用户名: 密码: 验证码:
Asia 1型、O型FMDV复合多表位口服疫苗构建与实验免疫研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究利用网络服务器对多株Asia 1型、O型FMDV结构蛋白VP1进行表位预测,同时参考已知的Asia 1型、O型FMDV抗原活性位点,设计并合成FMDV多表位盒。将分子佐剂CTB和FMDV辅助性T细胞表位连入多表位盒中,构建Asia 1型、O型FMDV复合多表位基因盒CTEAs和CTEO。将Asia 1型、O型FMDV衣壳蛋白前体P1/2A分别与复合多表位基因相连,利用毕赤酵母进行分泌表达,将纯化的表达产物P1/2A-CTEAs、P1/2A-CTEO、CTEO和CTEAs腹腔免疫小鼠,证明复合多表位均可刺激小鼠高水平的体液免疫和细胞免疫的产生,说明设计的FMDV复合多表位具有良好的免疫原性,其中尤以P1/2A-CTEAs(Asia 1型)和P1/2A-CTEO(O型)免疫组效果最佳。
     将Asia 1型FMDV复合多表位基因与其结构蛋白VP1-2A基因相连,利用枯草芽孢杆菌分泌型表达载体pBC38C,构建了可稳定表达目的蛋白的重组枯草芽孢杆菌1A751/CTB-VP1/2A-CTEAs、1A751/CTEAs和1A751/CTEO,并以口服的方式(1010/只)进行小鼠免疫实验,并检测特异性血清抗体、T淋巴细胞的增殖和IFN-γ的分泌、黏膜总sIgA和黏膜特异性sIgA。证实重组枯草芽孢杆菌既可刺激体液免疫和细胞免疫的产生,同时对机体黏膜免疫也有显著地诱导作用,其中以重组枯草芽孢杆菌1A751/CTB-VP1/2A-CTEAs口服免疫效果最佳。
     构建了稳定表达FMDV复合多表位的重组酿酒酵母INVSc1/P1/2A-CTEAs、INVSc1/P1/2A-CTEO、INVSc1/CTEAs和INVSc1/CTEO,并以口服的方式(108/只)进行小鼠免疫实验。说明重组酿酒酵母不仅可以刺激体液免疫和细胞免疫的产生,而且对机体黏膜免疫也有显著地诱导作用,其中以重组酿酒酵母INVSc1/P1/2A-CTEAs和INVSc1/ P1/2A-CTEO口服免疫效果最佳。
     利用prime-boost免疫策略对多种疫苗联合免疫效果进行研究。以本室构建的Asia 1型、O型FMDV核酸苗pVAX-P1-2A-3C(Asia 1型)和pIRES3CP1(O型)为首免,使用重组鸡痘病毒vUTAL-P1-2A-3C(Asia 1型)和vUTAL3CP1(O型)加强免疫,并于每次免疫的同时灌服本实验中效果较好的重组活菌载体疫苗。明确口服活菌载体疫苗能显著提高prime-boost免疫策略下疫苗联合免疫的效果,显著提高机体细胞免疫、体液免疫以及黏膜免疫水平,其中以重组枯草芽孢杆菌和重组酿酒酵母混合制剂口服免疫效果最佳。
Foot-and-mouth disease (FMD) caused by foot-and-mouth disease virus (FMDV) is one of the most contagious animal virus diseases. It is one of infectious disease on the list of World Organization of Animal Disease (OIE) which must be reported. At present, seven different serotypes containing O, A, C, Asia1, and South African Territors1 (SAT1), SAT2 and SAT3 have been found and is prevalence in all over the world and it is also one of the most important infectious animal diseases in China. FMD serotype Asia1 and O had been spread in many part of China. Developed countries adopt the policy of culling in order to prevention and control the outbreaks of FMD, while developing countries adopt the policy of universal immunization. At present, inactivated vaccine was still widely used in our country. However, researchers found that there were serious security risks in inactivated vaccination. Therefore, the development of a safer, effective FMD vaccine has become a new focus on growing attention by researchers, included of recombinant subunit vaccines, multi-peptide vaccines, DNA vaccine and recombinant live vector vaccines.
     From the perspective of FMDV transmission, air-borne transmission have a great significance for its pandemic. Thereby it is important to increase the level of mucosal immune for prevention and control of FMDV. Live bacterial vaccines is one of wildly researched new type vaccines, and have the abilities to induced cellular immunity and humoral immunity. And live bacterial vaccines also have the abilities to stimulate mucosal immune responses. At present, there are many kinds carrier for the vaccines, including lactic acid bacteria, attenuation salmonella and so on. But there is little study on Bacillus subtillis and Saccharomyces cerevisiae which have the ability for expression exogenous gene and safety.
     In this research webservers, CTL Pred, Bce Pred and Harvard, have been used for predict the epitopes of FMDV structural protein VP1 and the high score epitopes have been choosen. At the same time the antigenic active site of FMDV serotype Asia 1 and O which have been reported was consulted. And then one team of multi-epitopes have been obtained and connected them by sequence of liner, GPGPG or AAA. So two box of multi-epitopes containing epitopes of FMDV serotype Asia1 and O, were designed and synthesized. Cholera toxin B subunit(CTB)and Th cell epitopes which come from FMDV (Th2) have been used as molecular adjuvant to construct multi-epitopes of FMDV serotype Asia 1 and O, CTEAs and CTEO. The secondary and tertiary structure were predicted through the software of molecular biology. The results show that there was little interference of neighboring epitopes in multi-epitopes of FMDV serotype Asia 1 and O and there are lots of epitopes located in protein surface. The antigenicity of multi-epitopes was higher and will become one of antigen for FMDV vaccine.
     Recombinant plasmids pSK-P1/2A-CTEAs, pSK-P1/2A-CTEO, pSK-CTEAs and pSK-CTEO containing capsid polypeptide P1-2A of FMDV and multi-epitopes of FMDV serotype Asia 1 and O have been constructed. Then based on the Pichia pastoris secretory expression vector pPIC9K, the recombinant plasmids pPIC9K-P1/2A-CTEAs, pPIC9K-P1/2A- CTEO, pPIC9K-CTEAs and pPIC9K-CTEO were constructed and expressed interest proteins multi-epitopes of FMDV serotype Asia 1 and O. Expression supernatant were purified by ammonium sulfate precipitation and evaluated the abilities for induce humoral and cellular responses in mice after intraperitoneal immunization. The result show that multi-epitopes were secreted into supernatant successfully and accounted for about 24%, 30%, 20% and 19% of the total supernatant protein. The results of immunization shows that multi-epitopes P1/2A-CTEAs, P1/2A-CTEO, CTEO and CTEAs have the abilities for stimulating specific serum antibody and inducing lymphocyte proliferation and secretory of IFN-γ. The results demonstrate that the subunit vaccines have the abilities of induce humoral and cellular responses, especially P1/2A-CTEAs (serotype Asia 1) and P1/2A-CTEO (serotype O).
     On this basis, the capsid polypeptide VP1-2A of FMDV serotype Asia 1 have been connected with multi-epitopes, and based on the Bacillus subtilis secretory expression vector pBC38C, which constructed by the work of predecessors, recombinant plasmids pBC38C-CTB- VP1/2A-CTEAs, pBC38C-CTEAs and pBC38C-CTEO were constructed. With electro- transformation recombinant plasmids were transformed into Bacillus subtilis 1A751, and live bacterial vaccines 1A751/CTB-VP1/2A-CTEAs, 1A751/CTEAs and 1A751/CTEO have been constructed. The expression of interest protein which have been secreted into supernatant accounted for about 21%, 17% and 15% of the total supernatant protein. The immune effectiveness of recombinant Bacillus subtilis were evaluated in mice after oral immunization (1010/each). Recombinant Bacillus subtilis 1A751/CTB-VP1/2A-CTEAs, 1A751/CTB-VP1/2A- Epi (constructed by predecessors), 1A751/CTEAs and 1A751/CTEO have the abilities to stimulate specific serum antibody and inducing lymphocyte proliferation and secretory of IFN-γ. At the same time the total mucosal antibody sIgA and specific mucosal antibody sIgA were significantly increased after oral immunization. The results demonstrated that oral immunization recombinant Bacillus subtilis not only have the abilities of induce humoral and cellular responses, but also have the abilities of induce mucosal immunity responses significantly, especially 1A751/CTB-VP1/ 2A-CTEAs (serotype Asia 1) and 1A751/CTB-VP1/2A- Epi (serotype O).
     As the widely use of antibiotics, the bacteria carriers such as Bacillus subtilis has been extremely limited. So in this research Saccharomyces cerevisiae which is not sensitive to antibiotics have been used for live bacteria vaccine. The recombinant plasmids (pYES2/CT-P1/ 2A-CTEAs, pYES2/CT-P1/2A-CTEO, pYES2/CT-CTEAs and pYES2/CT-CTEO) containing FMDV capsid protein P1-2A and multi-epitopes was constructed based on pYES2/CT, an expression vector of Saccharomyces cerevisiae and transformed into Saccharomyces cerevisiae INVSc 1. The target protein was expressed in the recombinant Saccharomyces cerevisiae (INVSc1/P1/2A-CTEAs, INVSc1/P1/2A-CTEO, INVSc1/CTEAs and INVSc1/CTEO), and the interest protein accounted for about 14%, 12%, 8% and 10% of the total soluble protein. The immune effectiveness of recombinant Saccharomyces cerevisiae were evaluated in mice after oral immunization (108/each). Recombinant Saccharomyces cerevisiae INVSc1/P1/2A- CTEAs, INVSc1/P1/2A-CTEO, INVSc1/CTEAs and INVSc1/CTEO have the abilities to stimulate specific serum antibody and inducing lymphocyte proliferation and secretory of IFN-γ. At the same time the total mucosal antibody sIgA and specific mucosal antibody sIgA were significantly increased after oral immunization. The results demonstrated that oral immunization of recombinant Saccharomyces cerevisiae not only have the abilities of induce humoral and cellular responses, but also have the abilities of induce mucosal immunity responses significantly, especially INVSc1/P1/ 2A-CTEAs (serotype Asia 1) and INVSc1/P1/2A-CTEO (serotype O).
     According to the immunization strategy of prime-boost, the effects of combined immunization were evaluated. The strategy of prime with DNA vaccine, pVAX-P1-2A-3C (serotype Asia 1) and pIRES3CP1 (serotype O), and boost with recombinant fowlpox virus, vUTAL-P1-2A-3C (serotype Asia 1) and vUTAL3CP1(serotype O)has been choosed, and oral live bacterial vaccines recombinant Bacillus subtilis 1A751/CTB-VP1/2A-CTEAs (serotype Asia 1)1A751/CTB-VP1/2A-Epi (serotype O) or recombinant Saccharomyces cerevisiae INVSc1/P1 /2A-CTEAs (serotype Asia 1) and INVSc1/ P1/2A-CTEO (serotype O) or mixture with both after each immunization. The result show that specific serum antibody, lymphocyte proliferation, IFN-γsecretory, total mucosal antibody sIgA and specific mucosal antibody sIgA of oral groups were significantly higher than the group of non-oral immunization groups. The results demonstrated that oral immunization live bacterial vaccines have the abilities to increase the effects of combined immunization which used immunization strategy of prime-boost, especially the mixture of recombinant Bacillus subtilis and recombinant Saccharomyces cerevisiae.
引文
[1] ALEXANDERSEN S, KITCHING, R.P., MANSLEY, L.M. Foot-and-mouth disease: host range and pathogenesis[J]. Curr Top Microbiol Immunol. 2005, 288: 9-42.
    [2] WRIGHT WC. Hieronymi Fracastorii De Contagione et Contagiosis Morbis etEorum Curatione[M]. Putnams sons, New York and London, 1930.
    [3] THALMANN G, NOCKLER, A. Occurrence of foot and mouth disease-a historical survey[J]. Dtsch Tierarztl Wochenschr, 2001, 108 :484-494.
    [4] O’ROURKE KH, WILLIAMSON, J.G. From Malthus to Ohlin: Trade, Growth and Distribution Since 1500[J]. Centre for Economic Policy Research. 2002, London: 36.
    [5] ROTT R, SIDDELL, S. One hundred years of animal virology[J]. J Gen Virol, 1998, 79 (11): 2871-2874.
    [6] LOEFFLER F FP. Summarischer Berichtber die Ergebnisse der Untersuchungen zur Erforschung der Maul und Klauenseuche[M]. Centralbl Bakteriol, 1897.
    [7] WALDMANN O PJ. Die kuenstliche Uebertragung der Maul-und Klauenseuche auf das Meerschweinchen[M]. Berl Tierarztl Wochenschr, 1920.
    [8] WALDMANN D KK, , PYL G. Die aktive Immunisierung des Rindes gegen Maul-und Klausenseuche[M]. Zentralbl Bakteriol, 1937.
    [9] GLOSTER J, FRESHWATER, A., SELLERS, R.F., ALEXANDERSEN, S. Re-assessing the likelihood of airborne spread of foot-and-mouth disease at the start of the 1967- 1968 UK foot-and-mouth disease epidemic[J]. Epidemiol Infect, 2005, 133: 767-783.
    [10] CHRISTENSEN LS, NORMANN, P., THYKIER-NIELSEN, S. Analysis of the epidemiological dynamics during the 1982-1983 epidemic of foot-and-mouth disease in Denmark based on molecular high-resolution strain identification[J]. J Gen Virol, 2005., 86: 2577-2584.
    [11] NUNEZ JI, FUSI, P., BORREGO, B. Genomic and antigenic characterization of viruses from the 1993 Italian foot-and-mouth disease outbreak[J]. Arch Virol, 2006, 151: 127-142.
    [12] KNOWLES NJ, SAMUEL, A.R., DAVIES, P.R., Pandemic strain of foot-and-mouth disease virus serotype O[J]. Emerg Infect Dis, 2005, 11: 1887-1893.
    [13] HORSINGTON J, ZHANG, Z., . Analysis of foot-and-mouth disease virus replication using strand-specific quantitative RT-PCR[J]. J Virol Methods 2007, 144: 149-155.
    [14] KNOWLES NJ, SAMUEL, A.R. Molecular epidemiology of foot-and-mouth disease virus[J]. Virus Res 2003, 91: 65-80.
    [15] KITCHING RP. Global epidemiology and prospects for control of foot-andmouth disease.[J]. Curr Top Microbiol Immunol, 2005., 288: 133-148.
    [16] BITTLE JL, HOUGHTEN RA, ALEXANDER H, et al. Protection against foot-and-mouth disease by immunization with chemically synthesized peptide predicted from the viral nucleotide sequence[J]. Nature, 1982, 198 (5869): 30-33.
    [17] ALEXANDERSEN S, QUAN, M., MURPHY, C., KNIGHT, J. Studies of quantitative parameters of virus excretion and transmission in pigs and cattle experimentally infected with foot-and-mouth disease virus[J]. J Comp Pathol, 2003b, 129: 268-282.
    [18] MONAGHAN P, GOLD, S., SIMPSON, J., ZHANG, Z., WEINREB, P.H. The alpha(v)beta6 integrin receptor for Foot-andmouth disease virus is expressed constitutively on the epithelial cells targeted in cattle.[J]. J Gen Virol, 2005, 86: 2769-2780.
    [19] GULBAHAR MY, DAVIS, W.C., GUVENC, T., YARIM, M. Myocarditis associated with foot-and-mouth disease virus type O in lambs[J]. Vet Pathol 2007, 44: 589-599.
    [20] KITCHING RP. Clinical variation in foot and mouth disease: cattle.[J]. Rev Sci Tech, 2002, 21: 499-504.
    [21] KITCHING RP, ALEXANDERSEN, S. Clinical variation in foot and mouth disease: pigs[J]. Rev Sci Tech, 2002, 21: 513-518.
    [22] ALEXANDERSEN S, MOWAT, N. Foot-and-mouth disease: host range and pathogenesis.[J]. Curr Top Microbiol Immunol, 2005, 288: 9-42.
    [23] SUTMOLLER P, CASAS, O.R. Unapparent foot and mouth disease infection (subclinical infections and carriers): implications for control.[J]. Rev Sci Tech, 2002, 21: 519-529.
    [24] SUTMOLLER P, MCVICAR, J.W., COTTRAL, G.E. The epizootiological importance of foot-and-mouth disease carriers.I. Experimentally produced foot-and-mouth disease carriers in susceptible and immune cattle[J]. Arch Gesamte Virusforsch, 1968, 23: 227-235.
    [25] SALT JS. The carrier state in foot and mouth disease-an immunological review[J]. Br Vet J, 1993, 149: 207-223.
    [26] ALEXANDERSEN S, ZHANG, Z., DONALDSON, A.I. Aspects of the persistence of foot-and-mouth disease virus in animals-the carrier problem.[J]. Microbes Infect, 2002, 4: 1099-1110.
    [27] BASTOS AD, BOSHOFF, C.I., KEET, D.F. Natural transmission of foot-and-mouth disease virus between African buffalo (Syncerus caffer) and impala (Aepyceros melampus) in the Kruger National Park, South Africa.[J]. Epidemiol Infect 2000, 124: 591-598.
    [28] DAWE PS, FLANAGAN, F.O., MADEKUROZWA, R.L., SORENSEN, K.J. Natural transmission of foot-and-mouth disease virus from African buffalo (Syncerus caffer) to cattle in a wildlife area of Zimbabwe.[J]. Vet Rec, 1994., 134: 230-232.
    [29] GIBBENS JC, SHARPE, C.E., WILESMITH, J.W., MANSLEY, L.M. Descriptive epidemiology of the 2001 foot-and-mouth disease epidemic in Great Brita: the first five months[J]. Vet Rec, 2001, 149,: 729-743.
    [30] HOLZHAUER M, VERHOEFF, J., VAN WUIJCKHUISE, L.A. The clinical symptoms of foot and mouth disease in the first confirmed cases at five different farms in the Netherlands.[J]. Tijdschr Diergeneeskd, 2001, 126,: 282-285.
    [31] BOUMA A, DEKKER, A. Foot and mouth disease in (meat)calves: clinical signs and viral shedding. [J]. Tijdschr Diergeneeskd, 2002, 127: 83-84.
    [32] SA-CARVALHO D, RIEDER, E., BAXT, B. Tissue culture adaptation of foot-and- mouth disease virus selects viruses that bind to heparin and are attenuated in cattle.[J]. J Virol, 1997, 71: 5115-5123.
    [33] HUTBER AM, KITCHING, R.P., CONWAY, D.A. Predicting the level of herd infection for outbreaks of foot-and-mouth disease in vaccinated herds.[J]. Epidemiol Infect 1999, 122: 539-544.
    [34] YADIN H, BRENNER, J., CHAI, D., OVED, Z., HADANY, Y. The NSP immune response of vaccinated animals after in-field exposure to FMDV[J]. Vaccine, 2007, 25 (49): 8298-8305.
    [35] DONALDSON AI. Risks of spreading foot and mouth disease through milk and dairy products[J]. Rev Sci Tech, 1997, 16: 117-124.
    [36] WIJNKER JJ, HAAS, B., BERENDS, B.R. Removal of foot-and-mouth disease virus infectivity in salted natural casings by minor adaptation of standardized industrial procedures.[J]. Int J Food Microbiol, 2007, 115: 214-219.
    [37] ALEXANDERSEN S, KITCHING, R.P., MANSLEY, L.M., DONALDSON, A. Clinical and laboratory investigations of five outbreaks of foot-and-mouth disease during the 2001 epidemic in the United Kingdom.[J]. Vet Rec, 2003a, 152: 489-496.
    [38] GRUBMAN MJ, BAXT, B. Foot-and-mouth disease.[J]. Clin Microbiol Rev 2004, 17: 465-493.
    [39] ALEXANDERSEN S, BROTHERHOOD, I., DONALDSON, A.I. Natural aerosol transmission of foot-and-mouth disease virus to pigs: minimal infectious dose for strain O1 Lausanne[J]. Epidemiol Infect, 2002a., 128: 301-312.
    [40] ALEXANDERSEN S, DONALDSON, A.I. Further studies to quantify the dose of natural aerosols of foot-and-mouth disease virus for pigs[J]. Epidemiol Infect, 2002, 128: 313-323.
    [41] HARTNETT E, ADKIN, A., SEAMAN, M., COOPER, J., WATSON, E. A quantitative assessment of the risks from illegally imported meat contaminated with foot and mouth disease virus to Great Britain.[J]. Risk Anal 2007, 27,: 187-202.
    [42] MASON PW, GRUBMAN, M.J., BAXT, B. Molecular basis of pathogenesis of FMDV[J]. Virus Res, 2003, 91: 9-32.
    [43] CHENG IC, LIANG, S.M., TU, W.J. Study on the porcinophilic foot-and-mouth disease virus I. production and characterization of monoclonal antibodies against VP1[J]. J Vet Med Sci, 2006, 68: 859-864.
    [44] KNOWLES NJ, SAMUEL, A.R., DAVIES, P.R. Pandemic strain of foot-and-mouth disease virus serotype O[J]. Emerg Infect Dis, 2005., 11: 1887-1893.
    [45] BRONSVOORT BM, RADFORD, A.D., TANYA, V.N. Molecular epidemiology of foot-and-mouth disease viruses in the Adamawa province of Cameroon.[J]. J Clin Microbiol 2004, 42 (42): 2186-2196.
    [46] KLEIN J, PARLAK, U. OZYORUK, F. The molecular epidemiology of foot-and- mouth disease virus serotypes A and O from 1998 to 2004 in Turkey[J]. BMC Vet Res, 2006, 2: 35.
    [47] KONIG GA, PALMA, E.L., MARADEI, E. Molecular epidemiology of foot-and- mouth disease virus types A and O isolated in Argentina during the 2000-2002 epizootic[J]. Vet Microbiol, 2007, 124: 1-15.
    [48] CARRILLO C, TULMAN, E.R., DELHON, G., LU, Z. Comparative genomics of foot- and- mouth disease virus[J]. J Virol, 2005, 79: 6487-6504.
    [49] JACKSON AL, O’NEILL, H., MAREE, F. Mosaic structure of foot-and-mouth disease virus genomes[J]. J Gen Virology, 2007, 88: 487-492.
    [50] CHANG HY, DU, J.Z., CONG, G.Z., SHAO, J.J Genome sequencing and analysis of foot-and-mouth disease virus Asia1/YNBS/58 strain[J]. Bing Du Xue Bao, 2007, 23: 407-411.
    [51] BISWAS S, SANYAL, A., HEMADRI, D., TOSH, C. Sequence analysis of the non-structural 3A and 3C protein-coding regions of foot-and-mouth disease virus serotype Asia1 field isolates from an endemic country[J]. Vet Microbiol, 2006, 116: 187-193.
    [52] MOHAPATRA JK, SANYAL, A., HEMADRI, D. Sequence and phylogenetic analysis of the L and VP1 genes of foot-andmouth disease virus serotype Asia1[J]. Virus Res, 2002, 87: 107-118.
    [53] VALARCHER JF, KNOWLES, N.J., FERRIS, N.P. Recent spread of FMD virus serotype Asia 1[J]. Vet Rec, 2005 (157): 30.
    [54] AIDAROS HA. Regional status and approaches to control and eradication of foot and mouth disease in the Middle East and North Africa[J]. Rev Sci Tech, 2002 (21): 451-458.
    [55] BASTOS AD, HAYDON, D.T., FORSBERG, R. Genetic heterogeneity of SAT-1 type foot-andmouth disease viruses in southern Africa.[J]. Arch Virol, 2001, 146: 1537-1551.
    [56] OWI-O World Animal Health Information Database https://wwwoieint/wahis/ contentphp ?page =home&sslcheck=true, 2008.
    [57] GOODMAN RA, BUEHLER, J.W. Field epidemiology defined Field Epidemiology.[J]. Oxford University Press, 2002: 3-7.
    [58] GIBBENS JC, WILESMITH, J.W. Temporal and geographical distribution of cases of foot-and-mouth disease during the early weeks of the 2001 epidemic in Great Britain[J]. Vet Rec, 2002, 151: 407-412.
    [59] THIERMANN A. OTAHCO. http://wwwoieint/eng/normes/Mcode/en_sommairehtm.
    [60] DEFRA. DEPARTMENT FOR ENVIRONMENT FARA, UK- FOOT AND MOUTH DISEASE. HTTP://WWW.DEFRA.GOV.UK/ANIMALH/DISEASES/FMD/DEFAULT.HTM.
    [61] CHUNG WB, LIAO, P.C., CHEN, S.P., YANG, P.C. Optimization of foot-and-mouth disease vaccination protocols by surveillance of neutralization antibodies[J]. 2002, 20: 2665-2670.
    [62] DEL RIO VILAS VJ, GUITIAN, J ysis of data from the passive surveillance of scrapie in Great Britain between 1993 and 2002[J]. Anal Vet Rec, 2006, 159: 799-804.
    [63] DOMINGO E, ESCARMIS, C., SEVILLA, N. Basic concepts in RNA virus evolution[J]. FASEB J, 1996, 10: 859-864.
    [64] DUARTE EA, NOVELLA, I.S., WEAVER, S.C. RNA virus quasispecies: significance for viral disease and epidemiology[J]. Infect Agents Dis, 1994, 8: 201-214.
    [65] DRAKE JW. Rates of spontaneous mutation among RNA viruses[J]. Proc Natl Acad SciU S A, 1993, 90: 4171-4175.
    [66] BIEBRICHER CK, EIGEN, M. What is a quasispecies? [J]. Curr Top Microbiol Immunol Lett, 2006, 299: 1-31.
    [67] ESCARMIS C, LAZARO, E., MANRUBIA, S.C. Population bottlenecks in quasispecies dynamics[J]. Curr Top Microbiol Immunol, 2006, 299: 141-170.
    [68] SOLE RV, SARDANYES, J., DIEZ, J. Information catastrophe in RNA viruses through replication thresholds[J]. J Theor Biol, 2006, 240: 353-359.
    [69] KNIPE DM, HOWLEY, P.M., GRIFFIN, D. Fields Virology[J]. Lippincott Williams & Wilkins, 2006: 3312.
    [70] HAYDON DT, BASTOS, A.D., AWADALLA, P. Low linkage disequilibrium indicative of recombination in foot-and-mouth disease virus gene sequence alignments.[J]. J Gen Virol 2004, 85: 1095-1100.
    [71] ENAMI M, KOHAMA T, SUGIURA A. A measles virus subgenomic RNA:structure and generation mechanism[J]. Virology, 1989, 171: 427-433.
    [72] JARVIS, T.C., KIRKEGAARD K. Poliovirus RNA recombination: mechanistic studiesin the absence of selection[J]. EMBO J, 1992, 11 (3135-3145).
    [73] KIRKEGAARD K, BALTIMORE D. The mechanism of RNA recombination in poliovirus[J]. Cell, 1986, 47: 433-443.
    [74] KUGE S, KAWAMURA N, NOMOTO A. Genetic variation occurring on the genome of an in vitro insertion mutant of poliovirus type 1[J]. J Virol, 1989, 63: 1069-1075.
    [75] MEIER E, HARMISON GG, KEENE JD, Sites of copy choice replication involved in generation of vesicular stomatitis virus defective-interfering particle RNAs[J]. J Virol, 1984, 51: 515-521.
    [76] CARRILLO C, TULMAN ER, DELHON G. Comparative genomics of foot-and-mouth disease virus[J]. J Virol, 2005, 79: 6487-6504.
    [77] DOMINGO E, ESCARMIS C, BARANOWSKI E. Evolution of foot-and-mouth disease virus.[J]. Virus Res, 2003, 91: 47-63.
    [78] JACKSON AL, O’NEILL H, MAREE F. Mosaic structure of foot-and-mouth disease virus genomes[J]. J Gen Virol Virol, 2007, 88: 487-492.
    [79] KLEIN J, HUSSAIN M, AHMAD M. Genetic characterisation of the recent foot-and-mouth disease virus subtype A/IRN/2005. [J]. Virol J, 2007, 4, : 122.
    [80] LEE KN, OEM JK, PARK JH. Evidence of recombination in a new isolate of foot-andmouth disease virus serotype Asia 1[J]. Virus Res, 2009, 139: 117-121.
    [81] KLEIN J, HUSSAIN M, AHMAD M. Genetic characterisation of the recent foot-and-mouth disease virus subtype A/ IRN/2005[J]. Virol J, 2007, 4: 122.
    [82] HAYDON DT, BASTOS AD, AWADALLA P. Low linkage disequilibrium indicative of recombination in foot-and-mouth disease virus gene sequence alignments[J]. J Gen Virol, 2004, 85: 1095-1100.
    [83] HAYDON DT, WOOLHOUSE ME. Immune avoidance strategies in RNA viruses: fitness continuums arising from trade-offs between immunogenicity and antigenic variability[J]. J Theor Biol, 1998, 193: 601-612.
    [84] TOSH C, SANYAL A, HEMADRI D. Phylogenetic analysis of serotype A foot-and-mouth disease virus isolated in India between 1977 and 2000.[J]. Arch Virol, 2002, 147: 493-513.
    [85] DOMINGO E, GONZALEZ-LOPEZ C, PARIENTE N. Population dynamics of RNA viruses: the essential contribution of mutant spectra[J]. Arch Virol Suppl, 2005, 19: 59-71.
    [86] DOMINGO E, PARIENTE N, AIRAKSINEN A. Foot-and-mouth disease virus evolution: exploring pathways towards virus extinction[J]. Curr Top Microbiol Immunol, 2005, 288: 149-173.
    [87] DOMINGO E. Quasispecies: Concepts and Implications for Virology[J]. Springer, 2006, Berlin.
    [88] DOMINGO E, ESCARMIS C. Quasispecies dynamics and RNA virus extinction[J]. Virus Res, 2005a, 107: 129-139.
    [89] MAO Q, RAY SC, LAEYENDECKER. Human immunodeficiency virus seroconversion and evolution of the hepatitis C virus quasispecies[J]. J Virol, 2001, 75: 3259-3267.
    [90] MIRALLES R, MOYA A, ELENA SF. Effect of population patchiness and migration rates on the adaptation and divergence of vesicular stomatitis virus quasispecies populations[J]. J Gen Virol, 1999, 80 (Pt 8): 2051-2059.
    [91] SITIA G, CELLA D, DE MITRI. Evolution of the E2 region of hepatitis C virus in an infant infected by mother-to-infant transmission[J]. J Med Virol, 2001, 64: 476-481.
    [92] MARTINEZ MA, CARRILLO C, GONZALEZ-CANDELAS F, Fitness alteration of foot-and-mouth disease virus mutants: measurement of adaptability of viral quasispecies.[J]. JVirol, 1991, 65: 3954-3957.
    [93] MARTINEZ MA, DOPAZO J, HERNANDEZ, J. MATEU MG. Evolution of the capsid protein genes of foot-and-mouth disease virus: antigenic variation without accumulation of amino acid substitutions over six decades[J]. J Virol, 1992, 66: 3557-3565.
    [94] MARTINEZ MA, VERDAGUER N, MATEU MG. Evolution subverting essentiality: dispensability of the cell attachment Arg-Gly-Asp motif in multiply passaged foot-and-mouth disease virus[J]. Proc Natl Acad Sci U S A, 1997, 94: 6798-6802.
    [95] VILLAVERDE A, MARTINEZ MA, SOBRINO F. Fixation of mutations at the VP1 gene of foot-and-mouth disease virus. Can quasispecies define a transient molecular clock[J]. Gene, 1991, 103: 147-153.
    [96] MONAGHAN P, GOLD S, SIMPSON J, et al. The alpha (v) beta6 integrin receptor for Foot-andmouth disease virus is expressed constitutively on the epithelial cells targeted in cattle[J]. J Gen Virol 2005, 86: 2769-2780.
    [97] BASTOS AD, HAYDON DT, SANGARE O, et al. The implications of virus diversity within the SAT 2 serotype for control of foot-and-mouth disease in sub-Saharan Africa[J]. J Gen Virol, 2003b, 84: 1595-1606.
    [98] BRONSVOORT BM, RADFORD AD, TANYA VN, et al. Molecular epidemiology of foot-and-mouth disease viruses in the Adamawa province of Cameroon[J]. J Clin Microbiol, 2004, 42: 2186-2196.
    [99] COTTAM EM, HAYDON DT, PATON DJ. Molecular epidemiology of the foot-andmouth disease virus outbreak in the United Kingdom in 2001[J]. J Virol, 2006, 80: 11274-11282.
    [100] MALIRAT V, BARROS JJ, BERGMANN IE, et al. Phylogenetic analysis of foot-and-mouth disease virus type O re-emerging in free areas of South America[J]. Virus Res, 2007, 124: 22-28.
    [101] MARTIN V, PERALES C, ABIA D, et al. Microarraybased identification of antigenic variants of foot-and-mouth disease virus: a bioinformatics quality assessment[J]. BMC genomics, 2006, 7: 117.
    [102] SAHLE M, VENTER EH, DWARKA RM, et al. Molecular epidemiology of serotype O foot-and-mouth disease virus isolated from cattle in Ethiopia between 1979-2001. Onderstepoort [J]. J Vet Res, 2004, 71 (129-138).
    [103] SANGARE O, BASTOS AD, VENTER EH, et al. A first molecular epidemiological study of SAT-2 type foot-and-mouth disease viruses in West Africa[J]. Epidemiol Infect, 2004, 132: 525-532.
    [104] THOMPSON RCA. Molecular Epidemiology of Infectious Diseases[J]. Arnold, 2000, London: p326.
    [105] CHAREONSIRISUTHIGUL T, KALAYANAROOJ S, UBOL S. production, in THP-1 cells.Dengue virus (DENV) antibody-dependent enhancement of infection upregulates the production of antiinflammatory cytokines, but suppresses anti-DENV free radical and pro-inflammatory cytokine[J]. J Gen Virol, 2007, 88: 365-375.
    [106] DE FREITAS RB, DURIGON EL, OLIVEIRA DDE S, et al. The‘‘pressure pan’’evolution of human erythrovirus B19 in the Amazon, Brazil[J]. Virology, 369: 281-287.
    [107] HOLMES EC. Viral evolution in the genomic age[J]. PLoS Biol 5, 2007, e278.
    [108] HOLMES EC, DRUMMOND AJ. The evolutionary genetics of viral emergence[J]. Curr Top Microbiol Immunol, 2007, 315: 51-66.
    [109] PRO MM. Foot & mouth disease (type A) (03)-Jordan, Middle East[J]. Archive Number, 2007, 20070129.0380: 29-21-2007.
    [110] EUFMD. EUFMD-The European Commission for the Control of Foot-and-Mouth Disease[J]. Report of the 37th Session of EUFMD Rome 2007, Ref type:internet communication.
    [111] PATON DJ, DE CLERCQ K, GREINER M, et al. Application of non-structural protein antibody tests in substantiating freedom from foot-and-mouth disease virus infection after emergency vaccination of cattle. Vaccine [J]. 24, 2006: 6503-6512.
    [112] COTTAM EM, WADSWORTH J. Transmission Pathways of Foot-and-Mouth Disease Virus in the United Kingdom in 2007[J]. PLoS Pathog 2008, 4.
    [113]杨永钦,李乐.口蹄疫灭活二联苗免疫研究[J].中国畜禽传染病, 1995, 82 (3): 29-30.
    [114]蒋文俊,李华春,李乐, et al.口蹄疫疫苗研究进展[J].畜牧与兽医, 2004, 36 (5): 22-23.
    [115]王明俊.兽医生物制品学[J].北京, 1997,中国农业出版社.
    [116]程文运,张爱憎,高兰英, et al. O型口蹄疫鸡胚化弱毒乳兔反应苗的研究[J].新疆农业科学, 1997 (3): 134.
    [117]刘晓松.家畜口蹄疫研究概况及防制措施[J].内蒙古畜牧科学, 2000, 21 (1): 46-48.
    [118] ZHAO Q, JUANM, PACHECO, et al. Evaluation of Genetically Engineered Derivatives of a Chinese Strain of Foot - and - Mouth Disease Virus Reveals a Novel Cell - Binding SiteWhich Functions in Cell Culture and in Animals[J]. Journal of Virology, 2003, 77 (5): 3269~3280.
    [119] BEARD C, WARD G, RIEDER E. Development of DNA vaccines for foot-and-mouth disease, evaluation of vaccines encoding replicating and non-replicating nucleic acids in swine[J]. J Biotechnol, 1999, 73 (2~3): 243~249.
    [120]常巧呈,霍晓伟,李太元, et al.口蹄疫病毒多价DNA疫苗的构建及其免疫原性[J].中国生物制品学杂志, 2008, 21 (10): 876-879.
    [121] MINGXIAO M, NINGXI J, HUIJUAN L, et al. Immunogenicity of plasmids encoding P12A and 3C of FMDV and Swine IL-18[J]. Antiviral Research, 2007, 76 (1): 59-67.
    [122]张馨玉,金华利,杨若耶等.壳聚糖对口蹄疫DNA疫苗黏膜免疫的影响[J].中国农业大学学报, 2005, 10 (5): 21-25.
    [123] CHEN W, LIU M, IAO YJ, et al. Adenovirus - Mediated RNA Interference against Foot - and - MouthDisease Virus Infection Both In Vitro and In Vivo[J]. Journal of Virology, 2006, 80 (7): 3559-3566.
    [124] KUPPER H, KELLER W, KURZ C, et al. Cloning of cDNA of major antigen of foot-and-mouth disease virus and expression in E. coli.[J]. Nature, 1981, 289 (4): 555-559.
    [125] KIELD D, YANSURA D, SMALL B, et al. Cloned viral protein vaccine for foot-and-mouth disease :responses in and swine[J]. Science, 1981, 214 (4525): 1125-1129.
    [126]金华利,张富春,单文娟, et al.口蹄疫病毒VP1蛋白在酵母中的表达及免疫原性分析[J].细胞与分子免疫学杂志, 2004, 20 (5): 513-516.
    [127] SONG H, WANG Z. A novel mucosal vaccine against foot-and-mouth disease virus induces protection in mice and swine[J]. Biotechnol lett, 2005, 27 (21): 1669-1674.
    [128] SHI XJ, WANG B, ZHANG C, et al. Expressions of Bovine IFNgamma and foot-and-mouth disease VP1 antigen in P. pastoris and their effects on mouse immune response to FMD antigens[J]. J Vaccine, 2006, 24 (1): 82-89.
    [129] LI J, LIU Y, LIU X, et al. Screening and stability of Madin-Darby bovine kidney cell st rain coexpressing t he capsid precursor protein P1-2A gene and the protease 3C gene offoot2and2mouth disease virus[J]. Wei Sheng Wu Xue Bao, 2008, 48 (11): 1520-1525.
    [130] ROBERTO M, EVA L, MAURICIO G, et al. Thermostable VariantsAre Not Generally Rep resented in Foot - and - Mouth Disease VirusQuasispecies[J]. Journal of GeneralVirology, 2007, 88 (3): 859-864.
    [131]赵凯,陈光辉,张震宇, et al.以免疫球蛋白为载体的抗O型口蹄疫病毒基因工程苗的构建[J].生物工程学报, 2000, 16 (6): 679-683.
    [132] WANG C, CHANG T, WALFIELD A, et al. Effective synthetic peptide vaccine for foot-and-mouth disease in swine[J]. Vaccine, 2002, 20 (19-20): 2603-2610.
    [133] GREENWOOD D, DOYNON K, KALKANIDIS M, et al. Vaccination against foot-and-mouth disease virus using peptides conjugated to nano-beads[J]. Vaccine, 2008, 26 (22): 2706-2713
    [134] KUPRIIANOVA MA, ZHMAK MN, KOROEV DO, et al. Synthetic Peptide Designs Based on Immuno - active Fragments of the VP1 Protein of the Foot - and - Mouth Disease Virus Strain A22[J]. Bioorg Khim, 2000, 26 (12): 926-932.
    [135] PARRY N, SYRED A, ROWLANDS D, et al. A high proportion of antipeptide antibodies recognize foot-and-mouth disease virus particles[J]. Immunology, 1988, 64 (4): 567-572.
    [136] DOEL T, GALE C, DOAMARAL C, et al. Heterotypic protection induced by synthetic peptides corresponding to three serotypes of foot-and-mouth disease virus.[J]. J Virol, , 1990,, 64 (5): 2260-2264.
    [137] ZHANG H, SUN S, GUO Y, et al. Immune response in mice inoculated with plasmid DNAs containing multiple-epitopes of foot-and-mouth disease virus [J]. Vaccine, 2003, 21 (32): 4704-4707.
    [138] WANG F, HE X, JIANG L, et al. Enhanced immunogenicity of microencapsulated multiepitope DNA vaccine encoding T and B cell epitopes of foot-and-mouth disease virus in mice[J]. Vaccine, 2006, 24 (12): 2017-2026.
    [139] ZHANG H, SUN S, AL. E. Optimization strategy for plasmid DNAs containing multiple-epitopes of foot-and-mouth disease virus by cis-expression with IL-2 [J]. Vaccine, 2008, 26 (6): 769-777.
    [140] DU Y, LI Y, AL. E. Enhanced immunogenicity of multiple-epitopes of foot-and-mouth disease virus fused with porcine interferonαin mice and protective efficacy in guinea pigs andswine[J]. J Virol Methods, 2008, 149 (1): 144-152.
    [141] HU SH, XIAO C. Preparation of Extract of Cochinchina Momordica Seeds Containing Tri - terpenoid Saponins[ P ][J]. Chinese patent, 2005, 2005100604341.
    [142] WIGDOROVITZ A, CARRILLO C, DUSSANTOS M, et al. Induction of a protective antibody response to foot-and-mouth disease virus in mice following oral or parenteral immunization with alfalfa transgenic plants expressing the viral structural protein VP1[J]. Virology, 1999, 255 (2): 347-353.
    [143] HE D, QIAN K, SHEN G, et al. Stable expression of foot-and-mouth disease virus protein VP1 fused with cholera toxin B subunit in the potato (Solanum tuberosum)[J]. Colloids Surf B Biointerfaces, 2007, 55 (2): 159-163.
    [144] DUS SM, CARRILLO C, ARDILA F, et al. Development of transgenic alfalfa plants containing the foot and mouth disease virus structural polyprotein gene P1 and its utilization as an expe- rimental immunogen[J]. Vaccine, 2005, 23 (15): 1838-1843.
    [145]潘丽,张永光,王永录, et al.口蹄疫病毒O/China/99株VP1基因植物种子特异性表达载体的构建及农杆菌的导入[J].中国兽医科技, 2005, 35 (6): 413-417.
    [146] JIANG L, LI Q, LI M, et al. Expression of foot-and-mouth disease vaccine in tobacc[J]. Vaccine, 2006, 24 (4): 1-4.
    [147] ZHENG M, JIN N, ZHANG H, et al. Construction and immunogenicity of a recombinant fowlpox virus containing the capsid and 3C protease coding regions of foot-and-mouth disease virus[J]. J Virol Metherds, 2006, 136 (1~2): 230-237.
    [148]金明兰,金宁一,鲁会军, et al.重组口蹄疫鸡痘病毒vUTAL3CP1的构建及其遗传稳定性和免疫原性[J].中国生物制品学杂志, 2008, 21 (5): 360-363.
    [149] MA M, JIN N, SHEN G, et al. Immune responses of swine inoculated with a recombinant fowlpox virus co-expressing P12A and 3C of FMDV and swine IL-18[J]. Veterinary Immunology and Immunopathology, 2008, 121: 1-7.
    [150] DU Y, DAI J, LI Y, et al. Immune responses of recombinant adenovirus co-expressing VP1 of foot-and-mouth disease virus and porcine interferon alpha in mice and guinea pigs.[J]. Vet Immunol Immunopathol, 2008, 124 (3-4): 274-283.
    [151] DU Y, AL. E. Immune responses of two recombinant adenoviruses expressing VP1 antigens of FMDV fused with porcine granulocyte macrophage colony-stimulating factor[J]. Vaccine, 2007, 25 (49): 8209-8219.
    [152] LIU Y, HU R, ZHANG S, et al. Expression of the foot-and-mouth disease virus VP1 protein using a replication-competent recombinant canine adenovirus type 2 elicits a humoral antibody response in a porcine model[J]. Viral Immunol, 2006, 19 (2): 202-209.
    [153]李云岗,田夫林,王会波等.以乳酸杆菌为载体的口蹄疫病毒VP1基因DNA疫苗猪体免疫试验[J].中国兽医科学, 2006, 36 (8): 601-605.
    [154] YUN-GANG L, FU-LIN T, FENG-SHAN G, et al. Immune responses generated by Lactobacillus as a carrier in DNA immunization against foot-and-mouth disease virus[J]. Vaccine, 2007, 25 (5): 902-911.
    [155]刘明秋,牛晓峰,严维耀等.以减毒猪霍乱沙门菌为载体的抗O型口蹄疫病毒重组活菌苗在家兔体内免疫应答的初步研究[J]. Journal of Fudan University (Natural Science), 2005, 44 (4): 484-489.
    [156] GRUBMAN M, BAXT B. Foot-and-mouth disease[J]. Clin Microbiol Rev, 2004, 17 (2): 465-493.
    [157] BROWN F. Review of accidents caused by incomplete inactivation of virus[J]. Dev Biol Stand, 1993, 81: 103-107.
    [158] BECK E, STROHMAIER K. Subtyping of European foot-and-mouth disease virus strains by nucleotide sequence determination[J]. J Virol, 1987, 61 (5): 1621-1629.
    [159] BARDIYA N, BAE JH. Influenza vaccines: recent advances in production technologies [J]. Appl Microbiol Biotechnol, 2005, 67 (3): 299-305.
    [160] BHASIN M, RAGHAVA GPS. Prediction of CTL epitopes using QM, SVM and ANN techniques[J]. Vaccine, 2004, 22: 3195-3201.
    [161] SAHA S, RAGHAVA GPS. BcePred:Prediction of Continuous B-Cell Epitopes in Antigenic Sequences Using Physico-chemical Properties[J]. ICARIS, 2004, 3239: 197-204.
    [162] KOLASKAR A, TONGAONKAR P. A semi-empirical method for prediction of antigenic determinants on protein antigens[J]. FEBS Lett, 1990, 276 (1-2): 172-175.
    [163] KARPLUS P, SCHULZ G. Prediction of chain flexibility in proteins. A tool for the selection of peptide antigens[J]. Naturwissenschaften, 1985, 72: 212-213.
    [164] CHOU P, FASMAN G. Prediction of the secondary structure of protein conformation[J]. New York: Plenum Press, 1990: 549-586.
    [165] GARNIER J, OSGUTHORPE D, ROBSON B. Analysis of the accuracy and implications of simple method for predicting the secondary structure of globular proteins[J]. J MolBiol, 1978, 12: 97-102.
    [166] JAMESON B, WOLF H. The antigenic index: A novel algorithm for prediction antigenic determinants[J]. Comput Appl Biosci, 1988 (4): 181-186.
    [167] EMINI E, HUGHES J, AL. E. Induction of hepatitis A virus-neutralizing antibody by a virus specfic synthetic peptide[J]. J Virol, 1985, 55: 836-839.
    [168] KYTE J, RF D. A simple method for displaying the hydropathic character of a protein[J]. J Mol Biol, 1982, 157: 105-132.
    [169]周光炎.免疫学原理.上海:上海科技出版社2000.
    [170] BRUSIC V, BAJIC VB, PETROVSKY N. Computationalmethods for p rediction of T - cell epitopes: a framework for modeling, and applications[J]. Methods, 2004, 34 (4): 436 - 443.
    [171]高明,王海平,王全立.Ⅱ类抗原提呈的分子机制及分子伴侣Ii研究进展[J].微生物学免疫学进展, , 2004, 32 (4): 70-72.
    [172] FLOWER DR. Towards in silico p rediction of immunogenic epitopes[J]. Trends Immunol, 2003, 24 (12): 667 - 674.
    [173] SCHLESSINGER A, OFRAN Y, YACHDAV G, et al. Epitome: database of structure-inferred antigenic epitopes[J]. Nucleic Acids Res, 2006, 34: 777-780.
    [174] ABBAS A, LICHTMAN A, POBER J. Cellular and Molecular Immunology[J]. WB Saunders Company, 2000, 4: 56-61.
    [175] MORGAND O, MOORE DM. Protection of cattle and swine against foot-and-mouth disease using biosynthetic peptide vaccines[J]. Am J Vet Res, 1990, 51 (1): 40-45.
    [176] ZAMORANO P, WIGDOROVITZ A, PEREZ-FILGUEIR A, et al. A 10-amino-acid linear sequence of VP1 of foot-and-mouth disease virus containing B-and-T-cell epitopes induces protection in mice[J]. Virology, 1995, 212 (2): 614-621.
    [177] WU LG, JIANG LB, ZHOU ZA, et al. Expression of foot-and-mouth disease virus epitopes in tobacco by a tobacco mosaic virus-based vector[J]. Vaccine, 2003, 21 (27/30): 4390-4398.
    [178] WANG JL, LIU M Q, HAN J, et al. A peptide of foot-and-mouth disease virus serotype AsiaⅠgenerating a neutralizing antibody response, and an immuno-stimulatory peptide[J]. Vet Microbiol, 2007, 125 (3/4): 224-231.
    [179]毕英佐.口蹄疫[J].广东科技出版社, 2005: 22-25.
    [180] MARQUARDT O, RAHMAN MM, FREIBERG B. Genetic and antigenic variance ofFoot-and-mouth disease virus type Asia-1[J]. Arch Virol, 2000, 145: 149-157.
    [181] BUTCHAIAH G, MORGAN DO. Neutralization antigenic sites on type Asia-1 Foot-and-mouth disease virus defined by monoclonal antibody resistant variants[J]. Virus Res, 1997, 52 (2): 183-194.
    [182] WANG JL, LIU MQ, HAN J, E, et al. A peptide of foot-and-mouth disease virus serotype AsiaⅠgenerating a neutralizingantibody response,and an immuno-stimulatory peptide[J]. Vet Microbiol, 2007, 125 (3/4): 224-231.
    [183]南文龙,金宁一,鲁会军等.人-禽双价流感新型DNA疫苗构建及免疫保护实验研究[J].中国科学C辑生命科学, 2009, 39 (6): 534-541.
    [184]张立树,金宁一,宋英今等. HIV-1复合多表位-p24嵌合基因重组鸡痘病毒疫苗的构建及小鼠免疫原性[J].中国科学C辑生命科学, 2007, 37 (1): 65-72.
    [185]高军,龚育平,赵平等.丙型肝炎病毒多表位抗原基因的构建与免疫原性研究[J].中国科学C辑生命科学, 2006, 36 (4): 346-354.
    [186] ROB HM, LANGEVELD PM, WIM MM, et al. Synthetic Peptide Viccines: Unexpected Fullfillment of Discarded Hope[J]. Biologicals, 2001, 29 (324): 233-236.
    [187]赵金华,黄路,陈文昭, et al.尤文肉瘤EWS-FLI1蛋白HLA-A2.1限制性CTL表位的预测、筛选及鉴定[J].免疫学杂志, 2010, 26 (1): 10-15.
    [188]彭金美,童光志,王云峰, et al.抗禽流感病毒多表位DNA疫苗的构建及其免疫效力研究[J].生物工程学报, 2003, 19 (5): 623 - 627.
    [189]张伯伟,赵磊,郭如华, et al. DNA基因芯片在中华骨髓库HLA组织配型检测中的应用价值[J].中国卫生工程学, 2006, 5 (4): 231-232.
    [190] THEOBALD M, RUPPERT T, KUCKELKORN U, et al. The sequence alteration associated with a mutational hotspot in p53 protects cells from lysis by cytotoxic T lymphocytes specific for a flanking peptide epitope[J]. Exp Med, , 1998,, 188: 1017-1028.
    [191] HOLZHUTTER H, FROMMEL C, KLOETZEL P. A theoretical approach towards the identification of cleavage-determining amino acid motifs of the 20S proteasome[J]. MolBiol, 1999, 286: 1251-1265.
    [192] BEEKMAN N, VEELEN P, HALL T, et al. Abrogation of CTL epitope processing by single amino acid substitution flanking the C-terminal proteasome cleavage site[J]. Immunol, , 2000, 164 (1898-1905).
    [193] LIVINGSTON B, NEWMAN M, CRIMI C, et al. Optimization of epitope processingenhances immunogenicity of multiepitope DNA vaccines[J]. Vaccine, 2001, 19 (4652-4660).
    [194] TIAN H, XIAO Y, ZHU M, et al. HIV epitope-peptides in aluminum adjuvant induced high levels of epitope-specific antibodies [J]. Int Immunopharmacol, 2001, 1: 763-768.
    [195] TOES R, HOEBEN R, VOORT E, et al. Protective anti-tumor immunity induced by vaccination with recombinant adenoviruses encoding multiple tumor-associated cytotoxic T lymphocyte epitopes in a string-of-beads fashion[J]. Proc Natl Acad Sci USA, 1997, 94: 14660-14665.
    [196] VELDERS M, WEIJZEN S, EIBEN G, et al. Defined flanking spacers and enhanced proteolysis is essential for eradication of established tumors by an epitope string DNA vaccine[J]. Immunol Lett, 2001, 166: 5366-5373.
    [197] LIVINGSTON B, CRIMI C, NEWMAN M, et al. A rational strategy to design multiepitope immunogens based on multiple th lymphocyte epitopes[J]. Immunol Lett, 2002, 168: 5499-5550.
    [198] THEISEN D, BOUCHE FE, KASMI K, et al. Differential antigenicity of recombinant polyepitope-antigens based on loop-and helix-forming B and T cell epitopes[J]. J Immunol Methods, 2000, 242: 145-157.
    [199] LIVINGSTON B, CRIMI C, NEWMAN M, et al. A rational strategy to design multiepitope immunogens-based multiple HTL epitopes[J]. J Immunol, 2002, 168 (11): 5499-5506.
    [200] YANO A, ONOMKA A, ASAHI-OZAKI Y, et al. An ingenious design for peptide vaccines[J]. Vaccine, 2005, 23 (17218): 2322-2326.
    [201] ROMANOS MA, CLARE CA, CLARE JJ. Foreign gene expression in yeast: a review. Yeast[J]. 1992, 8 (2): 423 - 488.
    [202] CREGG JM, CEREGHINO JL, SH IJ, et al. Recombinant protein expression in Pichia pastoris[J]. Mol Biotechnol, 2000, 16 (1): 23-52.
    [203] JOSEPH S, DAVID W. Molecular Cloning:A Laboratory Manual[J]. Cold Spring Harbor Laboratory Press, 2001: 32-50.
    [204]卢鑫,张会彦,亢春雨, et al.马克思克鲁维酵母DNA提取方法的比较[J].食品科技, 2009, 34 (4): 31-03.
    [205] ANJALI A-D, SANDEEP S, GOUTAM M, et al. Over expression and analysis of O-glycosylated recombinant human granulocyte colony stimulating factor in Pichia pastoris usingAgilent 2100 Bioanalyzer[J]. Journal of Biotechnology, 2009, 143: 44-50.
    [206] ZHIGUO L, ALLISON, MOY, KIRTI, SOHAL ET AL. Expression and characterization of recombinant human secretory leukocyte protease inhibitor (SLPI) protein from Pichia pastoris[J]. Protein Expression and Purification, 2009, 67: 175-181.
    [207] YONG L, XIANGPING K, AIMIN X, et al. Expression, purification, and functional characterization of recombinant human interleukin-7[J]. Protein Expression and Purification, 2009, 63: 1-4.
    [208] HONGBO, LI D, WANG A, et al. High level expression and purification of active recombinant human interleukin-8 in Pichia pastoris [J]. Protein Expression and Purification, 2009 (68): 60-64.
    [209] WERTEN MW, VAN DEN BOSCH TJ, WIND RD, et al. High-yield secretion of recombinant gelatins by Pichia pastoris[J]. Yeast, 1999, 15: 1087 - 1096.
    [210] HASSLACHER M, SCHALL M, HAYN M, et al. High-level intracellular expression of hydroxynitrile lyase from the tropical rubber tree Hevea brasiliensis in microbial hosts. Protein Expr Purif[J]. 1997, 11: 61 - 71.
    [211] SONG YL, CHANG HJ, HER CH, et al. Phenoloxidase activity of hemocytes derived from Penaeus monodon and Macrobrachium rosenbergii[J]. J Invertebr Pathol, 1998, 71 (1): 26-33.
    [212] DELPHINE D, PHILIPPE B, DAMARYS L, et al. Penaeidins, a New Family of Antimicrobial Peptides Isolated from the Shrimp Penaeus vannamei (Decapoda) [J]. The American Society for Biochemistry and Molecular BiologyInc, 1997, 272 (45): 28398-28406.
    [213] DONNELLY ML, HUGHES LE, LUKE G. The‘cleavage’activities of foot- and- mouth disease virus 2A site-directed mutants and naturally occurring‘2A-like’sequences[J]. J Gen Virol, 2001, 82: 1027-1041.
    [214]金华利,张富春,单文娟.口蹄疫病毒VP1蛋白在酵母中的表达及免疫原性分析[J].细胞与分子免疫学杂志, 2004 (5): 513-516.
    [215]庄娟,尤永进,陈波, et al.口蹄疫病毒VP1 T、B细胞表位与大肠杆菌肠毒素融合蛋白的免疫保护性研究[J].畜牧兽医学报, 2009, 40 (3): 388-393.
    [216] CHAN E, WONG H, CHENG S, et al. An immunoglobulin G based chimeric protein induced foot-and-mouth disease specific immune response in swine[J]. Vaccine, 2001, 19 (4-5): 538-546.
    [217] NIPA D, PERAYOT P, GAHN P, et al. Impairment by mucosal adjuvants and cross-reactibity with variant peptides of the mucosal immunity induced by injectiong of the fusion peptide padre-eldkwa[J]. Clin Diagn Lab Immunol, 2003, 10 (6): 1103-1108.
    [218] FRANZUSOFF A, DUKE R, KING T, et al. Yeasts encoding tumour antigens in cancer immunotherapy[J]. Expert Opin, 2005, 5 (4): 565-575.
    [219] STUBBS A, WILSON C. Recombinant yeast as a vaccine vector for the induction of cytotoxic T-lymphocyte responses[J]. Curr Opin Mol Ther, 2002, 4 (1): 35-40.
    [220] HONG HA, DUC LH, CUTTING SM. The use of bacterial spore formers as probiotics [J]. FEMS Microbiology Review, 2005, 29: 813-835.
    [221]沈卫锋,牛宝龙,翁宏飚等.枯草芽孢杆菌作为外源基因表达系统的研究进展[J].浙江农业学报, 2005, 17 (4): 234-238.
    [222]李明,双宝,李海涛.枯草芽孢杆菌的研究与应用[J].东北农业大学学报, 2009, 40 (9): 111-114.
    [223]陈晓月,金宁一,海洋等.绿色荧光蛋白基因在枯草芽孢杆菌中的表达[J].中国生物制品学杂志, 2OO8, 2l (2): 115-118.
    [224]彭清忠,张惟材,朱厚础.枯草杆菌表达系统的研究进展[J].生物技术通讯, 2001, 12 (3 ): 220-225.
    [225] SARVAS M. Gene expression in recombinant Bacillus[J]. Bioprocess Technol, 1995, 22: 53-120.
    [226]何召明,张义正,王海燕.短小芽孢杆菌碱性蛋白酶基因在枯草芽孢杆菌WB600中的表达[J].四川大学学报(自然科学版), 2009, 46 (4): 1141-1146.
    [227]陈晓月,金宁一,邹伟等.β-半乳糖苷酶在枯草芽孢杆菌中的分泌表达[J].中国生物工程杂志, 2008, 28 (5): 111-115.
    [228]王世若,王兴龙.现代动物免疫学(第二版)[J].吉林科学技术出版社, 2001: 260-268.
    [229]谢庆阁.口蹄疫[J].中国农业出版社, 2004: 125-143.
    [230] ERIKSSON K, HOLMGREN J. Recent advances in mucosal vaccines and adjuvants[J]. Curr Opin Immunol, 2002, 14 (5): 666-672.
    [231] FISCHER D, ROOD D, BARRETTE RW, et al. Intranasal immunization of guinea pigs with an immunodominant foot-and-mouth disease virus peptide conjugate induces mucosal and humoral antibodies and protection against challenge[J]. J Virol, 2003, 77 (13): 7486-7491.
    [232]李润成,余兴龙,白霞, et al. O型口蹄疫病毒VP1基因与大肠杆菌不耐热肠毒素LTB基因的融合表达及表达产物的免疫原性分析[J].生物工程学报, 2009, 25 (4): 560-565.
    [233]潘康成,古丛伟,吴敏峰, et al.饲用芽孢杆菌作用机理研究新进展[J].饲料与畜牧:新饲料, 2009, 12: 9-23.
    [234] HOOPER LN, WONG MH, THELIN A, et al. Molecular analysis of commensal host-microbial relationships in the intestine[J]. Science, 2001, 291: 881-884.
    [235] KIM S, YANG SJ, KOO HC, et al. Inhibitory activity of bifidobacterium longum HY 8001 against bera cytotoxin of Escherichia coli O157:H7[J]. J Foot Prot, 2001, 64 (11): 1667-1673.
    [236] MACFARLANE G, CUMMINGS JH. Probiotics, infection and immunity[J]. Curr Opin Infect Dis, 2002, 15 (5): 501-506.
    [237] ALEX Y, LIM T, HAI-MENG T. Inhibition of Clostridium perfringens by a Novel Strain of Bacillus subtilis Isolated from the Gastrointestinal Tracts of Healthy Chickens [J]. American Society for Microbiology, 2005, 71 ( 8): 4185-4190.
    [238] SCHIERACK P, WIELER L, TARAS D. Bacillus cereus var. toyoi enhanced systemic immune response in piglets[J]. Veterinary Immunology and Immunopathology 2007 118 (1-2): 1-11.
    [239]邓丽,芮汉明.益生菌的研究进展[J].广州食品工业科技, 2003, 19 (增刊): 84-87.
    [240]刘静,刘聚祥.酵母菌的营养特性及在畜牧业中的应用[J].动物医学进展, 2007, 28 (5): 98-100.
    [241] SZOSTAK JW, ORR-WEAVER TL, ROTHSTEIN RJ, et al. The double strand break repair model for recombination[J]. Ce11, 1983, 33: 25-35.
    [242] HOLMES A, HABER, J E. . Double-strand break repair in yeast requires both leading andlagging strand DNA polymerises[J]. Cell, 1999, 96: 415-424.
    [243] PAQUES F, LEUNG WY, HABER JE. Expansions and contractions in a tandem repeat induced by double-strand break repair[J]. Mol Cell Biol, 1998, 18: 2045-2054.
    [244] ROTHSTEIN RJ. One-step gene disruption in yeast[J]. Methods Enzymol, 1983, 101: 202-211.
    [245] JAYRAM M, LI Y, BROACH JR. the yeast plasmid 2μencodes cornponents required for its high copy propagation [J]. ce11, 1983, 34: 95-104.
    [246]吴丽娟,蒋建新,朱佩芳, et al.酵母表达系统及其应用研究[J].命的化学, 200323 (1): 46-49.
    [247] FREDERICK M, AUSUBEL, AL E. Short protocols in molecular biology USA:[J]. John Wiley and Sons, 1995: 495-507.
    [248] LOPES T, HAKKAART G, KOERT BL, et al. Mechanism of high-copy-number integration of pMIRY-type vectors into the ribosomal DNA of Saccharomyces cerevisiae [J]. Gene, 1991, 105 (1): 83-90.
    [249] BL HAUT H, MASSOT J, ELMER GW, et al. Disposition kinetics of Saccharomyces boulardii in man and rat [J]. Biopharm Drug Disp, 1989, 10: 353-364.
    [250]王学东,呙于明.活性干酵母对生产母猪生产性能的影响[J].中国饲料, 2006, 17: 17-19.
    [251] WILLIAMS PEV, TAIT CAG, INNE SGM, et al. Effect s of t he inclusion of yeast culture ( S accharomyces cerevisiae plus growt hmedium) in t he diet of dairy cows on milk yield and forage degradation andermentation patterns in t he rumen of steers[J]. JAnim Sci 1991 (3016~3026.).
    [252] EDWARDS IE, MUT SVANGWA TJ, TOPPS HM. The response of imousine f riesian steers fed silage El sheikh and G F M paterson and concent rates to t he addition of supplemental yeast culture ( YeaSacc ) and/ or an antibiotic additive ( Avotan ) [J]. 588, Anim mProd, 1991 (51).
    [253] NEWBALD CJ, MCINTOSH FM, WALLACE RJ. Changes in t he microbial population of a rumen simulating fermenter in response to yeast culture canadian[J]. Journal of Animal Scienc, 1998, 78 (2): :241-244.
    [254] HARRISON GA, HEMKEN RW, DAWSON KA, et al. Influence of addition of yeast culture supplement to diet s of locating cows on ruminal fermentation and microbial population[J]. Dairy Sci 1998, 71: 967-975.
    [255] AMIR Q, SAMER, A, S MW. Infect Immun of . Boulardii stimulates intestinal immunoglobulin A immune response to clost ridium difficile toxin A in mice[J]. Infect Immun, 2001, 69 (4): 2762-2765.
    [256] HOLMGREN J, LYCKE N, CZERKINSKY C. Cholera toxin and Cholera toxin B subunit as oral-mucosal adjuvant and antigen vector systems[J]. Vaccine, 1993, 11 (12): 1197-1184.
    [257] YAMAMOTO M, MCGHEE JR, HAGIWARA YH, et al. Genetically manipulated bacterial toxin as a new generation mucosal adjuvant[J]. Scand J Immunol, 2001, 53 (3): 211-217.
    [258] GEORGE-CHANDY A, ERIKSSON K, LEBENS M, et al. Cholera toxin B subunit as a carrier molecule promotes antigen-presentation and increases CD40 and CD86 expression on antigen- presenting cells[J]. Infect Immun, 2001, 69: 5716-5725.
    [259] SUN J, RAGHAVAN S, SJ LING A, et al. Oral tolerance induction with antigen conjugated to cholera toxin B subunit generates both Foxp3+ CD25+ and Foxp3- CD25- CD4+ regulatory T cells[J]. J Immunol, 2006 (177): 11.
    [260] COCCIA E, REMOLI M, GIACINTO C. Cholera toxin subunit B inhibits IL-12 and IFN-g production and signaling in experimental colitis and Crohn’s disease[J]. Gut, 2005, 54: 1558-1564.
    [261] HUAN Z, CHI C, MIN Z, et al. Enhancement of immunity to an Escherichia coli vaccine in mice orally inoculated with a fusion gene encoding porcine interleukin 4 and 6[J]. Vaccine, 2007, 25 (7094-7101).
    [262] SU CX, DUAN XG, WANG XQ, et al. Heterologous expression of FMDV immunodominant epitopes and HSP70 in P. pastoris and the subsequent immune response in mice[J]. Veterinary Microbiology, 2007, 124: 256-263.
    [263] LUCI C, HERVOUET C, ROUSSEAU D, et al. Dendritic cell-mediated induction of mucosal cytotoxic responses following intravaginal immunization with the nontoxic B subunit of cholera toxin[J]. J Immunol, 2006, 176 (5): 2749-2757.
    [264] ANNE-SOPHIE, BEIGNONA F, BROWNB P, et al. A peptide vaccine administered transcutaneously together with cholera toxin elicits potent neutralizing anti-FMDV antibody responses[J]. Veterinary Immunology and Immunopathology, 2005, 104: 273-280.
    [265] RANASINGHE C, MEDVECZKY J, WOLTRING D, et al. Evaluation of fowlpox- vaccinia virus prime-boost vaccine strategies for high-level mucosal and systemic immunity against HIV-1[J]. Vaccine, 2006, 24 (31-32): 5881-5895.
    [266] MCSHANE H. Prime-boost immunization strategies for infectious diseases[J]. Curr Opin Mol Ther, 2002, 4 (1): 23-27.
    [267] KAUFMANN S. How can immunology con-bute to the control of tuberculosis[J]. Nature(review), 2001, 1 (10): 20-23.
    [268] NEWMAN M. Heterologous prime-boost vaccination strateg for HIV-1; augmenting cellular immune responses[J]. Curr Opin Investig Drugs, 2002, 3 (3): 374-378.
    [269] SCHNEIDER J, GILLBERT S, B1ANCHARD T, et al. Enhanced immunogenieity forCD8 T cell induction and complete protective eficaey of malaria DNA vaccination by boosting with modified vaecini·a virus Ankara[J]. Nat Med, 1998, 4 (4): 397-402.
    [270] FENG C, PAIENDIRA U, DEMANGEL C, et al. Priming by DNA immunization augments protective eficacy of Myeobaeterium borisBacille Caimette-Guerin against mberculosis[J]. Infect Immun, 2001, 69 (6): 4174-4176.
    [271]赵明丽,邢益平,黄祖瑚, et al. DNA疫苗预敏蛋白疫苗增强策略对乙型肝炎病毒表面抗原蛋白免疫应答的影响[J].现代生物医学进展, 2009, 9 (6): 8-11.
    [272] KENT S, ZHAO A, BEST S, et al. Enhanced T-cell immunogenicity and protective eficacy of a human immuned eficiency virus type 1 vaccine re,men consisting of consecutive priming with DNA and boosting with recombinant fowlpox virus[J]. J Viral, 1998, 72 (12): 10180-10188.
    [273]李子健,金宁一,张立树, et al. HIV-2 gp105重组疫苗联合免疫引起小鼠更强的免疫应答[J].吉林大学学报(医学版), 2006, 32 (1): 1-3.
    [274]王立生,潘令嘉.双歧杆菌的全肽聚糖对小鼠腹腔巨噬细胞游离Ca离子水平的影响[J].中华微生态学和免疫学杂志, 2000, 20 (3): 247.
    [275] VINDEROLA G, MATRAC. Milkfermentedb by actobacillush elveacus and its non -bacteiral fractionc onferen hanced protection against salmonella enteritidis serovar typhimurium infection in mice[J]. Immunobiology, 2007, 212 (2): 107-118.
    [276] MEDICI M, VINDEROLA CG, PERDIGON G. Gut mucosal immtmomodulation by probiotic fresh cheese[J]. International Dairy Jounral, 2004, 14 (7): 611-618.
    [277]朱于敏,潘道东,邹思湘, et al.灌喂不同储存期酸奶对主动免疫小鼠免疫功能的影响[J].食品科学, 2005, 26 (4): 229-232.
    [278] SCHAREKL, GUTHJ, REITERK, et al. In influence of a porbiotic enterococcus faecium strain on development of the immune system of sows and piglets[J]. Veterinary Immunology and Immunopathology, 2005, 105: 151-161.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700