九届土力学及岩土工程学术会议论文集[C].北京:2003,424-427.
    [2]赵颖文.中国西南地区红粘土的强度与水理性特征研究[D].武汉:中国科学院武汉岩土力学研究所,2003.
    [3]赵颖文,孔令伟.广西原状红粘土力学性状与水敏性特征[J].岩土力学,2003,24(4):568-572.
    [4]赵颖文,孔令伟.广西红粘土击实样强度特征与胀缩性能[J].岩土力学,2004,24(3):369-373.
    [5]高岱,袁玩,余培厚.贵州红粘土的建筑性能[A].第一届土力学及基础工程学术会议论文集[C].北京:中国工业出版社,1964.
    [6]Quinones,P.J.Compaction Characteristics of Tropically Weathered Soils[D].Urbana Champaign:University of Illinois,1963.
    [7]Ruddock,E.C.Residual soils of the Kumasi district in Ghana[J].Geotechnique,1967,17:359-377.
    [8]De Graft-Johnson,J.W.S.,Bhatia,H.S.,Gidigasu,M.D.The strength characteristics of residual micaceous soils and their application to stability problems[A].Proceeding International Conference Soil Mechanics Foundation Engineering 7th[C].Mexico:1969,1:165-172.
    [9]De Graft-Johnson,J.W.S.,Bhatia,H.S.,Gidigasu,M.D.The engineering characteristics of a lateritic residual clay of Ghana for earthdam construction[A].Symposium Earth Rockfill Dams[C].1968,1:94-107.
    [10]Wallace,K.B.Structural behaviour of residual soils of continually wet highlands of Papua,New Guinea[J].Geotechnique,1973,23(2):203-218.
    [11]Lumb,P.The properties of decomposed granite[J].Geotechnique,1962,12(3):226-243.
    [12]Vargas,M.Some engineering properties of residual clay soils occurring in Southern Brazil[A].Proceeding International Conference Soil Mechanics Foundation Engineering[C].1953,1:67-71.
    [13]Lamb,D.W.Decomposed granite as fill material with particular reference to earth dam construction[A].Proceeding Symposium Hong Kong Soils[C].1962,57-71.
    [14]Baldovin,G.The shear strenth of lateritic soils[A].Proceeding International Conference Soil Mechanics Foundation Engineering 7th[C].Mexico:1969,1:129-142.
    [15]Lohnes,R.,Fish,R.C.,Dermirel,T.Geotechnical properties of selected Puerto Rican soils in relation to climate and parent rock[J].Geology Society America Bulletin,1971,82:2617-2624.
    [16]Terzaghi,K.Design and performance of the Sasumua dam[J].British Instance Civil Engineering,1958,9:369-394.
    [17]Matyas,F.L.Some engineering characteristics of Sasumua clay[A].Proceeding International Conference Soil Mechanics Foundation Engineering 7th[C].Mexico:1969,1:143-151.
    [18]Lumb,P.General nature of the soils of Hong Kong[A].Proceeding Symposium Hong Kong Soils[C].1962,19-31.
    [19]Ackroyd,L.W.Engineering classification of some Western Nigerian soils and their qualities in road building[J].British Road Reserch Labrotary,Overseas Bulletin,1959,10:32.
    [20]Remillon,A.Stabilisation of laterites[J].Proceeding Highway Research,Board Bulletin,1955,108:96-101.
    [21]Evans,E.A.A Laboratory investigation of six lateritic gravels from Uganda[J].Britsh Road Reserch Laboraty,Note,1958,3241:20.
    [22]Gidigasu,M.D.,Bhatia,H.S.Importance of soil profile in the engineering studies of laterite soils[A].Proceeding Afrian Region Conference Soil Mechanics Foundation Engineering 5th[C].Luanda:1971,1:255-260.
    [23]Nixon,I.K.,Skipp,B.O.Airfield construction on overseas soils[A].5th Laterite Proceeding[C].1957,8:253-292.
    [24]Little,A.L.The use of tropically weathered soils in the construction of earthdams[A].Proceeding Asian Region Conference Soil Mechanics Foundation Engineering[C].1967,1:35-41.
    [25]DE Graft-Johnson,J.W.S.,Bhatia,H.S.,Yeboa,S.L.Influence of geology and physical properties on strength characteristics of lateritic gravels for road pavements[J].Highway Research Board,Washington,1972,405:87-104.
    [26]陈之禄.红粘土中软土的产生条件及室内研究[A].第二届全国红土工程地质研讨会论文集[C].贵州:贵州科技出版社.1991,37-41.
    [27]韩贵琳.贵阳地区红粘土工程地质特征[J].贵州地质,1992,9:292-296.
    [28]张英,邓安福.重庆粘土本构模型验证[J].重庆建筑大学学报,1997 19(2):48-53.
    [29]袁志英,王伍军,冷学仕.对贵州红粘土物理力学指标统计分布规律的初步研究[J].贵州科学,1997,15(1):27-31.
    [30]欧钊元,刘英,罗洪富.泰山地区红粘土形成条件及工程地质特征初探[J].岩土工程技术 1997,2:25-28.
    [31]黄质宏.应力路径与红粘土的力学特性[J].人民珠江,1999,2:18-20.
    [32]袁绚.云南红粘土的工程特性及其应用[J].南昌水专学报,2002,21(1):59-62.
    [33]Haliburton,T.A.,Snethen,D.R.,Shaw,L.K.,Marks,B.D.Subgrade Moisture under Oklahoma Highways[J].Transportation Engineering Journal of Agricultural Research Proceeding of ASCE,1972,98(TE2):325-338.
    [34]Hall,D.K.,Rao,S.Predicting Subgrade Moisture Content for Low-Volume Pavement Design Using In Situ Moisture Content Data[J].Transportation Research Record,1999,1652:98-107.
    [35]Thorn,H.C.S.Quantitative Evaluation of Climatic Factors in Relation to Soil Moisture Regime[J].Highway Research Record,1970,301:1-4.
    [36]Cumberledge,G.,Hoffman,G.L.,Bhajandas,A.C.,Cominsky,R.J.Moisture Variation in Highway Subgrades and the Associated Change in Surface Deflections[J].Transportation Research Record,1974,497:40-49.
    [37]Rainwater,N.R.,Yoder,R.E.,Drumm,E.C.,Wilson,G.V.Comprehensive Monitoring Systems for Measuring Subgrade Moisture Conditions[J].Journal of Transportation Engineering,1999,125(5):439-448.
    [38]Yoder,E.J.,Witczak,M.W.Principle of Pavement Design[M].Hoboken:Wiley-Interscience Publication,1975.
    [39]Bandyopadhyay, S.S., Frantzen, J.A. Investigation of Moisture-Induced Variation in Subgrade Modulus by Cross-Correlation Method[J]. Transportation Research Record, 1983, 945: 10-15.
    
    [40]Russam, K. Subgrade Moisture Studies by the British Road Research Laboratory[J]. Highway Research Record, 1970, 301:5-17.
    
    [41]Drumm, E., Meier, R. Daily and Seasonal Variations in Insitu Material Properties[R]. Contractor's Final Report, National Cooperative Highway Research Program, 2003.
    
    [42]Huang, Y.H. Pavement Analysis and Design[M]. New York: Prentice Hall, 1993.
    
    [43]Novak, E.C., DeFrain Jr, L.E. Seasonal Changes in the Longitudinal Profile of Pavements Subject to Frost Action[J]. Transportation Research Record 1992,1362: 95-100.
    
    [44]Shuichi, K., Atsushi, K, Mitsuo, K., Akira, K., Kenji, H. Effects of Frost Heave on the Longitudinal Profile of Asphalt Pavements in Cold Regions[A]. Proceedings Ninth International Conference on Asphalt Pavements[C]. 2002,1:1-9.
    
    [45]Mitchell, J.K. Fundamentals of Soil Behavior[M]. Hoboken: Wiley-Interscience Publication, 1993.
    
    [46]Officials, American Association of State Highway and Transportation Guide for the Design of Pavement Structures[S]. 1993.
    
    [47] Seed, H.B., Chan, C.K, Lee, C.E. Resilient Characteristics of Subgrade Soils and Their Relation to Fatigue Failures in Asphalt Pavement[A]. International Conference on the Structural Design of Asphalt Pavements[C]. Michigan: 1962, 6: 77-113.
    
    [48]Fredlund, D.G, Bergan, A.T., Wong, P.K. Relation between Resilient Modulus and Stress Conditions for Cohesive Subgrade Soils[J]. Transportation Research Record, 1977, 642: 73-81.
    
    [49]Thompson, M.R., Robnett, Q.L. Resilient Properties of Subgrade Soils[J]. Transportation Engineering Journal of ASCE, 1979,105(TE1): 71-89.
    
    [50]Drumm, E.C., Reeves, J.S., Madgett, M.R., Trolinger, W.D. Subgrade Resilient Modulus Correction for Saturation Effects[J]. Journal Geotechnical and Geoenvironment Engineering, 1997, 123(7): 663-670.
    
    [51]Lytton, R.L., Boggess, R.L., Spotts, J.W. Characteristics of Expansive Clay Roughness of Pavements[J]. Transportation Research Record, 1976, 568: 9-23.
    
    [52]Ovik, J.M., Birgisson, B., Newcomb, D.E. Characterizing Seasonal Variations in Pavement Material Properties for Use in a Mechanistic-Empirical Design Procedure[R]. Report no. MN-RC-2000-35, 2000.
    
    [53]Philip, J.R., de Vries, D.A. Moisture movementin porous materials under temperature gradients [J]. Transactions of the American Geophysical Union, 1957, 38: 222-232.
    
    [54] de Vries, D. A. Simultaneous transfer of Heat and Moisture in Porous Media [J]. Transactions American Geophysical Union, 1958, 39: 909-916.
    
    [55]Taylor, S.A. Linear equations for the simultaneous flow of matter and energy in a continous soil system[J]. Proceeding Soil science society Amercian, 1964, 28: 167-172.
    
    [56]Luikov, A.V. Heat and mass transfer in capillary porous bodies[M]. Oxford: Pergamon Press, 1966.
    
    [57]Luikov, A.V. System of differential equations of heat and masstransfer in capillary-porous bodies[J]. International Journal Heat Mass Transfer, 1975,18: 1-14.
    
    [58]Cary, J.W. Soil moisture transport due to thermal gradients: Practical aspects[J]. Soil Science Society Of Amercain Proceedings, 1966, 30: 428-433.
    [59]Sasamori,T.A Numerical study of atmospheric and soil boundary layers[J].Journal Atmosphere Science,1970,27:1122-1137.
    [60]Van Bavel,C.H.M.,Hillel,D.I.Calculating potential and actual evaporation from a bare soil surface by simulation of current flow of water and heat[J].Agriculture Meteorology,1976,17:453-476.
    [61]Schroeder,C.,de Michele,D.W.,Pooh,U.W,Modeling heat and moisture flow in soils[J].Simulation,1978,31:173-179.
    [62]Sophocleous,M.Analysis of water and heat in unsaturated-saturated porous media[J].Water resource research,1976,15:1195-1206.
    [63]Dakshanamurthy,V.A Mathematical model for predicting moisture flow in a unsaturated soil under hydraulic and temperature gradient[J].Water resource research,1981,17:714-722.
    [64]Milly,P.C.D.Moisture and heat transport in hysteretic inhomogeneous porous media:A matric head-based formulation and a numerical mode[J].Water resource research,1982,18:489-498.
    [65]王补宣,方肇洪.含湿毛细多孔体介质的传热与传质和热湿迁移特性测定方法的探讨[J].工程热物理学报,1985,6(1):60-62.
    [66]刘伟,范爱武,黄晓明.多孔介质传热传质理论与应用[M].北京:科学出版社,2007.
    [67]李宁,陈波,陈飞熊.冻土路基温度场、水分场、变形场三场耦合分析[J].土木工程学报,2003,36(10):66-71.
    [68]李宁,徐彬.冻土路基温度场、变形场和应力场的耦合分析[J].中国公路学报,2006,19(3):1-7.
    [69]王铁行,胡长顺,王秉纲.考虑多种因素的冻土路基温度场有限元方法[J].中国公路学报,2000,13(4):8-11.
    [70]Rose,C.W.Water transport in soil with daffy temperature wave.Ⅰ-Theory and experiment[J].Australia Journal Soil Research,1968,6:31-44.
    [71]Rose,C.W.Water transport in soil with daily temperature wave.Ⅱ-Analysis[J].Australia Journal Soil Research,1968,6:45-57.
    [72]Preece,R.J.,Blowers,R.M.A numerical method for evaluating coupled heat and moisture difusion through porous media with varying physical properties[A].Proceeding 1st International Conference on Numerical method in Thermal Problems[C].1970,527-538.
    [73]Baladi,J.Y.Transient heat and mass transfer in soil[J].International Journal Heat Mass Transfer,1981,24:449-458.
    [74]Hammel,J.E.,Papendick,R.I.,Campbell,G.S.Fallow tillage effects on evaporation and seedzone water content in a dry summer climate[J].Soil Science Society Amercain Journal,1981,45:1016-1022.
    [75]Mitchell,J.K.Field testing of cable backfill system[J].Underground cable thermal backfill,1981,19-33.
    [76]Schieldge,J.P.,Kahle,A.E.,Alley,R.E.A Numerical simulation of soil temperature and moisture variations for a bare field[J].Soil Science,1982,133:197-207.
    [77]Lascano,R.J.,van Bavel,C.H.M.Experimental verification of a model to predict soil moisture and temperature profiles[J].Soil Science Society Amercain Journal,1983,47:441-448.
    [78]Camillo,P.J.,Gurney,R.J.,Schmugge,T.J.A soil and atmospheric boundary layer model for evapotranspiration and soil moisture studies[J].Water Resource Research,1983,19:371-380.
    [79]Chung,S.C.,Horton,R.Soil heat and water flow with a partial surface mulch[J].Water Resource Research,1987,23:2175-2186.
    [80]Ewen,J,Thomas,H.R.Heating unsaturated medium sand[J].Geotechnique,1989,455-470.
    [81]Horton,R.Canopy shading effects on soil heat and water flow[J].Soil Science Society Of Amercain Journal,1989,53:669-679.
    [82]Nassar,N.,Globus,A.M.Simultaneous soil heat and water transfer[J].Soil Science,1992,154(6):465-472.
    [83]Bach,L.B.Soil water movement in response to temperature gradients:Experimental measurements and model evaluation[J].Soil Science Society Of Amercain Journal,1992,56:37-46.
    [84]王铁行,贺再球.非饱和土体气态水迁移试验研究[J].岩石力学与工程学报,2005,24(18):3271-3275.
    [85]王铁行.多年冻土地区路基冻胀变形分析[J].中国公路学报,2005,18(2):1-5.
    [86]王铁行,赵树德.非饱和土体气态水迁移引起的含水量变化方程[J].中国公路学报,2003,16(2):18-21.
    [87]王铁行.多年冻土地区路基计算原理及临界高度研究[D].西安:长安大学,2001.
    [88]毛雪松,胡长顺,侯仲杰.冻土路基温度场室内足尺模型试验[J].长安大学学报(自然科学版),2004,24(1):30-33.
    [89]卢靖.非饱和黄土水分迁移问题试验研究[D].西安:西安建筑科技大学,2006.
    [90]岳彩坤.黄土路基水热传输问题试验研究及数值分析[D].西安:西安建筑科技大学,2007.
    [91]刘炳成,刘伟,王崇琦.自然环境下湿分分层土壤中热湿迁移规律的研究[J].太阳能学报,2004,25(3):299-304.
    [92]刘炳成,刘伟,杨金国.湿分分层土壤中热湿迁移与水分蒸发的实验研究[J].工程热物理学报,2004,25(6):1004-1006.
    [93]刘炳成,刘伟,李庆领.温度效应对非饱和土壤中湿分迁移影响的实验[J].华中科技大学学报(自然科学版),2006,34(4):106-108.
    [94]杨果林,刘义虎.膨胀土路基含水量在不同气候条件下的变化规律模型试验研究[J].岩石力学与工程学报,2005,24(24):4524-4533.
    [95]陈善雄.非饱和土热湿耦合传输问题的模型试验与数值模拟[D].武汉:中国科学院武汉岩土力学研究所,1991.
    [96]孔令伟,陈建斌.大气作用下膨胀土边坡的现场响应试验研究[J].岩土工程学报,2007,29(7):1065-1073.
    [97]陈建斌.大气作用下膨胀土边坡的响应试验与灾变机理研究[D].武汉:中国科学院武汉岩土力学研究所,2006.
    [98]陈建斌,孔令伟.大气作用下膨胀土边坡的动态响应数值模拟[J].水利学报,2007,38(6):674-682.
    [99]陈建斌,孔令伟,赵艳林,吕海波.非饱和土的蒸发效应与影响因素分析[J].岩土力学,2007,28(1):36-40.
    [100]杨洋.公路处治土THMC耦合模型及路基变形数值模拟[D].武汉:中国科学院武汉岩土力学研究所,2008.
    [101]杨世基.粘性土路基的压实和稳定性[J].中国公路学报,1989,2(3):1-10.
    [102]王铁行,卢靖,岳彩坤.考虑温度和密度影响的非饱和黄土土-水特征曲线研究[J].岩土力学,2008,29(1):1-5.
    [103]Brooks,R.H,Corey,A.T.Hydraulic properties of porous media[J].Colorado State University Hydrology Paper,1964,NO.3,March.
    [104]Fredlund,D.G.,Anqing Xing.,Shangyan Huang.Predicting the permeability function for unsaturated soils using the soil-water characteristic curve[J].Canadian Geotechnical Journal,1994,31:533-546.
    [105]Van Genuchten,M.T.A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J].Soil Science Society Amercain Journal,1980,44:892-898.
    [106]Vanapalli,S.K.,Fredlund,D.G.,Pufahl,D.E.The influence of soil structure and stress histroy on the soil-water characteristics of a compacted till[J].Geotechnique,1999,49:143-160.
    [107]Richards,L.A.The usefulness of capillary potential to soil-moisture and plant investigators[J].Journal of Agricultural Research,1928,37:719-742.
    [108]Harnilton,J.M.,Daniel,D.E.,Olsen,RE.Measurement of hydraulic conductivity of partially saturated soils[A].In Permeability and Groundwater Contaminant Transport[C].1981,746:244-264.
    [109]Leong,E.C.,Rahardjo,H.Permeability functions for unsaturated soils[J].Journal of Geotechnical and Geoenvironmental Engineering,1997,123:1118-1121.
    [110]Chiu,T.F.,Shackelford,C.D.Unsaturated hydraulic conductivity of sand-bentonite mixtures[J].Journal of Geotechnical and Geoenvironmental Engineering,1998,124:160-169.
    [111]Garcia-Bengochea,I.,Lovell.,Altshaeffi,A.G.Pore distribution and permeability of silty clays[J].Journal of Geotechnical and Geoenvironmental Engineering,1979,105:839-855.
    [112]Juang,C.H.,Holtz,R.D.Fabric pore size distribution and permeability of sandy soils[J].Journal of Geotechnical Engineering,ASCE,1986,112(9):855-868.
    [113]Delage,P.,Lefebvre,G.Study of the structure of a sensitive Champlain clay and its evolution during consolidation[J].Canadian Geotechnical Journal,1984,21:21-35.
    [114]Griffiths,F.J.,Joshi,R.C.Changes in pore size distribution due to consolidation of clays[J].Geotechnique,1989,39:159-167.
    [115]Prapaharan,S.,Altschaeffi,A.G.,Dempsey,B.J.Moisture curve of compacted clay:mercury intrusion method[J].Journal of Geotechnical and Geoenvironmental Engineering,1985,111:1139-1143.
    [116]Washburn,E.W.Note on a method of determining the distribution of pore sizes in a porous material[A].Proceedings of the National Academy of Sciences[C].1921,7:115-116.
    [117]Ahmed,S.,Lovell,C.W.,Diamond,S.Pore sizes and strength of compacted clay[J].Journal of the Geotechnical Engineering Division,ASCE,1974,100:407-425.
    [118]Lawrence,G.P.Stability of soil pores during mercury intrusion porosimetry[J].Journal of Soil Science,1978,29:299-304.
    [119]Penumadu,D.,Dean,J.Compressibility effect in evaluating the pore-size distribution of kaolin clay using mercury intrusion porosimetry[J].Canadian Geotechnical Journal of Agricultural Research,2000,37:393-405.
    [120]程昌炳,康哲良,徐昌伟.针铁矿与高岭土“胶结”本质的微观结构初探[J].岩土力学,1992,13(2-3):112-117.
    [121]程昌炳,陈琼,周良忠.由~(27)Al的核磁共振谱看高岭土与针铁矿的胶结本质[J].波谱学杂志,1995,12(6):593-598.
    [122]孔令伟,罗鸿禧.游离氧化铁形态转化对红粘土工程性质的影响[J].岩土力学,1993,14(4):25-39.
    [123]孔令伟,罗鸿禧,袁建新.红粘土有效胶结特征的初步研究[J].岩土工程学报,1995,17(5):42-47.
    [124]孔令伟,罗鸿禧,谭罗荣.红土胶结问题的讨论[A].中国青年学者岩土工程力学及其讨论会论文集[C].武汉:科学出版社,1994,95-99.
    [125]黄英,屈智炯.红土的结构分析及应力应变特性的研究[J].成都科技大学学报,1989,43:31-36.
    [126]Madu,R.M.An investigation into the geotechnical and engineering properties of some laterites of eastern Nigeria[J].Engineering Geology,1977,11:101-125.
    [127]李景阳,王朝富,樊廷章等.碳酸盐岩残积红土的结构、构造特征及其成因研究[J].中国岩溶,199514(1):31-39.
    [128]谭罗荣,孔令伟.某类红粘土的基本特性与微观结构模型[J].岩土工程学报,2001,23(4):458-462.
    [129]姜洪涛.红粘土的成因及其对工程性质的影响[J].水文地质工程地质,2000,3:33-37.
    [130]王幼麟.蒲圻第四纪红色粘土的物质成分和结构特性及其与工程性质的关系[A].全国首届工程地质学术会议论文选集[C].贵州:科学出版社.1983,91-97.
    [131]罗鸿禧,周芳琴,张文敏.红土的某些微观特性[A].第二届全国红土工程地质研讨会论文集[C].贵州:贵州科学出版社.1991,60-66.
    [132]余培厚,郭沛等.红粘土的微结构模型与力学性质[A].第二届全国红土工程地质研讨会论文集[C].贵州:贵州科学出版社.1991,94-104.
    [133]廖义玲,余培厚.红粘土的微结构及其概化模型[J].工程地质学报,1994,2(1):27-37.
    [134]孔令伟.红粘土的微观特性与胶结形状研究[D].武汉:中国科学院武汉岩土力学研究所,1993.
    [135]张华,陈守义,姚海林.用收缩试验资料间接估算压力板试验中的体积含水量[J].岩土力学,1999,20(2):20-26.
    [136]Vanapalli,S.K.Simple test procedures and their interpretation in evaluating the shear strength of unsaturated soils[D].Saskatoon:University of Saskatchewan,1994.
    [137]Ahuja,L.R.,Swartzendruber,D.An improved form of soil-water diffusivity function[J].Soil Science Society Of American Proceedings,1972,36:9-14.
    [138]Gardner,W.R.Calculation of capillary conductivity from pressure plate outflow data[J].Soil Science of America Proceedings,1956,21:317-320.
    [139]Haverkamp,R.,Vauclin,M.,Touma,J.,Wierenga,P.J.,Vachaud,G.A.Comparison of numerical simulation models for one-dimensional infiltration[J].Soil Science Society Amercain Journal,1977,41:285-294.
    [140]Brutsaert,W.The permeability of a porous medium determined from certain probability laws for pore size distribution[J].Water Resources Research,1968,4:425-434.
    [141]Bruce,R.R.,Klute,A.The measurement of soil moisture diffusivity[J].Soil Science Society Of Amercain Proceedings,1956,20:458-462.
    [142]Cassel,D.K.,Warrick,A.W,Nielsen,D.R.Soil-water diffusivity values based upon time dependent soil-wate content distributions[J].Soil Science Society Amercain Journal,1968,32:774-777.
    [143]任奋芝.温度梯度作用下非饱和土壤水分运动试验研究[D].武汉:中国科学院武汉岩土力学研究所,1991.
    [144]Klute,A.Some theoretical aspects of the flow in of water in unsaturated soils[J].Soil Science Society Amercain Journal,1952,16:144-148.
    [145]Miller,E.E.,Miller,R.D.Theory of capillary flow:I.Practical implications[J].Soil Science Society Amercain Journal,1955,19:267-271.
    [146]Jackson,R.D.Porosity and soil-water diffusivity relations[J].Soil Science Society Of Amercain Proceedings,1965,27:123-126.
    [147]李锐.毛细水对膨胀土路基的影响研究及其处置对策[D].武汉:华中科技大学,2006.
    [148]Cahill,A.T.,Parlange,M.B.On water vapor transport in field soils[J].Water Resources Research,1998,34:731-739.
    [149]刘元扬.自动检测和过程控制[M].北京:冶金工业出版社,2005.
    [150]Farouki,O.T.Thermal Properties of Soils[M].Hanover:Transaction Technology Publications,1981.
    [151]罗云华.砂土路基湿化变形研究[D].武汉:武汉大学,2004.
    [152]屈智炯,刘昌贵.论粗粒土的湿化变形特性[A].第六届全国土力学及基础工程学术会议[C].1991.
    [153]王辉.小浪底堆石料湿化特性及初次蓄水时坝体湿化计算研究[D].北京:清华大学,1992.
    [154]张智.粗粒料在湿化及等应力比下的特性研究[D].成都:成都科技大学,1989.
    [155]魏松.粗粒料浸水湿化变形特性试验及其数值模型研究[D].南京:河海大学,2006.
    [156]Maranha Das Neves,E.,Weiga Pinto,A.Modelling collapse on rockfill dams[J].Computers and Geotechnics,1988,6:131-153.
    [157]刘祖德.土石坝变形计算的若干问题[J].岩土工程学报,1983,5(1):1-13.
    [158]李广信.堆石料的湿化试验和数学模型[J].岩土工程学报,1990,12(5):198-205.
    [159]沈珠江,王剑平.土质心墙坝填筑及蓄水变形的数值模拟[J].水利水运科学研究,1988,4:48-63.
    [160]殷宗泽,赵航.土坝的浸水变形分析[J].岩土工程学报,1990,12(2):1-7.
    [161]殷宗泽.高土石坝的应力与变形[J].岩土工程学报,2009,31(1):1-14.
    [162]李雄威.膨胀土湿热耦合性状与路堑边坡防护机理研究fD].武汉:中国科学院武汉岩土力学研究所,2008.
    [163]路凯冀.黄土湿陷的大变形有限元分析[D].西安:长安大学,2001.
    [164]胡再强.黄土结构性模型及黄土渠道的浸水变形试验与数值分析[D].西安:西安理工大学,2000.
    [165]刘祖德,王园.膨胀土浸水三向变形研究[J].武汉水利电力大学学报,1994,27:616-621.
    [166]李振,邢义川,张爱军.膨胀土的浸水变形特性[J].水利学报,2005,36(11):1385-1391.
    [167]丁振洲,李利晨,郑颖人.膨胀士增湿变形规律及计算公式[J].工程勘察,2006,7:13-16.
    [168]李翠华,詹长久,张路.膨胀土湿化变形试验研究[J].武汉大学学报(工学版),2001,34(4):101-103.
    [169]许瑛.膨胀土的加水变形、强度特性及结构变化的细观分析[D].西安:长安大学,2003.
    [170]李康全,周志刚.基于湿度应力场理论的膨胀土增湿变形分析[J].长沙理工大学学报(自然科学版),2005,2(4):1-6.
    [171]鲁洁.膨胀土增湿变形特性研究[D].西安:西安建筑科技大学,2008.
    [172]司韦.非饱和土的增湿试及模型研究[D].北京:清华大学,2006.
    [173]左永振.粗粒料的蠕变和湿化试验研究[D].武汉:长江科学院,2008.
    [174]Fredlund,D.G.,Bergan,A.T.,Sauer,E.K.The Deformation Charcteristics of Subgrade Soils for Highways and Runways in Northern Enviroments[J].Canadian Geotechnical Journal,1975,12(2):213-223.
    [175]Fredlund,D,G.,Morgenstern,N.R.Stress State Variables for Unsaturated Soils[J].Journal of Geotechnical Engineering ASCE,1977,103(GT5):447-466.
    [176]Fredlund,D.G.,Morgernstern,N.R.,Widger,R.A.The Shear Strength of Unsaturated Soils[J].Canadian Geotechnical Journal,1978,15(3):316-321.
    [177]Fredlund,D.G.,Xing,A.,Fredlund,M.D.,Barbour,S.L.The Relationship of the Unsaturated Soil Shear Strength to the Soil-Water Characteristic Curve[J].Canadian Geotechnical Journal,1996,33(3):440-448.
    [178]Vanapalli,S.K.,Fredlund,D.G.,Pufahl,D.E.,Clifton,A.W.Model for the Prediction of Shear Strength with Respect to Soil Suction[J].Canadian Geotechnical Journal 1996,33(3):379-392.
    [179]Vanapalli,S.K.,Fredlund,D.G.,Pufahl,D.E.The Relationship between the Soil-Water Characteristic Curve and the Unsaturated Shear Strength of a Compacted Glacial Till[J].Geotechnical Testing Journal,1996,19(3):259-268.
    [180]Ling-wei,Kong.,Ai-guo,Guo.,Jian-bin,Chen.On strength property of gassy fine sand and model tests of pile foundation[A].Proceeding of the 16th International Conference on Soil Mechanics and Geotechnical Engineering[C].Osaka:2005,4:2009-2012.
    [181]Gasmo,J.,Hrizuk,K.J.,Rahardjoand,H.,Leong,E.C.Instrumentation of an unsaturated residual soil slope[J].Geotechnical Testing Journal,1999,22(2):134-143.
    [182]Rahardjo,H.,Lee,T.T.,Leong,E.C.,Rezaur,R.B.Response of a residual soil slope to rainfall[J].2005,42:340-351.
    [183]詹良通,吴宏伟,包承纲,龚壁卫.降雨入渗条件下非饱和膨胀土边坡原位监测[J].岩土力学,2003,24(2):151-158.
    [184]姚海林,郑少河,李文斌,陈守义.降雨入渗对非饱和膨胀土边坡稳定性影响的参数研究[J].岩石力学与工程学报,2002,21(7):1034-1039.
    [185]张华.非饱和渗流研究及其在工程中的应用[D]。武汉:中国科学院武汉岩土力学研究所,2002.
    [186]Hillel,D.Environmental Soil Physics[M].San Diego,CA:Academic Press,1998.
    [187]de Vries,D.A.Heat Transfer in Soils[A].Heat and Mass Transfer in the Biosphere[C].New York:John Wiley & Sons.1975,5-28.
    [188]Burmeister,L.C.Convective Heat Transfer[M].New York:John Wiley & Sons Incorporation,1993.
    [189]Johansen,O.Thermal conductivity of soils[M].Norway:Trondheim,1975.
    [190]Abdel-Hadi,O.N.,Mitchell,J.K.Coupled heat and water flows around buried cables[J].Journal Geotechnical engineering,1981,107:1461-1487.
    [191]Forsythe,W.E.Smithsonian Physical Tables[M].Washington:Smith Institution Publication,1964.
    [192]Milly,P.C.D.A simulation analysis of thermal effects on evaporation from soil[J].Water Resource Research,1984a,20:1075-1085.
    [193]Milly,P.C.D.A simulation analysis of thermal effects on evaporation from soil[J].Water Resource Research,1984b,20:1087-1098.
    [194]Campbell,G.S.Soil Physics with BASIC,Transport Models for soil-Plant-systems[M].New York:Elsevier Science Publishing Co.,Inc,1985.
    [195]Jackson,R.D.,Reginato,R.J.,Kimball,B.A.Diurnal soil-water evaporation:comparison of measured and calculated soil water fluxes[J].Soil Science Society American Proceedings,1974,38:861-866.
    [196]Kimball,B.A.,Jackson,R.D.,Nakayama,ES.,Idso,S.B.,Reginato,R.J.Soil heat flux determination Temperature gradient method with computed thermal conductivities[J].Soil Science Society Amercain Journal,1976,40:25-28.
    [197]List,R.J.Smithsonian Meteorological Tables[M].Washington:Smithsonian Institution Pulication,1958.
    [198]Edlefsen,N.E.,Anderson,A.B.C.The thermodynamic of soil moisture[J].Hilgardia,1943,16:31-299.
    [199]Fritschen,L.J.,Gay,L.W.Environmental Instrumentation[M].New York:Springer-Verlag,1979.
    [200]Miller,E.E.,Miller,R.D.Physical theory for capillary flow phenomenon[J].Application Physics,1956,27:324-332.
    [201]汤传义.水的表面张力与温度的关系[J].安徽师范学院学报(自然科学版),2000,6(1):73-74.
    [202]de Vries,D.A.Thermal Properties of soils[M].Amsterdam:North-Holland Publishing Company,1963.
    [203]Morton,F.I.Estimating evaporation and transpiration from climatological observations[J].Journal of Applied Meteorology,1975,14(4):488-497.
    [204]Campbell,G.S.An Introduction to Environmental Biophysics[M].New York:Springer-Verlag,1977.
    [205]Idso,S.B.,Jackson,R.D.Thermal radiation from the atmosphere[J].Geophysical Research,1969,74:5397-5403.
    [206]Lee.Forest Microclimatology[M].New York:Columbia University Press,1978.
    [207]Samani,Z.A.,Pessarakli,M.Estimating potential crop evapotranspiration with minimum data in Arizona[J].Transaction of ASAE,1986,29:522-524.
    [208]Wilson,G.W.Soil evaporation fluxes for geotechnical engineering problems[D].Saskatoon:University of Saskatoon,1990.
    [209]Fossberg,P.E.Gravel roads-the performance and testing of materials[A].Proceeding Region Conference African Soil Mechnicas Foundation Engineering 3rd[C].Salisbury:1963,69-72:
    [210]Persons,B.Laterite-Genesis,Location,Use[M].New York:Plenum Press,1970.
    [211]Arulanandan,K.Classification,engineering properties and behaviour of laterites[A].Proceeding International Conference Soil Mechanics Foundation Engineering 7th[C].1969,2:181-190.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700