用户名: 密码: 验证码:
慢病毒介导RNA干扰沉默IL-1Ⅰ型受体在大鼠骨关节炎基因治疗中的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     骨关节炎(osteoarthritis OA)是一种慢性、渐进性、退行性关节病变,是临床上最常见的关节疾病。据统计,在50岁以上人群中,OA的发病率仅次于心脏病列第二位。在有肢体发育畸形和关节创伤病史的病人中,其发病率更高。随着我国人口老龄化和创伤发生率增高,OA已成为导致老龄者和创伤病人病废的最主要疾病之一。目前研究显示,OA是力学因素和生物学因素作用下软骨合成和降解偶联失衡的结果。细胞因子学说目前并不能解释OA中软骨破坏的全部原因。但是,不论软骨的哪个部位以何种形式发生退变,都不能脱离IL-1等炎症介质的作用。因此,对IL-1以及IL-1受体的研究成为OA基础研究方面的一个热点。IL-1包括IL-1α、IL-1β两种亚型,其中IL-1β是细胞外IL-1主要的亚型。IL-1β可由多种细胞产生,如软骨细胞、滑膜细胞、巨噬细胞等。在OA中软骨细胞上IL-1β受体的表达要高于正常的软骨细胞。研究表明,IL-1β能刺激软骨细胞、成纤维细胞和滑膜细胞分泌前列环素2(PGE2)、胶原酶和MMPs,加速软骨基质中蛋白多糖和Ⅱ型胶原的降解,并抑制蛋白多糖和Ⅱ型胶原的合成,抑制Ⅱ型前胶原mRNA的表达,改变和破坏了软骨细胞周围环境,促进软骨细胞的凋亡。
     IL-1受体分为80kD和68kD两种,前者称为IL-1RI,生物体内分布广泛,为穿膜蛋白,胞浆区含有丝氨酸和苏氨酸残基,当IL-1与IL-1RI结合后丝氨酸和苏氨酸很快被磷酸化,起信号转导的作用。目前体外的研究显示IL-1β通过与软骨细胞膜上的IL-1 RI,经丝裂素原激活的蛋白激酶(mitogen-activated protein kinases,MAPKs)途径和NF-κB(nuclear factor-κB)途径进行细胞内信号转导,引起MMPs的表达升高、软骨细胞凋亡等一系列反应。
     本研究通过慢病毒介导的RNA干扰(RNAi)技术,抑制IL-1Ⅰ型受体的表达,阻断IL-1的作用,观察其在体外培养的软骨细胞以及大鼠OA模型中MMP-1表达的影响,并观察在模型中对关节软骨破坏的影响。评价这种治疗方法的有效性,并为进一步研究MMP-1升高的机制提供基础。
     第一部分大鼠IL-1Ⅰ型受体有效RNA干扰片段的设计与筛选
     目的设计并筛选大鼠IL-1Ⅰ型受体有效RNA干扰片段,为后续实验准备
     材料与方法使用公用网站设计、筛选符合公开文献筛选参数的序列4条以及阴性对照序列1条,由上海吉凯基因技术有限公司合成。与pGCL-GFP质粒重组后,转染大肠杆菌感受态细胞。阳性克隆经过PCR鉴定以及DNA测序鉴定后,进行慢病毒小量包装。慢病毒滴度测定后,用Western blot方法在体外培养的软骨细胞中进行有效靶点的筛选。
     结果PCR鉴定和DNA测序鉴定显示重组质粒中含有所设计的寡核苷酸单链,序列正确。转染siRNA-NC质粒的大鼠软骨细胞中IL-1RⅠ表达未受影响,而转染IL-1RⅠsiRNA-2号片段的大鼠软骨细胞中IL-1RⅠ蛋白质表达水平显著下降,提示小干扰RNA介导的IL-1RⅠ序列特异性基因沉默。
     结论成功设计重组了大鼠IL-1RⅠsiRNA有效片段,并包装了慢病毒载体。
     第二部分慢病毒介导的RNAi沉默IL-1Ⅰ型受体在体外培养的大鼠软骨细胞中的作用
     目的在体外培养大鼠关节软骨细胞的基础上,验证第一部分中大鼠IL-1RⅠsiRNA在离体关节软骨细胞中对IL-1RⅠ和MMP-1的作用。
     材料与方法使用80-100g SD大鼠,取正常关节软骨培养软骨细胞并鉴定。慢病毒包装和滴度测定等前期准备工作完成后,使用IL-1刺激软骨细胞,然后将慢病毒包装的IL-1RⅠRNA有效干扰片段感染软骨细胞。感染3天后首先观察报告基因GFP的表达情况,发现感染效率大于70%,收集总蛋白并进入后续Western blot的实验,测定IL-1RⅠ和MMP-1的表达情况。
     结果通过细胞形态学观察、甲苯胺兰染色和Ⅱ型胶原染色,证明所培养的细胞确是软骨细胞。慢病毒介导的IL-1RⅠRNA干扰后,实验组细胞的IL-1RⅠ和MMP-1蛋白较对照组均有明显下降。
     结论体外成功培养了大鼠关节软骨细胞。慢病毒介导的IL-1RⅠRNA干扰有效,并且IL-1RⅠRNA干扰对MMP-1的表达有明显抑制作用。
     第三部分慢病毒介导的RNAi沉默IL-1Ⅰ型受体在大鼠骨关节炎模型中的作用
     目的在制作大鼠骨关节炎模型的基础上,观察慢病毒介导的IL-1RⅠsiRNA对大鼠骨关节炎软骨破坏的影响以及对软骨组织中MMP-1表达的作用,初步观察这种治疗方法的作用,并为进一步的机制研究提供基础。
     材料与方法采用前交叉韧带切断加内侧半月板部分切除的方法制作骨关节炎模型,根据软骨破坏程度的观察和软骨组织中MMP-1表达变化的研究,确认该模型可行性。然后在大鼠的骨关节炎模型中使用慢病毒介导的RNA干扰抑制自介素-1Ⅰ型受体,用Western blot法测定干预后大鼠关节软骨破坏程度的变化以及软骨组织中MMP-1的表达。
     结果大体观察和病理切片观察发现大鼠行前交叉韧带切断加内侧半月板部分切除术后4周,即开始出现骨关节炎表现,同时MMP-1表达明显上调。而在进行慢病毒介导的RNA干扰抑制白介素-1Ⅰ型受体后,关节软骨的破坏程度明显下降,但是MMP-1的表达下降达不到统计学差异。
     结论前交叉韧带切断加内侧半月板部分切除的方法制作大鼠骨关节炎模型是可行的。慢病毒介导的RNA干扰抑制白介素-1Ⅰ型受体对关节软骨有保护作用。MMP-1的表达可能受到包括IL-1在内的多种炎性因子的联合作用。
Background
     Osteoarthritis (OA) is a chronic and degenerative disease of joint and is one of the most common joint disorders. According to statistics, the incidence of OA is the second in the people above 50 years old, only lower than that of heart disease. And the incidence is higher in the people suffering from limbs deformity or joint trauma. OA is becoming one of the principal diseases leading to disability with aging of population and high incidence of trauma. Previous research in the field of OA has characterized that OA is the result of disequilibrium between cartilage degeneration and synthesis controlled by the mechanic and biologic factors. The effect of inflammation mediators, such as interleukin-1 (IL—1), is necessary in the cartilage degeneration although cytokines is not enough. So, the study on IL—1 and IL—1 receptors is a hot point. IL-1 include IL-1αand IL-1βand the latter is principle in extracellular environment. IL-1βmay be synthesized by several kinds of cells, such as chondrocytes, synoviocytes and macrophages. According to the previous researches, IL—1βstimulates chondrocytes, fibroblasts and synoviocytes to synthesize prostaglandin E2 (PGE2), collagenases and matrix metalloproteinases (MMPs), and accelerates the degeneration of main compositions of cartilage, such as proteoglycan and type II collagen, depresses the mRNA expression of type II collagen, destroys the environment of chondrocytes and promotes their apoptosis.
     There are two kinds of IL-1 receptors, 80kD and 68kD in molecular weight respectively and the former is called IL-1RI, expressing extensively in organisms. When coupled with IL-1, serine and threonine residues in IL—1RI are phosphorylated and IL-1RI become activated to signal transduction. It has been certificated that mitogen-activated protein kinases (MAPKs)and nuclear factor-κB(NF-κB) signaling pathways participate in the process IL-1β- induced MMP-1 express and chondrocytes apoptosis.
     The primary goal of the present study is to observe, using lentivirus mediated RNA interference to repress the expression of IL-1RI, the effect on MMP-1 expression of IL—1 in both cultured rat chondrocytes and osteoarthritic rats. We also observed the effect of IL—1 on articular cartilage destruction in osteoarthritic rats and evaluated the validy of the treatment.
     Part I Design and Screening of Valid siRNA of Rat IL-1R I
     Objectives Design siRNA of rat IL-1R I and screen those valid for the following experiments.
     Material and methods Design 4 gene sequences and 1 non-sence control gene sequence consistent with the screening feature described in previous articles using open websites, and the sequences were synthesized with the help of Genechem Company. The sequences were amplificated in Bacterium coli after recombinated with pGCL-GFP plasmid. After PCR and sequencing identification, the positive clones were packaged into lentivirus. Then we screen the valid targets by western blot in cultured rat chondrocytes after detect the virus titer.
     Results PCR and DNA sequencing certificate that the oligonucleotides were correct. The protein level of IL—1R I in chondrocytes with transfection by siRNA-2# plasmid is depressed, while that of the chondrocytes with transfection by siRNA-NC plasmid is not influenced.
     Conclusions We designed and recombinated valid siRNA of rat IL-1R I , and packaged lentivirus vector.
     Part II The Effect of Lentivirus Mediated RNA Interference on MMP-1 Expression in Cultured Rat Chondrocytes
     Objectives Culture rat chondrocytes and observe the effect on IL-1R I and MMP-1 expression of lentivirus mediated IL-1R I RNA interference in cultured rat chondrocytes.
     Material and methods Harvest articular cartilage from 80~100g SD rats knee joints to carry out rat chondrocytes culture and identification. IL—1 stimulation up-regulates IL-1R I and lentivirus mediated siRNA transfection to the chondrocytes. If the infection ratio beyond 70% three days later through observing the expression of reporting gene GFP, Western blot is carried out to detect the expression of IL-1R I and MMP-1.
     Results Through morphologic and immunocytochemistry identification, cultured chondrocytes were identified. Compared with non-sence control goup, IL-1R I and MMP-1 expression is much lower in 2#-siRNA group after lentivirus mediated RNA interference.
     Conclusions We cultured rat chondrocytes successfully and lentivirus mediated IL-1R I RNA interference work well. IL-1R I RNA interference depress the expression of MMP-1 in cultured rat chondrocytes.
     Part III The Effect of Lentivirus Mediated RNA Interference on MMP-1 Expression and Cartilage Destruction in Osteoarthritic Rat
     Objectives Observe MMP-1 expression and cartilage destruction in osteoarthritic rats and observe the effect on MMP-1 expression and cartilage destruction of lentivirus mediated IL-1R I RNA interference in osteoarthritic rat. Evaluate the validity of the gene therapy and make foundation for further studies.
     Material and methods Establish OA rat model by resecting of the anterior cruciate ligament (ACL) and anterior part of the right knee medial meniscus. Evaluate the validity of the model by observing the MMP-1 expression and cartilage destruction in osteoarthritic rats. Then repress IL-1R I expression by lentivirus mediated RNAi. Observe the cartilage destruction and detect MMP-1 expression in cartilage by Western blot.
     Results There was osteoarthritic change in articular cartilage from 4 weeks after operation by macroscopic and microscopic observe. While, MMP-1 expression was up-regulated in articular cartilage from 2 weeks after operation. There was significant decrease in articular cartilage destruction in both macroscopic and microscopic observing. However, the differences of MMP-1 expression among the IL-1R I RNAi group and negative control groups did not reach statistical significance.
     Conclusions It works to establish OA rat model by resecting of the anterior cruciate ligament (ACL) and anterior part of the right knee medial meniscus. Lentivirus mediated RNA interference on IL-1R I provide protect on articular cartilage in osteoarthritic rats. MMP-1 expression may be controlled by several inflammatory factors including IL-1.
引文
1.孙铁铮,吕厚山.骨关节炎的诊治与研究进展[J].继续医学教育.2005,19(3):47-56.
    2. Pelletier JP, M.-P. J., Abramson SB. Osteoarthritis, an inflammatory disease: potential implication for the selection of new therapeutic targets [J]. Arthritis Rheum. 2001, 44(6): 1237-1247.
    3. Fernandes JC, M.-P. J., Lascau-Coman V, et al. Collagenase-1 and collagenase-3 synthesis in normal and early experimental osteoarthritic canine cartilage: an immunohistochemical study [J]. J Rheumatol. 1998, 25(8): 585-594.
    4. Altman RD, Cheung H. A rabbit study of glucosamine sulfate in a model of osteoarthritis [J]. Osteoarthritis Cartilage 2001, 9, Suppl B: S63.
    5. Moldovan F, Pelletier J-P, Hambor J, et al. Collagenase-3 (matrix metalloprotease 13) is preferentially localized in the deep layer of human arthritic cartilage in situ: in vitro mimicking effect by transforming growth factor β [J]. Arthritis Rheum, 1997, 40:1653-1661.
    6. SchwabW, Schuhe-Tanzil G, Mobasheri A, et al. Interleukin-1beta-induced expression of the urokinase-type plasminogen activator receptor and its co-localization with MMPs in human articular chondrocytes [J]. Histol Histopathol, 2004, 19(1):105-112.
    7.王海军,于长隆,岸裕幸,等.IL-1和TNF-α拮抗剂治疗骨关节炎实验研究[J].中国运动医学杂志,2006,25(5):551-555.
    8. Kobayashi M, squires GR, Mousa A, et al. Role of interleukin-1 and tumor necrosis factor alpha in matrix degradation of human osteoarthritic cartilage [J]. Arthritis Rheum, 2005, 52(1): 128-135.
    9. Seguin CA, Bemier SM. TNFalpha suppresses link protein and type Ⅱ collagen expression in chondrocytes: Role of MEK1/2 and NF-kappaB signaling pathways [J]. J Cell Physiol. 2003, 197(3): 356-369.
    10. Page-Thomas DP, King B, Dingle JT. In vivo studies of cartilage regeneration after damage induced by catabolin/interleukin-1 [J]. Ann Rheum Dis. 1991, 50(2) :75-80.
    11. Thomas B, Thirion S, Humbert L, et al. Differentiation regulates IL-1β induced cyclo-oxygenase-2 in human articular chondrocytes: Role of p38 mitogen-activated protein kinase [J]. Biochem J. 2002, 362 (Part 2) : 367-373.
    12. Fukui N, Zhu Y, Maloney WJ, et al. Stimulation of BMP-2 expression by pro-inflammatory cytokines IL-1 and TNF-alpha in normal and osteoarthritic chondrocytes [J]. J Bone Joint Surg Am. 2003, 85 (suppl 3): 59-66.
    13. Kaiser M, Haag J, Soder S, et al. Bone morphogenetic protein and transforming growth factor beta inhibitory Smads 6 and 7 are expressed in human adult normal and osteoarthritic cartilage in vivo and are differentially regulated in vitro by interleukin-lbeta [J]. Arthritis Rheum. 2004, 50(1) : 3535~3540.
    14.任志伟,俞永林,姜建元.骨关节炎相关性细胞因子研究进展[J].国外医学·骨科学分册.2005,26(4):234-237.
    15. Caron JP, Fernandes JC, Martel-Pelletier J, et al. Chondroprotective effect of intraarticular injections of interleukin-1 receptor antagonist in experimental osteoarthritis. Suppression of collagenase-1 expression [J]. Arthritis Rheum. 1996, 39(9):1535-1544.
    16. Pelletier JP, Caron JP, Evans C, et al. In vivo suppression of early experimental osteoartbritis by interleukin-1 receptor antagonist using gene therapy [J]. Arthritis Rheum. 1997, 40(6): 1012-1019.
    17. Downward J. RNA interference [J]. BMJ. 2004, 328(7450):1245-1248.
    18. Kim VN. RNA interference in functional genomics and medicine [J]. J Korean Med Sci, 2003, 18(3):309-318.
    19. Elbashir SM, Harborth J, Lendeckel W, et al. RNA interference is mediated by 21- and 22-nucleotide RNAs [J]. Genes Dev. 2001, 15(2): 188-200.
    20. Sui G, Soohoo C, Affar el B, et al. A DNA vector-based RNAi technology to suppress gene expression in mammalian cells [J]. Proc Natl Acad Sci U S A. 2002, 99(8):5515-5520.
    21. Stewart SA, Dykxhoorn DM, Palliser D, et al. Lentivirus-delivered stable gene silencing by RNAi in primary cells [J]. RNA. 2003, 9(4): 493-501.
    22. Stewart SA, Dykxhoorn DM, PalliserD, et al. Lentivirus-delivered stable gene silencing by RNAi in primary cells[J]. RNA, 2003, 9(4): 493-501.
    1.任志伟,俞永林,姜建元.骨关节炎相关性细胞因子研究进展[J].国外医学·骨科学分册.2005,26(4):234-237.
    2. Caron JP, Fernandes JC, Martel-Pelletier J, et al. Chondroprotective effect of intra-articular injections of interleukin-i receptor antagonist in experimental osteoarthritis. Suppression of collagenase-1 expression [J]. Arthritis Rheum. 1996, 39(9):1535-1544.
    3. Pelletier JP, Caron JP, Evans C, et al. In vivo suppression of early experimental osteoarthritis by interleukin-1 receptor antagonist using gene therapy [J]. Arthritis Rheum. 1997, 40(6):1012-1019.
    4. Guo A, Kemphues KJ. Par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed [J]. Cell. 1995, 81(4):611-620.
    5. Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans [J]. Nature. 1998, 391(6669):806-811.
    6. Barton GM, Medzhitov R. Retroviral delivery of small interfering RNA into primary cells [J]. Proc Nata Acad Sci USA. 2002, 99(23): 14943-14945.
    7. Liu CM, Liu DP, Dong WJ, et al. Retrovirus vector-mediated stable gene silencing in human cell [J]. Biochem Biophys Res Commun, 2004, 313(3): 716-720.
    8. Agami R. RNAi and related mechanisms and their potential use for therapy [J]. Curr Opin Chem Biol, 2002; 6(6): 829-834.
    9. Yamada KM, Araki M. Tumor suppressor PIEN: modulator of cell signaling, growth, migration and apoptosis [J]. J Cell Sci, 2001; 114(13): 2375-2382.
    10. Pteiter A, Ikawa M, Dayn Y. Transgenesis by lentiviral vectors: lack of gene silence in mammalian embryonic stem cells and preimplantation embryos [J]. Proc Natl Acad Sci U S A, 2002; 99(4):2140-2145.
    11. Naldini L, Blomer U, Gallay P, et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector [J]. Science, 1996, 272 (5259) :263-267.
    12. Lois C , Hong EJ, Pease S , et al. Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors [J]. Science, 2002, 295(5556):868-872.
    13. Lai Z, Brady R0. Gene transfer into the central nervous system in vivo using a recombinant lentivirus vector [J]. J Neurosci Res , 2002, 67 (3): 363-371.
    14. Delenda C. Lentiviral vectors: optimization of packaging, transduction and gene expression [J]. J Gene Med, 2004, 6(suppl 1):s125-138.
    15. Dull T, Zufferey R, Kelly M, et al. A Third-Generation Lentiviral Vectors with a conditional packaging system [J]. J Virol, 1998, 72(11): 8463-8471.
    16. Burns JC, Friedmann T, Driever W, et al. Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: Concertration to a very high titer and efficient gene tansfer into mammalian and nonmammalian cells[J]. Proc Natl Acad Sci U S A, 1993, 90(17): 8033-8037.
    17. Stewart SA, Dykxhoorn DM, Palliser D, et al. Lentivirus-delivered stable gene silencing by RNAi in primary cells[J]. RNA, 2003, 9(4): 493-501.
    18. Nishitsuji H, Ikeda T, Miyoshi H, et al. Expression of small hairpin RNA by lentivirus-based vector confers efficient and stable gene-suppression of HIV-1 on human cells including primary non-dividing cells. Microbes Infect [J]. Microbes Infect, 2004, 6(1): 76-85.
    19. Li M, Rossi JJ. Lentiviral vector delivery of siRNA and shRNA encoding genes into cultured and primary hematopoietic cells [J]. Methods Mol Biol, 2005, 309: 261-272.
    20. Tavernarakis N, Wang SL, Dorovkov M, et al. Heritable and inducible genetic interference by double-stranded RNA encoded by transgenes [J]. Nat Genet 2000, 24(2):180-183.
    21. Morris JC, Wang Z, Drew ME, et al. Glycolysis modulates trypanosome glycoprotein expression as revealed by an RNAi library[J]. EMBO J 2002, 21 (17): 4429-4438.
    22. Lin SL, Chuong CM, Ying SY. A Novel mRNA-cDNA interfere nce phenomenon for silencing bcl-2 expression in human LN CaP cells[J]. Biochem Biophys Res Commun. 2001, 281(3): 639-644.
    23. Wilda M, Fuchs U, Wossmann W, et al. Killing of leukemic cells with a BCR/ABL fusion gene by RNA interference(RNAi) [J]. Oncogene, 2002, 21 (37): 5716-5724.
    24. Oh WJ, Kim EK, Ko JH, et al. Nuclear proteins that bind to metal response element a (MREa) in the Wilson disease gene promoter are Ku autoantigens and the Ku-80 subunit is necessary for basal transcription of the WD gene [J]. Eur J Biochem, 2002, 269(8) : 2151-2161.
    25. Hannon GJ, Conklin DS. RNA interference by short hairpin RN As expressed in vertebrate cells[J]. Methods Mol Biol 2004, 257:255-266.
    26. Celotto AM, Graveley BR. RNA interference of mRNA processing factors in Drosophila S2 cells [J]. Methods Mol Biol, 2004, 257: 245-254.
    27. Tang G, Zamore PD. Biochemical dissection of RNA silencing in plants [J]. Methods Mol Biol, 2004, 257:223-244.
    28. Ui-Tei K, Naito Y, Takahashi F, et al. Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference [J]. Nucleic Acids Res, 2004, 32(3):936-948.
    29. Hsieh AC, Bo R, Manola J, et al. A library of siRNA duplexes targeting the phosphoinositide 3-kinase pathway: deter 分钟 ants of gene silencing for use in cell-based screens [J]. Nucleic Acids Res, 2004, 32(3): 893- 901.
    30. Caplen NJ, Mousses S. Short interfering RNA (siRNA)-mediated RNA interference (RNAi) in human cells[J]. Ann N Y Acad Sci, 2003, 1002: 56-62.
    31. Yoshinari K, Miyagishi M, Taira K. Effects on RNAi of the tight structure, sequence and position of the targeted region[J]. Nucleic Acids Res, 2004, 32(2):691-699.
    32. Kwong SM, Skurray RA, Firth N. Staphylococcus aureus multiresistance plasmid pSK41: analysis of the replication region, initiator protein binding and antisense RNA regulation [J]. Mol Microbiol, 2004, 51(2): 497-509.
    1.孙铁铮,吕厚山.骨关节炎的诊治与研究进展[J].继续医学教育,2005,19 (3):47-56.
    2. SchwabW, Schuhe-Tanzil G, Mobasheri A, et al. Interleukin-1 beta-induced expression of the urokinase-type plasminogen activator receptor and its co-locali zation with MMPs in human articular chondrocytes[J]. Histol Histopathol, 2004, 19 (1): 105-112.
    3.王海军,于长隆,岸裕幸,等.IL-1和TNF-α拮抗剂治疗骨关节炎实验研究[J].中国运动医学杂志,2006,25(5):551-555.
    4. Kobayashi M, squires GR, Mousa A, et al. Role of interleukin-1 and tumor necrosis factor alpha in matrix degradation of human osteoarthritic cartilage [J]. Arthritis Rheum, 2005, 52(1): 128-135.
    5.任志伟,俞永林,姜建元.骨关节炎相关性细胞因子研究进展[J].国外医学·骨科学分册,2005,26(4):234-237.
    6. Caron JP, Fernandes JC, Martel-Pelletier J, et al. Chondroprotective effect of intra-articular injections of interleukin-1 receptor antagonist in experimental osteoarthritis. Suppression of collagen ase-1 expression [J]. Arthritis Rheum, 1996, 39(9):1535-1544.
    7. Pelletier JP, Caron JP, Evans C, et al. In vivo suppression of early experimental osteoarthritis by interleukin-1 receptor antagonist using gene therapy [J]. Arthritis Rheum, 1997, 40(6): 1012-1019.
    8. Downward J. RNA interference [J]. BMJ. 2004; 328 (7450):1245-1248.
    9. Kim VN. RNA interference in functional genomics and medicine [J]. J Korean Med Sci, 2003, 18(3): 309-318.
    10. Terry DE, Chopra RK, Ovenden J, et al. Differential use of Alcian blue and toluidine blue dyes for the quantification and isolation of anionic glycol-conjugates from cell cultures: application to proteoglycans and a high-molecular-weight glycoprotein synthesized by articular chondrocytes [J]. Anal Biochem, 2000, 285 (2): 211-219.
    11.司徒镇强,吴军正.细胞培养[M].西安:世界图书出版公司,1996,109.
    12.张志光,郑卫平,苏凯,等.兔关节软骨细胞的分离培养和形态学特征[J].中山大学报(医学科学版),2004,25(1):63-67.
    13. Ishizaki Y, Burne JF, Raff MC. Autocrine signals enable chondrocytes to survive in culture [J]. J Cell Biol, 1994, 126(4): 1069-1077.
    14. Darling EM, Athanasiou KA. Rapid phenotypic changes in passaged articular chondrocyte subpopulations [J]. J Orthop Res, 2005, 23(2): 425-432.
    15. Shikhman AR, Kuhn K, Alaaeddine N, et al. N-acetylglucosamine prevents IL-1 beta-mediated activation of human chondrocytes [J]. J Immunol, 2001, 166 (8): 5155-5160.
    16. Badger AM, Cook MN, Swift BA, et al. Inhibition of interleukin-1-induced proteoglycan degradation and nitric oxide production in bovine articular cartilage/chondrocyte cultures by the natural product, hymenialdisine [J]. J Pharmacol Exp Ther, 1999, 290(2): 587-93.
    17. Goldring MS. The role of cytokines as inflammatory mediators in osteoarthritis: lessons from animal models [J]. Connect Tissue Res, 1999, 40(1):1-11.
    18. Studer R, Jaffurs D, Stefanovic-Racic M, et al. Nitric oxide in osteoarthritis[J]. Osteoarthritis Cartilage, 1999, 7(4):377-379.
    19. Fernandes JC, Martel-Pelletier J, Pelletier JP. The role of cytokines in osteoarthritis pathophysiology [J]. Biorheology, 2002; 39(1-2): 237-246.
    20. Vincenti MP. The matrix metalloproteinase (MMP) and tissue inhibitor of metalloproteinase (TIMP) genes. Transcriptional and post-transcriptional regulation, signal transduction and cell-type-specific expression [J]. Methods Mol Biol, 2001, 151:121-148.
    21. Borden P, Heller RA. Transcriptional control of matrix metallo-proteinases and the tissue inhibitors of matrix metalloproteinases [J]. Crit Rev Eukaryotic Gene Expr, 1997, 7:159-178.
    22. Brinckerhoff CE, Rutter JL, Benbow U. Interstitial Collagenase as markers of tumor progression [J]. Clin Cancer Res. 2000; 6:4823-4830.
    23. Mengshol JA, Vincenti MP, Coon CI, et al. Interleukin-1 induction of collagenase 3 (matrix metalloproteinase 13) gene expression in chondrocytes requires p38, c-Jun N-terminal kinase, and nuclear factor kappa B: differential regulation of Collagenase 1 and Collagenase 3. [J]. Arthritis Rheum, 2000, 43:801-811.
    24. Goldring MB. The role of the chondrocyte in osteoarthritis [J]. Arthritis Rheum, 2000, 43:1916-1926.
    25. Vincenti MP, Brinckerhoff CE. The potential of signal transduction inhibitors for the treatment of arthritis: Is it all just JNK [J]? J Clin Invest, 2001, 108:181-183.
    26. Nagase H, Woessner JF Jr. Matrix metalloproteinases [J]. J Biol Chem, 1999, 274:21491-21494.
    27. Tetlow LC, Adlam DJ, Woolley DE. Matrix metalloproteinase and pro-inflammatory cytokine production by chondrocytes of human osteoarthritic cartilage: associations with degenerative changes [J]. Arthritis Rheum, 2001, 44: 585-594.
    28. Shlopov BV, Lie WR, Mainardi CL, et al. Osteoarthritic lesions: involvement of three different Collagenases [J]. Arthritis Rheum, 1997, 40:2065-2074.
    29. Mitchell PG, Magna HA, Reeves LM, et al. Cloning, expression, and type II collagenolytic activity of matrix metalloproteinase-13 from human osteoarthritic cartilage [J]. J Clin Invest, 1996, 97:761-768.
    30. Hochberg MC, Altman RD, Brandt KD, et al. Guidelines for the medical management of osteoarthritis. Part I. Osteoarthritis of the hip. American College of Rheumatology [J]. Arthritis Rheum, 1995, 38(11) : 1535-40.
    31. Huskisson EC, Donnelly S. Hyaluronic acid in the treatment of osteoarthritis of the knee [J]. Rheumatology (Oxford). 1999, 38(7): 602- 607.
    32. Ravaud P, Moulinier L, Giraudeau B, et al. Effects of joint lavage and steroid injection in patients with osteoarthritis of the knee: results of a multicenter, randomized, controlled trial [J]. Arthritis Rheum, 1999, 42(3): 475-82.
    33. Westacott CI, Sharif M. Cytokines in osteoarthritis: mediators or markers of joint destruction [J]? Semin Arthritis Rheum, 1996, 25(4): 254-272.
    34. Goldring MB. The role of the chondrocyte in osteoarthritis [J]. Arthritis Rheum, 2000, 43(9):1916-1926.
    35. Attur MG, Dave MN, Leung MY, et al. Functional genomic analysis of type II IL-1beta decoy receptor: potential for gene therapy in human arthritis and inflammation [J]. J Immunol, 2002, 168(4):2001-2010.
    36. Frisbie DD, Ghivizzani SC, Robbins PD, et al. Treatment of experimental equine osteoarthritis by in vivo delivery of the equine interleukin-1 receptor antagonist gene[J]. Gene Ther, 2002, 9(1) :12-20.
    37. Baragi VM. Technology evaluation: MFG-IRAP, University of Pittsburgh [J]. Curr Opin Mol Ther, 2000, 2(2):216-220.
    38. Goldring MB. Anticytokine therapy for osteoarthritis [J]. Expert Opin Biol Ther, 2001, 1(5) :817-29.
    39. Guincamp C, Pap T, Schedel J, et al. Gene therapy in osteoarthritis [J]. Joint Bone Spine. 2000; 67(6):570-571.
    40. Janusz MJ, Hookfin EB, Heitmeyer SA, et al. Moderation of iodoacetate-induced experimental osteoarthritis in rats by matrix metalloproteinase inhibitors[J]. Osteoarthritis Cartilage, 2001, 9(8): 751-760.
    1. Pelletier JP, M.-P. J., Abramson SB. Osteoarthritis, an inflammatory disease: potential implication for the selection of new therapeutic targets [J]. Arthritis Rheum. 2001, 44(6): 1237-1247.
    2. SchwabW, Schuhe-ranzil G, Mobasheri A, et al. Interleukin-lbeta-induced expression of the urokinase-type plasminogen activator receptor and its co-localization with MMPs in human articular chondrocytes [J]. Histol Histopathol, 2004, 19(1): 105-112.
    3. Chin LE, Krzesicki R, Hatfield CA, et al. Regulation of expression of IL-1 receptor antagonist protein in human synovial and dermal fibroblasts [J]. J Immunology, 1993, 150: 4008-4018.
    4. Pelletier JP, McCollum R, Cloutier JM, et al. synthesis of metalloproteases and interleukin-6 (IL-6) in human osteoarthritic synovia membrance is an IL-1 mediated process [J]. J Rheumatol, 1995, 43 (Suppl): 109-114.
    5.亓建洪,赵庆华,朱宝林等.转化生长因子-β1对人软骨细胞基质金属蛋白酶-1 mRNA及其阻滞剂mRNA表达的影响[J].中华创伤骨科杂志.2005,7(8):753-757.
    6. Kobayashi K, Mishima H, Hashimoto S, et al. Chondrocyte apoptosis and regional differential expression of nitric oxide in the medial meniscus following partial meniscectomy[J]. J Orthop Res, 2001, 19 (5) :802-808.
    7. Lozoya KA, Flores JB. A novel rat osteoarthrosis model to assess apoptosis and matrix degradation [J]. Pathol Res Pract, 2000, 196 (11):729-745.
    8. Gao G, Plaas A, Thompson VP, et al. ADAMTS4 (aggrecanase-1) activation on the cell surface involves C-terminal cleavage by glycosylphosphatidyl inositol-anchored membrane type 4-matrix metalloproteinase and binding of the activated proteinase to chondroitin sulfate and heparan sulfate on syndecan-1[J]. J Biol Chem, 2004, 279 (11):10042-10051.
    9. Reddi AH. Aging, osteoarthritis and transforming growth factor-beta signaling in cartilage [J]. Arthritis Res Ther, 2006, 8 (1):101.
    10. Freemont AJ, Hampson V, Tilman R, et al. Gene expression of matrix metalloproteinases 1, 3, and 9 by chondrocytes in osteoarthritic human knee articular cartilage is zone and grade specific[J]. Ann Rheum Dis, 1997, 56 (9) :542-549.
    11. Evans CH, Gouze JN, Gouze E, et al. Osteoarthritis gene therapy [J]. Gene Therapy, 2004, 11: 379-389.
    12. Evans CH, Ghivizzani SC, Kang R, et al. Gene therapy for rheumatic diseases [J]. Arthritis Rheum, 1999, 42: 1-16.
    13. Attur MG, Dave M, Cipolletta C, et al. Reversal of autocrineand paracrine effects of interleukin 1 (IL-1) in human arthritis by type Ⅱ IL-1 decoy receptor : potential for pharmacological-intervention[J]. J Biol Chem, 2000, 275:40307-40315.
    14. Caron JP, Fernandes JC, Martel-Pelletier J, et al. Chondroprotective effect of intra-articular injections of interleukin-1 receptor antagonist in experimental osteoarthritis: suppression of Collagenase-1 expression[J]. Arthritis Rheum, 1996, 39: 1535-1544.
    15. Probert L, Plows D, Kontogeorgos G, et al. The type I interleukin- 1 receptor acts in series with tumor necrosis factor (TNF) to induce arthritis in TNF - transgenic mice [J]. Eur J Immunol, 1995, 25: 1794 - 1797.
    
    16. Niki Y, Yamada H , Seki S , et al. Macrophage and neutrophil -dominant arthritis in human IL - 1α transgenic mice[J].J Clin Invest , 2001 , 107 : 1127 - 1135.
    17. Joosten LAB , Helsen MMA , Saxne T, et al. IL - 1 α β blockade prevents cartilage and bone destruction in murine type II collagen- induced arthritis , Whereas TNF -α blockade only ameliorates joint inflammation[J]. J Immunol, 1999, 163: 5049- 5055.
    
    18. Ghivizzani SC, Lechman ER, Kang R, et al. Direct adenovirus -mediated gene transfer of interleukin 1 and tumor necrosis factor alpha soluble receptors to rabbit knees with experimental arthritis has local and distal anti - arthritic effects [J]. Proc Natl Acad Sci USA, 1998, 95: 4613 - 4618.
    19. Pelletier JP, Caron JP, Evans C, et al. In vivo suppression of early experimental osteoarthritis by interleukin - 1 receptor antagonist using gene therapy [J]. Arthritis Rheum, 1997, 40: 1012- 1019.
    20. Fernandes J, Tardif G, Martel - Pelletier J, et al. In vivo transfer of interleukin - 1 receptor antagonist gene in osteo-arthritic rabbit knee joints: prevention of osteoarthritis progression [J]. Am J Pathol, 1999, 154: 1159-1169.
    21. Frisbie DD, Ghivizzani SC, Robbins PD, et al. Treatment of experimental equine osteoarthritis by in vivo delivery of the equine interleukin-l receptor antagonist gene [J]. Gene Ther, 2002, 9:12 - 20.
    22. Malemud CJ, Islam N, Haqqi TM. Pathophysiological mechanisms in osteoarthritis lead to novel therapeutic strategies [J]. Cells Tissues Organs, 2003, 174(1-2):34-48.
    1. Chang L, Karin M. Mammalian MAP kinase signaling cascades [J]. Nature, 2001, 410(6824):37-40
    2. Malemud CJ, Islam N, Haqqi TM. Pathophysiological mechanisms in osteoarthritis lead to novel therapeutic strategies [J]. Cells Tissues Organs, 2003, 174(1-2):34-48.
    3. Gupta S. A decision between life and death during TNF-alpha-induced signaling [J]. J Clin Immunol, 2002, 22(4):185-194.
    4. DeChiara TM, Kimble RB, Poueymirou WT, et al. Ror2, encoding a receptor-like tyrosine kinase, is required for cartilage and growth plate development[J]. Nat Genet, 2000, 24(3):271-274.
    5. Schlesinger TK, Fanger GR, Yujiri T, et al. The TAO of MEKK[J]. Front Biosci, 1998, 3:D1181-1186.
    6. Legendre F, Dudhia J, Pujol JP, et al. JAK/STAT but not ERK1/ERK2 pathway mediates interleukin (IL)-6/soluble IL-6R down-regulation of Type Ⅱ collagen, aggrecan core, and link protein transcription in articular chondrocytes. Association with a down-regulation of SOX9 expression [J]. J Biol Chem, 2003, 278(5):2903-2912.
    7. Kypriotou M, Fossard-Demoor M, Chadjichristos C, et al. SOX9 exerts a bifunctional effect on type Ⅱ collagen gene (COL2A1) expression in chondrocytes depending on the differentiation state [J]. DNA Cell Biol, 2003, 22(2):119-129.
    8. Murakami S, Kan M, McKeehan WL, et al. Up-regulation of the chondrogenic Sox9 gene by fibroblast growth factors is mediated by the mitogen-activated protein kinase pathway [J]. Proc Natl Acad Sci U S A, 2000, 97(3): 1113-1118.
    
    9. Yang X, Chen L, Xu X, et al.TGF-β/Smad3 signals repress chondrocyte hypertrophic differentiation and are required for maintaining articular cartilage[J]. J Cell Biol, 2001,153(1):35-46
    
    10. Hirota Y, Tsukazaki T, Yonekura A, et al. Activation of specific MEK-ERK cascade is necessary for TGF β signaling and crosstalk with PKA and PKC pathways in cultured rat articular chondrocytes [J]. Osteoarthritis Cartilage, 2000, 8(4) :241-247.
    
    11.Tuli R, Tuli S, Nandi S, et al. Transforming growth factor- β -mediated chondrogenesis of human mesenchymal progenitor cells involves N-cadherin and mitogen-activated protein kinase and Wnt signaling cross-talk[J]. J Biol Chem, 2003, 278(42):41227-41236.
    
    12. Leboy P, Grasso-Knight G, D'Angelo M, et al. Smad-Runx interactions during chondrocyte maturation[J]. J Bone Joint Surg Am, 2001, 83-A Suppl 1(Pt 1):S15-22.
    
    13. Attur MG, Dave M, Akamatsu M, et al. Osteoarthritis or osteoarthrosis: the definition of inflammation becomes a semantic issue in the genomic era of molecular medicine [J]. Osteoarthritis Cartilage, 2002, 10(1): 1-4.
    
    14. Guan Z, Buckman SY, Springer LD, et al. Regulation of cyclooxygenase-2 by the activated p38 MAPK signaling pathway [J]. Adv Exp Med Biol, 1999, 469:9-15.
    
    15. Miller C, Zhang M, He Y, et al. Transcriptional induction of cyclooxygenase-2 gene by okadaic acid inhibition of phosphatase activity in human chondrocytes: co-stimulation of AP-1 and CRE nuclear binding proteins [J]. J Cell Biochem, 1998, 69(4):392-413.
    
    16.Malemud CJ. Cytokines as therapeutic targets for osteoarthritis [J]. BioDrugs, 2004, 18(1): 23-35.
    17.BluteauG, Conrozier T, Mathieu P, et al. Matrix metalloproteinase-1, -3, -13 and aggrecanase-1 and -2 are differentially expressed in experimental osteoarthritis [J]. Biochim Biophys Acta, 2001,1526(2): 147-158.
    18. Han Z, Boyle DL, Chang L, c-Jun N-terminal kinase is required for metalloproteinase expression and joint destruction in inflammatory arthritis [J]. J Clin Invest, 2001, 108(1):73-81
    19. Sakurai H, Suzuki S, Kawasaki N, et al. Tumor necrosis factor-alpha-induced IKK phosphorylation of NF-kappa B p65 on serine 536 is mediated through the TRAF2, TRAF5, and TAK1 signaling pathway [J]. J Biol Chem, 2003, 278(38):36916-36923.
    20. Yang J, Lin Y, Guo Z, et al.The essential role of MEKK3 in TNF-induced NF-kappa B activation [J]. Nat Immunol, 2001, 2(7):620-624.
    21. Delhase M, Li N, Karin M. Kinase regulation in inflammatory response [J]. Nature, 2000, 406(6794):367-368
    22. Singh R, Ahmed S, Islam N, et al. Epigallocatechin-3-gallate inhibits interleukin-1β -induced expression of nitric oxide synthase and production of nitric oxide in human chondrocytes: suppression of nuclear factor kappaB activation by degradation of the inhibitor of nuclear factor kappa B [J]. Arthritis Rheum, 2002, 46(8):2079-86
    23. Vincenti MP, Brinckerhoff CE. The potential of signal transduction inhibitors for the treatment of arthritis: Is it all just JNK [J]? J Clin Invest, 2001, 108(2):181-183.
    24. Tournier C, Dong C, Turner TK, et al. MKK7 is an essential component of the JNK signal transduction pathway activated by proinflammatory cytokines [J]. Genes Dev, 2001, 15(11):1419-1426.
    25. Xia Y, Makris C, Su B, et al. MEK kinase 1 is critically required for c-Jun N-terminal kinase activation by proinflammatory stimuli and growth factor-induced cell migration [J]. Proc Natl Acad Sci U S A, 2000, 97(10): 5243-5248.
    26. Hashimoto S, Takahashi K, Amiel D, et al. Chondrocyte apoptosis and nitric oxide production during experimentally induced osteoarthritis [J]. Arthritis Rheum, 1998, 41 (7):1266-1274.
    27. Pelletier JP, Fernandes JC, Jovanovic DV, et al. Chondrocyte death in experimental osteoarthritis is mediated by MEK 1/2 and p38 pathways: role of cyclooxygenase-2 and inducible nitric oxide synthase [J]. J Rheumatol, 2001, 28(11): 2509-2519.
    28. Pelletier JP, Fernandes JC, Brunet J, et al. In vivo selective inhibition of mitogen-activated protein kinase kinase 1/2 in rabbit experimental osteoarthritis is associated with a reduction in the development of structural changes [J]. Arthritis Rheum, 2003, 48(6): 1582-1593.
    29. Aigner T, Kim HA. Apoptosis and cellular vitality: issues in osteoarthritic cartilage degeneration [J]. Arthritis Rheum, 2002, 46(8): 1986-1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700