用户名: 密码: 验证码:
不同时程控制性低血压对大鼠海马CA1区及血清中TNF-α和IL-1β表达的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     控制性低血压是临床上常用的麻醉技术。目前认为MAP50-55mmHg是控制性低血压的安全低限。在此范围内,脑血流的自身调节能力仍然保持,脑组织能够得到良好的灌注,不会有缺血缺氧的危害。但其研究时间仅仅在1-2小时,然而随着临床上外科学的不断发展,重大而复杂的外科手术(如矫形外科)常常需要5-6个小时的手术时间且术中需要控制性低血压。这就需要麻醉中控制性降压技术的支持。但是较长时间的低血压是否会对脑组织产生缺血缺氧性损伤,目前罕见报道。
     脑缺血缺氧性损伤是一个复杂的病理变化过程,大量研究表明,炎症反应时大量白细胞的浸润是对脑组织造成损伤的一个重要诱因,白细胞的浸润又与细胞间粘附分子(ICAM-1)相关,而TNF-α和IL-1β作为促炎症因子则在炎症反应中起到重要作用,两者通过抑制核因子(NF-kB)使单核巨噬细胞和其他细胞使ICAM-1、IL-6、IL-8等细胞因子的分泌增多,ICAM-1表达上调后使得白细胞滚动并聚集在内皮细胞,穿透内皮细胞作用于缺血脑组织,通过兴奋性氨基酸的生产释放,钙离子超载,自由基的形成,血管收缩反应的变化以及微血栓的形成使缺血脑组织的损伤进一步恶化。大量研究表明TNF-α在热休克及缺血再灌注脑缺血损伤大鼠模型中,其表达均有显著升高,从而提示了过多TNF-α参与了脑缺血再灌注损伤的发病过程。同样有研究报道,短暂性脑缺血即可诱导IL-1β的表达上调,若给予注射IL-1β中和抗体或IL-1β受体阻滞剂则可减轻脑组织的缺血缺氧性损伤。
     目的本实验通过硝普钠联合艾司洛尔实施控制性降压,观察在安全低限内(MAP50-55mmHg),大鼠对低血压时程的耐受能力以及脑损伤的发生发展情况。
     方法SD雄性大鼠随机分为5组,每组6只,①空白组A组②手术对照组C组③控制性降压组H组,又根据时程分为2h,4h,6h,分别对应H1,H2,H3组。术中应用硝普钠联合艾司洛尔进行控制性降压,MAP控制在50-55mmHg。术中监测MAP及HR并做血气分析,术前术后分别留取1ml动脉血离心后留血清标本,术后24小时行大鼠神经行为学评分(NSS)。应用免疫组化和ELISIA技术评估大鼠海马CA1区及血清中TNF-α和IL-1β的表达变化。
     结果1.A组、C组、H1组和H2组大鼠在控制性降压后的生存率为100%,而H3组大鼠的生存率为50%,且后者的神经行为学评分高于前者,H3组与前四组相比较,差异有统计学意义(P<0.05)。
     2.手术对照组和各降压组血清中TNF-α和IL-1β浓度的比较:术前血清ELISA检测,各组间的差异无统计学意义(P>0.05)。术后血清ELISA检测,C组和H2、H3组比较差异有统计学意义(P<0.05);H3组和H2、H1组比较,血清中TNF-α和IL-1β浓度随降压时间的延长而升高,差异有统计学意义(P<0.05);H2组和H1组比较,差异有统计学意义(P<0.05)。
     3.免疫组化染色检测海马CA1区TNF-α和IL-1β表达情况:A组未见明显阳性表达;C组、H1组大鼠可见散在分布的阳性表达细胞;H3组和H2组大鼠可见不同程度的胞浆棕黄色染色的阳性细胞。
     结论1持续控制性低血压(MAP50-55mmHg)6小时,大鼠的神经行为学表现异常,与对照组比较,存活率下降。
     2.持续控制性低血压(MAP50-55mmHg)6小时,术后血清中TNF-α和IL-1β浓度均升高,较持续降压4小时大鼠术后血清中TNF-α和IL-1β浓度升高更显著,说明持续控制性低血压6小时对大鼠机体造成一定程度的缺血缺氧性损伤。
     3.持续控制性低血压(MAP50-55mmHg)4小时后大鼠海马CA1区TNF-α和IL-1β的表达增强,持续6小时后大鼠海马CA1区TNF-α和IL-1β的表达显著增强,说明持续控制性低血压6小时后大鼠脑组织发生一定程度的缺血缺氧性损伤。
Background: Controlled hypotension is a commonly anesthetictechnique that used in clinical. At present,it is considered that sustainingthe MAP(50-55mmHg) is a safe lower limit of controlled hypotension.Within this range, the autoregulation of cerebral blood flow and perfusionof brain tissue remain action wells,there will be no ischemia-hypoxiainjury. But that process was only limit in1-2hours, with the continuousdevelopment of surgery, however, a major and complex surgery (such asorthopedic surgery) requires5-6hours and controlled hypotension thatalways indispensable in it.Whether continues controlled hypotensionwould lead to irreversible brain injury,is rare reports now.
     Cerebral hypoxic-ischemic injury is a complex process of pathologicalchange, a large number of studies indicated that massive white blood cellinfiltration is an important incentive to cause brain tissue damage,and theinfiltration of leukocyte is related to intercellular adhesion molecule (ICAM-1).As the proinflammatory cytokines, TNF-α and IL-1β plays animportant role in the inflammatory response, taken by inhibiting nuclearfactor (NF-kB) to make mononuclear macrophages and other cellssecreting more ICAM-1, IL-6,IL-8.the expression of ICAM-1upregulates that make leukocyte rolling and gathering in the endothelialcells.and make the ischemic injury of brain tissue further deteriorationthrough the release of the excitatory amino acid, calcium overload,formation of free radical, change of vasoconstriction and micro-thrombusformation.Numerous studies indicated that in heat shock andischemia-reperfusion rat model induce cerebral ischemic injury, theexpression of TNF-α were significantly increased, which indicated theover expression of TNF-α involved in the pathogenesis of cerebralischemia and reperfusion injury. There are studies reported that transientcerebral ischemia induce the upregulation of IL-1β, and give injections ofIL-1β antibody or IL-1β receptor blockers reduce the hypoxic-ischemicinjury of brain tissue.
     Objective: This study aims to observe the tolerance of sodiumnitroprusside combined with esmolol induced hypotension at differenttimes with the MAP sustain in50-55mmHg in rats,and the mechanism ofbrain injury with continued hypotension in rats.
     Methods:Male Sprague-Dawley rats were randomly divided into fivegroups(n=6),①blank group,Group A②operation control group, Group C③controlled hypotension group, Group H, and according toschedule is divided into three groups, H1(2h), H2(4h), and the H3(6h).Hypotension induced by sodium nitroprusside combined with esmolol tosustain the MAP in50-55mmHg for different times. During thestudy,montiored the MAP and HR of the rats and observed the blood gasanalysises, before and after the study, take1ml arterial blood forcentrifugation and save serum samples, after24hours,observedneurological serverity score after study for24hours, Evaluated theexpression ofTNF-α and IL-1βof hippocampal CA1region and serum byimmunohistochemical and ELISIA
     Results:1.The survival rate of group A、 C、H1and H2of stydy were100%after24hours,while the survival rate of the group H3was50%,andthe neurological severity scores of group H3compared with the first fourgroups was higher, there were statistic difference (P <0.05).
     2.The comparison of the concentration of TNF-α and IL-1β inserum between control group and hypotensive groups: the results ofELISA in preoperative serum,group C and group H were not statisticallysignificant (P>0.05). While the results of ELISA in postoperativeserum,the comparsion of group C and H2、H3,the differences werestatistically significant (P <0.05); the comparsion of group H3and H2、H1, the differences were statistically significant (P <0.05); the differenceof group H2and group H1was statistically significant (P <0.05).
     3.The analysis of immunohistochemical staining of theexpression of TNF-α and IL-1β in the hippocampal CA1region: therewas no obviously positive expression in group A;there were positive cellsscattered in the group C and group H1;group H2and group H3showednumerous positive cells with brown-yellow staining particles in thecytoplasm.
     Conclusions:1.After hypotension(MAP50-55mmHg)continued for6hours in rats,compared with other groups,the NSS and survival ratedescended.
     2. After hypotension(MAP50-55mmHg)continued for6hours,the concentrations of TNF-α and IL-1β in the postoperative serumwere elevated,compared with group H2,the change was moresignificant.This indicated that the rats had a hypoxic-ischemia injury in acertain extent.
     3. After hypotension(MAP50-55mmHg)continued for4hours,the expression of TNF-α and IL-1β in the hippocampal CA1regionwere upregulation,while continued for6hours,there were strongerexpression,this indicated the brain showed an ischemia injury in a certainextent.
引文
[1]庄心良,曾因明.现代麻醉学第三版[M].人民卫生出版社,2008;6:1692-1693.
    [2] Gardner WJ.The control of bleeding during operation by induced hypotension[J].JAMA,1946;132:572-576.
    [3] Gilles J.Anaesthetic factors in the causation and prevention of excessivebleeding during surgical operations[J].Ann R Coll Surg End,1950;204-221.
    [4] Gillies J.Advances in anesthesia.Practitioner[J],1951;167:418-423.
    [5] Bromage P,Vascular hypotension in107cases of epidural analgesia [J]. An-esthesia,1951;6:26-29.
    [6] Moraca PP,Bite EM,Hale DE,et al,Clinical evaulation of sodium nitroprussideas a hypotensive agent[J]. Anaesthesiology.1962;23:193-199.
    [7]Murtagh GP,Controlled hypotension with halothane[J].Anaesthesia,1960;15:235-244.
    [8] Enderhy GEH,Halothane and hypotension[J]. Anaesthesia,1960;15:25-32.
    [9] Lam AM,Gelb AW. Cardiovascular effects of Isoflurane-induced hypotension forcerebral aneurysm surgery[J]. Anesth Analg,1983;62:742-748.
    [10] Nicholas JF, Lam AM. Isoflurane-induced hypotension does not causeimpairment in pulmonary gas exchange[J].Can Anaesth Soc J.1984;31(4):352-358.
    [11] Hines R, Barash PG, Infusion of sodium nitroprusside induces plateletdysfunction in vitro. Anesthesiology[J],1989;70:611-615.
    [12] Marsh ML, Shapiro HM, Smith RW, et al. Changes in neurologic status andintracranial pressure associated with nitroprusside administration[J],Anesthesiology.1979;51:336-338.
    [13] Khambatta HJ, Stone JG,Khan E, Hypertension during anesthesia ondiscontinuation of sodium nitroprusside-induced hypotension[J]. Anesthesiology,1979;51(2):127-130.
    [14] Edmondson R, Delvalle O, Shah N, et al. Esmolol for potentiation ofnitroprusside-induced hypotension:impact on the cardiovascular adrenergic andrenin-angiotensin systems in man[J]. Anesth Analg,1989;69(2):202-206.
    [15]李立环,张瑞香,孙红.硝酸甘油复合维拉帕米施行控制性低血压[J].中华麻醉杂志,1995;15:229.
    [16] Hur SR, Huizenga BA, Major M. Acute normovolemic hemodilution combinedwith hypotensive anesthesia and other techniques to avoid homologoustransfusion in spinal fusion surgery[J]. Spine.1992;17(8):867-873.
    [17] Michenfelder JD, Theye RA, Canine systemic and cerebral effects ofhypotension induced by hemorrhage trimethaphan, halothane, ornitroprusside[J]. Anesthesiology,1977;46(3):188-195.
    [18] Enlund M, Andersson J, Hartvig P,et al. Cerebral normoxia in the rhesus monkeyduring isoflurane-or propofol-induced hypotension and hypocapnia, despitedisparate blood-flow patterns. A positron emission tomography study[J], ActaAnaesthesiol Scand.1997;41(8):1002-1010.
    [19] Bünemann L, Jensen KA, Riisager S, et al. Cerebral blood flow and metabolismduring hypotension induced with sodium nitroprusside and metoprolol[J].Eur JAnaesthesiol.1991;8(3):197-201.
    [20] Madsen JB, Cold GE, Hansen ES,et al. Cerebral blood flow and metabolismduring isoflurane-induced hypotension in patients subjected to surgery forcerebral aneurysms[J].Br J Anaesth.1987;59(10):1204-7.
    [21] Newman B, Gelb AW, Lam AM. The effect of isoflurane-induced hypotension oncerebral blood flow and cerebral metabolic rate for oxygen in humans[J].Anaesthesiology.1986;64:307-310.
    [22] Langerkranser M, Effects of nitroglycerin on intracranial pressure and cerebralblood flow[J]. Acta Anaesthesiol Scand,1992;36:34-36.
    [23] Garlick, R.E., Cerebral blood flow and metabolism, in Care of the critically illpatient[J], Springer Verlag,1996;129-137.
    [24] Tseng EE, Brock MV, Kwon CC. et al. Increased intracerebral excitatory amino acids andnitricoxide after hypothemic circulatory arrest[J]. Ann Thorac Surg,1999;67(2):371-376.
    [25] Gwak M, Park P, Kim K, et al, The effects of dantrolene on hypoxic-ischemicinjury in the neonatal rat brain[J], Anesth Analg,2008;106(1):227-233.
    [26] Schultz S, Creed J, Schears G, et al, Comparison of low-flow cardiopulmonarybypass and circulatory arrest on brain oxygen and metabolism[J], Ann ThoracSurg,2004;77(6):2138-2143.
    [27] Antonino Tuttolomondo, Domenico Di Raimondo, Riccardo di Sciacca, et al.Inflammatory Cytokines in Acute Ischemia Stroke[J]. Current PharmaceuticalDesign,2008;14:3574-3589.
    [28] Arvin B, Neville LF, Barone FC, et al The role of inflammation and cytokines inbrain injury[J]. Neurosci Biobehav Rev,1996;20:445-452.
    [29] Liu T, McDonnell PC, Young PR, et al. Interleukin-1expression in ischemic ratcortex[J]. Stroke,1993;24:1746-1752.
    [30] Botchkina GI, Meistrell ME, Botchkina IL, et al Expression of TNF and TNFreceptors (p55and p75) in the rat brain after focal cerebral ischemia[J]. Mol Med1997;3:765-781.
    [31] Mogi M, Harada M, Riederer P, et al Tumor necrosis factor-α(TNF-α)increases both in the brain and in the cerebrospinal fluid from parkinsonianpatients[J]. Neurosci Lett1994;165:208-210.
    [32] Murakami Y, Saito K, Hara A, et al. Increases intumor necrosis factoralphafollowing transient global cerebral ischemia do not contribute to neuron deathinmouse hippocampus[J]. J Neurochem,2005,;93(6):1616-1622.
    [33] Wang X, Yue TL, Barone FC,et al.Concomitant cortical expression of TNF-alphaand Il-1beta mRNAs follows early response gene expression in transient focalischemia[J]. Mol Chem Neuropathol,1994;23:103-114.
    [34]Sairanen T, Carp é n O, Karjalainen-LindsbergML,,et al.Evolution of cerebral tumor necrosis fac-tor-a production during humanischemic stroke[J]. Stroke2001;32:1750-1758.
    [35] DaviesCA, LoddickSA, ToulmondS, et al. The progression and topographicdistribution of interleukin1beta expressionafter permanent middle cerebralartery occlusion in the rat[J]. J CerebBloodFlowMetab,1999;19(1):87-98.
    [36] Shreeniwas R, Koga S, Karakurum M, et al. Hypoxia-mediated induction ofendothelial cell interleukin-1alpha. An autocrine mechanism promotingexpression of leuko-cyte ad-hesion molecules on the vessel surface[J]. J Clin.Invest,1992;90:2333-2339.
    [37] Hara H, Friedlander RM, Gagliardini V, et al. Inhibition of ICE familyproteases reduces ischemic and excitotoxic neuronal damage[J]. Proc NatlAcad Sci1997;94:2007-2012.
    [38] Loddick SA, MacKenzie A, Rothwell NJ, An ICE inhibitor, z-VAD-DCBattenuates ischemic brain damage in the rat[J]. NeuroRe-port1996;7:1465-1468.
    [39] Friedlander RM, Gagliardini V, Hara H, et al. Expression of a domi-nant negativemutant of in-terleukin-1beta converting enzyme in transgenic mice preventsneuronal cell death induced by trophic factor withdrawl and ischemic braininjury[J]. J Exp Med1997;185:933-940.
    [40]Schaller B, Graf R. Cerebral ischemia and reperfusion: the patho-physiologicconcept as a basis for clinical therapy [J]. Cereb Blood Flow Metab,2004;24:351-371.
    [41]何华,乙醚吸入与戊巴比妥钠腹腔注射联合麻醉的应用[J],中华比较医学杂志.2008;18(1):30-31.
    [42] Pulsinelli WA, Brierley JB.A new model of bilateral hemispheric ischemia in theunanesthetized rat.Stroke[J].1979;10(3):267-272.
    [43]Sheng H, Laskowitz DT, Pearlstein RD, et al Characterization of a recoveryglobal cerebral ischemia model in the mouse.[J] J Neurosci Methods.1999;88(1):103-109.
    [44]李娜,王焱林,王成夭等.3种大鼠气管插管法的比较[J],医学新知杂志,2005;15(4):20-21.
    [45]Schnapp LM, Chin DP, Szaflarski N, et al Frequency and importance ofbarotrauma in100patients with acute lung injury.[J]Crit Care Med.1995;23(2):272-278.
    [46]Gattinoni L, Pelosi P, Suter PM, et al Acute respiratory distress syndrome causedby pulmonary and extrapulmonary disease. Different syndromes?[J] Am J RespirCrit Care Med1998;158(1):3-11.
    [47]Pelosi PD,Onofrio D, Chiumello D, et al Pulmonary and extrapulmonaryacute respiratory distress syndrome are different[J]. Eur Respir J Suppl2003;8(42):48s-56s.
    [48] Mertens M, Tabuchi A, Meissner S, et al Alveolar dynamics in acute lunginjury: heterogeneous distension rather than cyclic opening and collapse[J]. CritCare Med,2009;37(9):2604-2611.
    [49]Slutsky AS. Lung injury caused bymechanical ventilation[J]. Chest,1999;116(1):9s-15s.
    [50]Oeckler RA, Hubmayr RD Ventilator-associated lung injury: a search for bettertherapeutic targets[J],Eur Respir J.2007;30(6):1216-1226.
    [51]ItoY, VeldhuizenRA, YaoLJ, et al. VentilationstrategiesaffectSurfac-tant aggregateconversion in acute lung injury[J]. AmJ Respir Crit CareMed,1997;155(2):493-499.
    [52]Imai Y, Kawano T, Emerson GA, et al. Intratracheal antitumor necrosisfactor-alpha antibody attenuates ventilator-induced lung injury in rabbits[J]. JApplphysiol.1999;87(2):510-515.
    [53]张定宇,姚尚龙,机械通气致肺损伤大鼠肺组织基质金属蛋白酶的表达[J],中华麻醉学杂志,2005;7:519-522
    [54]Wilson MR, Choudhury S, Goddard ME,et al High tidal volume upregulatesintrapulmonary cytokines in an in vivo mouse model of ventilator-induced lunginjury.[J],J Appl Physiol.2003;95(4):1385-1393.
    [55]Laffey JG, O'Croinin D, McLoughlin P,et al,Permissive hypercapnia--role inprotective lung ventilatory strategies[J]Intensive Care Med.2004;30(3):347-356.
    [56]Castro CY. ARDS and diffuse alveolar damage: a pathologist'sperspective[J]Semin Thorac Cardiovasc Surg.2006;18(1):13-19.
    [57]Petersen GW, Baier H. Incidence of pulmonary barotrauma in a medicalICU[J]. Crit Care Med1983;11:67–69.
    [58] Adkins WK, Hernandez LA, Coker PJ, et al. Age effects susceptibility topulmonary barotrauma in rabbits[J]. Crit Care Med,1991;19:390–393.
    [59] Zwillich CW, Pierson DJ, Creagh CE, et al.Complications of assisted ventilation:a prospective study of354con-secutive episodes[J]. Am JMed,1974;57:161–170.
    [60]Ian B. Copland, Francisco Martinez, et al High Tidal Volume Ventilation CausesDifferent Inflammatory Responses in Newborn versus Adult Lung[J] Am J RespirCrit Care Med2004;169.739–748.
    [61]施红光;龚锦涵高浓度氧诱导的大鼠肺损伤早期血清血管紧张素转化酶活性的变化[J],中国应用生理学杂志,1994;1:41-44.
    [62]张向峰,Hussein D.Foda.高氧所致急性肺损伤小鼠肺组织细胞凋亡和坏死的研究[J].中华结核和呼吸杂志,2004;7:465-468.
    [63]Kacmarek R.M., Ventilator-associated lunginjury[J], International Anesthesiologyclinics,1999;37(3):57~64.
    [64]Kawano T., Mori S., Cybulsky M., et al., Effect of granulocyte Depletion in aventilation surfactant-depleted lung[J], J Appl Physiol,1987;62:27~33.
    [65]Stuber F., Wrigge H., Schroeder S., et al., Kinetic and reversibility of mechanicalventilator-associated pulmonary and systemic inflammatory response in patientswith acute lung injury[J], Inter care Med,2002;28(7):834~841.
    [66]Jieli Chen,Yi Li,Lei Wang et al,Therapeutic Benefit of IntravenousAdministration of Bone Marrow Stromal Cells After Cerebral Ischemia in Rats [J]Stroke,2001;32:1005-1011.
    [67] Walter C Jean, Stephen R Spellman, Eric S Nussbaum, et al. Reperfusioninjury after focal cerebral ischemia: the role of inflammation and the thera-peutic horizon[J]. Neurosurgery.1998;43(6):1382~1393.
    [68] Frijns CJ, Kappelle LJ. Inflammatory cell adhesion molecules in ischemiccerebrovascular disease[J]. Stroke.2002;33(8):2115~2122.
    [69] Del Zoppo GJ, Schmid-Schonbein GW, Mori E, et al. Polymorphonuclearleukocytes occlude capillaries following middle cerebral artery occlusion andreperfusion in baboons[J]. Stroke.1991;22:1276~1283.
    [70]国家药典委员会编.临床用药须知[M].2005年版.北京:化学出版社,2005;211-212,879-883.
    [71]Hall VA, Guest JM. Sodium nitroprusside-induced cyanide intoxication andprevention with sodium thiosulfate prophylaxis [J]. Am J Crit Care,1992;1(2):19-25.
    [72]Vesey CJ, Cole PV.Blood cyanide and thiocyanate concentrations produced bylong-term therapy with sodium nitroprusside [J]. Br J Anaesth,1985;57(2):148-155.
    [73]Schulz V. Clinical pharmacokine of nitroprusside, cyanide, thiosulphate andthiocyanate [J]. Clin Pharma-cokinet,1984;9(3):239-251.
    [74]McEvoy GK. American Hospital Formulary Service Drug Information1998
    [M]. Be thesda, MD: American Society of Health System Pharmacists,1998:1529-1532.
    [75]Fahmy NR. Consumption of vita min B12during sodium nitroprusside administration in humans [J]. Anesthesiology,1981;54(4):305-309.
    [76]Okasaki K., Nagata R., Onishi M., et al. Single dose toxicity study of sodiumnitroprusside (SNP) in beagles by intravenous infusion administration[J], JapanesePharmacology and Therapeutics,1994;22(8):33~38.
    [77] Lucas SM, Rothwell NJ, Gibson RM. The role of inflammation in CNS injuryand disease [J]. Br J Pharmacol,2006;147:S232–S240.
    [78] Stanimirovic D, Satoh K. Inflammatory mediators of cerebal endothelium: A rolein ischemic brain inflammation[J]. Brain Pathol,2000;10(1):113–126.
    [79]Sharma BK, Kumar K.Role of proinflammatory cytokines in cerebral ischemia: areview[J],Metab Brain Dis,1998,13(1):1-8..[80]Rothwell NJ, Luheshi GN. Interleukin1in the brain: biology, pathology andtherapeutic target[J]. Trends Neurosci,2000;23(12):618–625.
    [81]Iadecola C, Alexander M. Cerebral ischemia and inflammation[J]. Curr OpinNeurol,2001;14(1):89–94.
    [82]Connor TJ,Song C,Leonard BE, et al,An assessment of the effects of centralinterleukin-1beta,-2,-6, and tumor necrosis factor-alpha administration on some behavioural, neurochemical, endocrine and immune parameters in therat[J].Neuroscience.1998;84(3):923-33.
    [83]WangCX, ShuaibA. Involvement of inflammatory cytokines in central nervoussystem injury[J]. ProgNeurobiol,2002;67(2):161-172.
    [84] FongY, Tracy KJ, Molfswer LL, et al. Antibodies to cathectin/tumor necrosisfactor reduce interleukin-1and interleukin-6appearanceduring lethalbacteriemia[J]. J Exp Med,1989;170(5):1627-1633.
    [85]钟照华,李国忠,李呼伦等.人缺血脑组织中TNF-α和IL-1β的表达[J].细胞与分子免疫学杂志.2003;4:38-39.
    [86]Liu T, Clark RK, McDonnell PC et al Tumor necrosis factor-alpha expression inischemic neurons[J].Stroke.1994;25(7):1481-1488.
    [87]Nawashiro H,Tasaki K, Ruetzler CA,et al,TNF-alpha pretreatment inducesprotective effects against focal cerebral ischemia in mice[J].J Cereb Blood FlowMetab.1997;17(5):483-490.
    [88]Uno H, Matsuyama T, Akita H,et al,Induction of tumor necrosis factor-alpha inthe mouse hippocampus following transient forebrain ischemia[J].J Cereb BloodFlow Metab,.1997;17(5):491-499.
    [89] LiC, HaT, Liu L, et alAdenosine prevents activation of transcription factorNF-kappaB and enchances activator protein-1binding activity in ischemic rat heart
    [J]Surgery,2000;127(2):161-169.
    [90]Touzani O, BoutinH, Chuquet J, et al. Potential mechanisms of interleukin-1involvement in cerebral ischemia[J]. J Neuroimmunol,1999;100:203~215.
    [91]Strack S, BarbanMA, Wadzinski BE, et al. Differential inactivation ofpostsynaptic density-associated and soluble Ca2+/Calmodulin-dependent proteinkinase II by protein phosphatases1and2A[J]. J Neurochem,1997;68:2119~2128.
    [92]Zhang W, SmithC, Shapiro A, et al. Increased expression of bioactive chemokinesin human cerebromicrovascular endothelial cells and astrocytes subjected tosimulated ischemia invitro[J]. J Neuroimmunol,1999;101:148~160.
    [93]Stoll G, Jander S, Schroeter M. Inflammationandglial responses in ischemicbrain lesions[J]. Prog Neurobiol,1998;56:149~171.
    [94] Geeraerts T, Ract C, Tardieu M. et al. Changes in cerebral energy metabolitesinduced by impact-acceleration brain trauma and hypoxic-hypotensive injury inrats.[J].J Neurotrauma.2006;23(7):1059-1071.
    [95] Suttner S.W., Piper S.N., Lang k., et al., Cerebral effects and blood sparingefficiency of sodium nitroprusside-induced hypotension alone and incombination with acute normovolaemic haemodilution[J], British Journal ofAnaesthesia,2001;87(5):699~705.
    [96]Sallun JI, Martins GA, Santino MS. et al. Early use of terlipressin incatecholamine-resistant shock improves cerebral perfusion pressure in severetraumatic brain injury.[J].Acta Anasethesiol Scand,2007;51(4):505-508.
    [97]方舒东,朱也森,姜虹等.短暂性全脑缺血再灌注对大鼠动脉血气和乳酸的影响[J],中国比较医学杂志,2006;16(11):654-657.
    [98]Zauner A, DaughertyWP, BullockMR, et al Brain oxygenation and energymetabolism:partI-biological function and pathophysiology[J]. Neurosurgery.2002;51(2):289-301.
    [99] Stella N, Estelles A, Siciliano J, et al, Interleukin-1enhance the ATP-evokedrelease of arachidonie acid from mouse astrocytes[J], J Neurosci,1997;17(9):2939-2946.
    [100]Betz AL, Schielke GP, Yang GY. Interleukin-1in cerebral ischemia[J]. Stroke,1995;26(4):678-680.
    [101]孙圣刚,杜怡峰,童萼塘等.脑缺血再灌注大鼠血浆及脑组织TNF-α动态变化的观察[J],脑与神经疾病杂志,1999;7(4):193-195.
    [102] Barone FC, Arvin B, White RF, et al Tumor necrosis factor-alpha. A mediator offocal ischemic brain injury[J]. Stroke,1997;28(6):1233-1244.
    [103]赵小贞,王玮,康仲涵等.血管性痴呆大鼠学习记忆障碍与海马突触界面结构参数改变的相关性分析[J],现代康复,2001;5(6):54.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700