用户名: 密码: 验证码:
淡水养殖池塘环境中氨氧化微生物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高密度集约化池塘养殖过程中产生的环境污染逐渐地引起人们的关注。大量饲料氮素残留在池塘水体和沉积物中。在这些残留氮素的生物地球化学循环过程中,氨氧化作用是硝化反应的第一步,也是限速步骤,决定了氮素循环过程的快慢。本课题以氨氧化微生物为主要研究对象,调查了四大家鱼养殖池塘中氨氧化微生物的时空分布规律,研究了空心菜浮床根系氨氧化微生物及其对净化养殖池塘水质的作用,探索了一种基于富集氨氧化微生物的生物悬浮载体池塘水质改良技术,主要研究结果如下:
     1)开发了一种新的沉积物微生物总DNA提取方法,琼脂糖凝胶电泳结果表明,通过此方法所获得的DNA条带整齐,大小在23kb左右。以AOA amoA基因为目的基因,通过qPCR方法对此方法进行了验证,结果表明通过本提取方法所得DNA,无论在得率还是在纯度方面均能达到土壤微生物总DNA提取试剂盒水平。
     2)对湖北省公安县的10口四大家鱼养殖池塘氨氧化微生物时空分布规律进行了周年调查。结果表明养殖水体中氨氧化微生物以AOB为主;AOA amoA基因在检测限以下,可能受到光抑制;未检测到Anammox菌的存在。夏季水体AOB amoA基因浓度显著高于其它季节;其它3个季节,水体中的AOB amoA基因浓度无显著差异。在沉积物中同时存在AOA、AOB和Anammox菌3种氨氧化微生物,并且都表现出季节变化规律。AOA浓度比AOB约高一个数量级,AOB最大浓度出现在秋季和冬季,AOA则出现在冬季。AOB和AOA最低浓度都出现在夏季。Anammox菌最高浓度出现在夏季和秋季,最低浓度则出现在冬季。综合分析推测DO是调控沉积物中3种氨氧化微生物的主要生态因子。
     统计分析表明,夏季沉积物中AOA amoA和Anammox菌16S rRNA基因以及AOB amoA和Anammox菌16SrRNA基因之间都存在显著性正相关关系(r=0.511,p <0.01; r=0.448, p<0.05; Nonparametric Correlations),表明夏季池塘沉积物中AOA和Anammox菌以及AOB和Anammox菌之间可能都存在一定的协同作用。Anammox菌16S rRNA基因浓度在夏季最高,并且和沉积物间隙水硝氮浓度之间存在显著性正相关关系(r=0.520,p<0.01; Nonparametric Correlations),表明夏季池塘沉积物中Anammox对氮素循环可能发挥着重要作用,硝氮是影响Anammox菌浓度的重要生态因子。秋季沉积物中AOB amoA基因浓度最高,并且和间隙水亚硝氮浓度之间存在显著性正相关关系(r=0.705, p<0.01; Nonparametric Correlations),表明秋季池塘沉积物中AOB对于氨氮的氧化可能起主要作用。统计分析表明冬季池塘沉积物中AOA amoA基因和Anammox菌16S rRNA基因之间存在显著性的正相关关系(r=0.794, p<0.01; Nonparametric Correlations),表明冬季池塘沉积物氮素循环过程中AOA和Anammox菌之间可能存在协同作用。
     3)在面积为7000m2的养殖池塘中进行了空心菜浮床净化水质实验,并研究了水体及根系氨氧化微生物的浓度及多样性。覆盖面积7.5%的空心菜浮床能够有效降低水体总氨氮浓度;同时,空心菜浮床通过调节水体pH,能够有效降低水体分子氨浓度:在晴好天气,浮床池塘分子氨浓度显著低于对照塘。空心菜根系上附着的AOBamoA基因浓度达105copy/g-106copy/g,比空心菜根系上的AOA amoA基因浓度高一个数量级左右。此外,结果显示空心菜根系上的AOB全部归属于Nitrosomonas europea lineage类群,水体和沉积物中的AOB虽然也以Nitrosomonas europea lineage类群为主,但还有32.43%的水体AOB和38.46%的沉积物AOB归属在另外两个类群:Nitrosospira ultiformis lineage和Nitrosomonas oligotropha lineage中。空心菜根系上的AOA全部归属在Group1.1b类群中,而沉积物中80%的AOA分布在Group1.1b类群中,另外20%的AOA则属于Group1.1a类群。
     4)研究了悬挂在池塘水体中生物悬浮载体上氨氧化微生物的富集生长状况,并对富集后的载体进行了水质净化效果研究。本研究中选择水族箱中经常用的过滤棉(PFC)作为悬浮载体,悬挂在池塘水体不同水层中,结果显示15d左右PFC上的AOB amoA基因就可达到107copy/cm3水平,然而,养殖水体AOB amoA基因浓度一直保持在10copy/cm3-102copy/cm。室内实验研究表明,富集饱和AOB后的PFC具有较高的氨氮氧化活性,当pH、温度和DO分别为7.0-8.5、28℃和6.0mg/L-7mg/L时,氨氮转化速率达0.035±0.002mg (N) cm-3(PFC) h-1。氨氮转化速率随pH(6.0-6.5;7.0-8.5;9.5-10.0)的升高而升高;氨氮转化速率和温度(14℃,21℃,28℃,35℃)之间具有极显著的正相关关系;DO (1.0mg/L-2.0mg/L;6.0mg/L-7.0mg/L)水平对氨氮转化速率没有显著性影响。PFC作为生物悬浮载体在池塘水质修复方面拥有良好的应用前景。
Environmental pollution resulted from the progress of intensive aquaculture gradually attracted people's great attention. Large numbers of nitrogen coming from the fish feed was remained in the water and sediments in aquaculture ponds. In the biogeochemical cycle of the residual nitrogen, the oxidation of ammonia (NH3) to nitrite (NO2), the first and rate-limiting step of nitrification, determines the speed of whole nitrogen cycling process. In this study, the temporal and spatial distribution of ammonia-oxidizing microorganisms were investigated in the aquaculture pond environment in which grass carp, silver carp, bighead carp and soft-shelled turtle were raised; the ammonia-oxidizing microorganisms on Ipomoea aquatica rhizoplanes and its effect on ammonium concentration in aquaculture water were studied; a water quality improvement technology was explored based on the ammonia-oxidizing microorganisms enrichment in a biological suspended carrier. The main results were as follows:
     1) A new total microbial DNA extraction method from sediments was developed. Results from agarose gel electrophoresis showed that the DNA obtained by this method was a single and bright DNA band in the size of23kb. The extracted DNA was also verified by qPCR with the amoA gene of AOA, and the results showed that it could rival the soil microbial total DNA Extraction Kit both in the yield and purity.
     2) The temporal and spatial distribution of ammonia-oxidizing microorganisms were investigated throughout the year in ten aquaculture ponds in Gong'an, Hubei. The results showed that AOB were the main ammonia-oxidizing microorganisms in water, and significantly higher copy numbers of the AOB amoA gene were observed in summer, while no significant differences were detected among the other three seasons; the concentration of AOA amoA gene was below the minimum level of detection in the freshwater column, and it was deduced that AOA was probably inhibited by light; and Anammox bacteria were not detected in the freshwater column. The AOA, AOB and Anammox bacteria were co-existed in the aquaculture pond sediments, and all of the three kinds of ammonia-oxidizing microorganisms showed typical seasonal patterns throughout the year. The concentration of the AOA amoA gene was higher than that of the AOB amoA gene in sediments by almost one order of magnitude. The maximum density of AOB was observed in autumn and winter, while the maximum density of AOA was observed in winter. The minimum densities of both AOA and AOB occurred in summer. The highest concentration of Anammox bacteria appeared in summer and autumn, while the lowest concentration of Anammox bacteria was observed in winter. DO is suggested to be the key factor determining the typical seasonal dynamics of the three kinds of ammonia-oxidizing microorganisms in sediments based on the comprehensive analysis.
     Anammox bacteria16S rRNA gene copy numbers showed significant positive correlation with both of AOA and AOB amoA gene copy numbers (for AOA, r=0.511,p<0.01; for AOB, r=0.448, p<0.05; Nonparametric Correlations) in sediments in summer, which indicated that a synergistic action may exist between Anammox bacteria and AOA, AOB. The highest concentration of Anammox bacteria16S rRNA gene copy numbers was observed in summer, and was significantly correlated with the NO3--N concentration in the pore water (r=0.520,p<0.01; Nonparametric Correlations), which indicated that the Anammox may play an important role in the nitrogen cycle in sediments, and NO3-is an important ecological factor regulating the Anammox. The highest concentration of AOB amoA gene copy numbers was observed in autumn, and showed significant correlation with the concentration of NO2--N in the pore water (r=0.705,p<0.01; Nonparametric Correlations), which indicated that the AOB may be responsible for the oxidation of NH4+in the pond sediments in autumn. AOA amoA gene copy numbers showed significant correlation with the Anammox bacteria16S rRNA gene (r=0.794,p<0.01; Nonparametric Correlations) in sediments in winter, which indicated that there may exist synergistic action between AOA and Anammox bacteria in winter.
     3) The experiment of improving aquaculture water quality by Ipomoea aquatica floating bed was conducted in the aquaculture pond (7000m2), and the abundance and diversity of the ammonia-oxidizing microorganisms on Ipomoea aquatica rhizoplanes were investigate. Results showed that the7.5%coverage rate of Ipomoea aquatica floating bed could effectively reduce the total ammonia concentration in aquaculture water; and Ipomoea aquatica floating bed could effectively reduce the concentration of unionized ammonia by adjusting the water pH. In sunny days, the concentrations of unionized ammonia in floating bed ponds were significantly lower than that of control ponds. In addition, the concentration of AOB amoA gene copy numbers of Ipomoea aquatica rhizoplanes was up to105copy/g-106copy/g, which was about10times higher than that of AOA. Results also showed that the AOB on Ipomoea aquatica rhizoplanes all belong to Nitrosomonas europea lineage, while part of the AOB in water and sediments (32.43%in water, and38.46%in sediment) belong to the other two taxa: Nitrosospira ultiformis lineage and Nitrosomonas oligotropha lineage. AOA on Ipomoea aquatica rhizoplanes all belong to Group1.1b group, while80%AOA in sediments belong to the Group1.1b, another20%AOA belong to the Group1.1a group.
     4) Polyethylene filter cotton (PFC) was used as a suspended biocarrier for ammonia-oxidizing microorganisms enrichment in aquaculture ponds, and the effects of temperature, pH and dissolved oxygen on the nitrification rate of enriched PFC were evaluated in the lab. The concentration of AOB amoA gene was found up to about107copy/cm3(PFC) after about a15-day incubation, while it was only101copy/cm3-102copy/cm3in the aquaculture water. The nitrification rate of the filter cotton saturated with ammonia-oxidizing bacteria reached0.035±0.002mg (N) cm-3(PFC) h-1measured at pH7.0-8.5,28℃and a dissolved oxygen concentration of6mg/L-7mg/L. The nitrification rate increased with pH (6.0-6.5;7.0-8.5;9.5-10.0), and the nitrification rate showed significant positive correlation with temperature (14℃,21℃,28℃,35℃), while the DO (1.0mg/L-2.0mg/L;6mg/L-7.0mg/L) level showed no significant effect on the nitrification rate. The results suggest that the use of filter cotton as a biological suspended biocarrier in aquaculture ponds is a feasible and cheap method to remove ammonia in situ.
引文
1.高攀,蒋明,赵宇江,吴凡,刘伟,冷向军,文华.主养草鱼池塘水质指标的变化规律和氮磷收支.云南农业大学学报,2009,24(1):71-77
    2.胡雄.鱼-菜混养模式的构建与初步应用研究.[硕士学位论文].武汉:华中农业大学图书馆,2011
    3.黄海平.水蕹菜浮床精养鱼池应用效果研究.[硕士学位论文].武汉:华中农业大学图书馆,2012
    4.贺纪正,高丽梅.氨氧化微生物生态学与氮循环研究进展.生态学报,2009,29(1):406-415
    5.贾仲君,翁佳华,林贤贵,Ralf Conrad.氨氧化古菌的生态学研究进展.微生物学报,2010,50(4):431-437
    6.刘伟.鄂、滇主要淡水湖泊T4类噬菌体g23基因系统发育与时空分布研究.[博士学位论文].武汉:华中农业大学图书馆,2013
    7.李文祥,李为,林明利,王英雄,刘家寿,李钟杰.浮床水蕹菜对养殖水体中营养物的去除效果研究.环境科学学报,2011,31(8):1670-1675
    8.李鑫.苏打盐碱地桑树/大豆间作的土壤微生物多样性研究.[硕士学位论文].哈尔滨:东北林业大学图书馆,2012
    9.宋超,陈家长,戈贤平,吴伟,范立民,孟顺龙,胡庚东.浮床栽培空心菜对罗非鱼养殖池塘水体中氮和磷的控制.中国农学通报,2011,27(23):70-75
    10.唐莹莹,李秀珍,周元清,贾悦,辛在军,孙永光.浮床空心菜对氮循环细菌数量与分布和氮素净化效果的影响.生态学报,2012,32(9):2837-2846
    11. Abraham TJ, Ghosh S, Nagesh TS, Sasmal D. Distribution of bacteria involved in nitrogen and sulphur cycles in shrimp culture systems of West Bengal, India. Aquaculture, 2004,239(1-4):275-288
    12. Ackefors H, Enell M. The release of nutrients and organic matter from aquaculture systems in Nordic countries. JAppl Ichthyol, 1994,10:225-241
    13. Alderson R. The effect of ammonia on the growth of juvenile dover sole, solea solea (L.) and turbot, scophthalmusmaximusf (L.). Aquaclture, 1979,17:291-309
    14. Alonso-Saez L, Waller AS, Mende DR, Bakker K, Farnelid H, Yager PL, Lovejoy C, Tremblay J-E, Potvin M, Heinrich F, Estrada M, Riemann L, Bork P, Pedros-Alio C, Bertilsson S. Role for urea in nitrification by polar marine Archaea. PNAS, 2012, 109(44):17989-17994
    15. Amann RI, Ludwig W, Schleifer KH. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev, 1995,59(1):143-169
    16. Ando Y, Nakagawa T, Takahashi R, Yoshihara K, Tokuyama T. Seasonal Changes in Abundance of Ammonia-Oxidizing Archaea and Ammonia-Oxidizing Bacteria and Their Nitrification in Sand of an Eelgrass Zone. Microbes Environ, 2009,24(1): 21-27
    17. Arnaldos M, Kunkel SA, Stark BC, Pagilla KR. Enhanced heme protein expression by ammonia-oxidizing communities acclimated to low dissolved oxygen conditions. Appl Microbiol Biotechnol, 2013,97(23):10211-10221
    18. Auguet J-C, Nomokonova N, Camarero L, Casamayor EO. Seasonal changes of freshwater ammonia-Oxidizing archaeal assemblages and nitrogen species in oligotrophic Alpine Lakes. Appl Environ Microb, 2011,77(6):1937-1945
    19. Barns SM, Delwiche CF, Palmer JD, Pace NR. Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences. PNAS, 1996, 93(17):9188-9193
    20. Beman JM, Popp BN, Francis CA. Molecular and biogeochemical evidence for ammonia oxidation by marine Crenarchaeota in the Gulf of California. Isme Journal, 2008, 2(4):429-441
    21. Berg P, Klemedtsson L, Rosswall T. Inhibitory effect of low partial pressures of acetylene on nitrification. Soil Biol Biochem, 1982,14:301-303
    22. Bernhard AE, Tucker J, Giblin AE, Stahl DA. Functionally distinct communities of ammonia-oxidizing bacteria along an estuarine salinity gradient. Environ Microb, 2007,9(6):1439-1447
    23. Boer WD, Kowalchuk GA. Nitrification in acid soils: micro-organisms and mechanisms. Soil Biol Biochem,2001,33:853-866
    24. Bollmann A, Bar-Gilissen M-J, Laanbroek HJ. Growth at low ammonium concentrations and starvation response as potential factors involved in niche differentiation among ammonia-oxidizing bacteria. Appl Environ Microb, 2002, 68(10):4751-4757
    25. Bouskill NJ, Eveillard D, Chien D, Jayakumar A, Ward BB. Environmental factors determining ammonia-oxidizing organism distribution and diversity in marine environments. Environ Microbiol, 2012,14(3):714-729
    26. Braid MD, Daniels LM, Kitts CL. Removal of PCR inhibitors from soil DNA by chemical flocculation. JMicrobiol Meth,2003,52: 389-393
    27. Broda E. Two kinds of lithotrophs missing in nature. Z Allg Mikrobiol, 1977,17(6): 491-493
    28. Caffrey JM, Bano N, Kalanetra K, Hollibaugh JT. Ammonia oxidation and ammonia-oxidizing bacteria and archaea from estuaries with differing histories of hypoxia. Isme Journal, 2007,1:660-662
    29. Chang WYB, Ouyang H. Dynamics of dissolved oxygen and vertical circulation in Fish Ponds. Aquaculture,1988,74:263-276
    30. Chen XP, Zhu YG, Xia Y, Shen JP, He JZ. Ammonia-oxidizing archaea: important players in paddy rhizosphere soil? Environ Microbiol, 2008,10(8):1978-1987
    31. Cheng WP, Chi FH, Yu RF. Effect of phosphate on removal of humic substances by aluminum sulfate coagulant. J Colloid Interf Sci, 2004,272(1):153-157
    32. Cho J, Lee D, Cho Y, Cho J, Kim S. Direct extraction of DNA from soil for amplification of 16S rRNA gene sequences by polymerase chain reaction. J Microbiol, 1996,34(3):229-325
    33. Church MJ, Wai B, Karl DM, DeLong EF. Abundances of crenarchaeal amoA genes and transcripts in the Pacific Ocean. Environ Microbiol, 2010,12(3):679-688
    34. Coolen MJL, Abbas B, Bleijswijk Jv, Hopmans EC, Kuypers M M M, Wakeham SG, Damste JSS. Putative ammonia-oxidizing Crenarchaeota in suboxic waters of the Black Sea: a basin-wide ecological study using 16S ribosomal and functional genes and membrane lipids. Environ Microbiol, 2007,9(4):1001-1016
    35. Dale OR, Tobias C, Song B. Biogeographical distribution of diverse anaerobic ammonium oxidizing (ANAMMOX) bacteria in the Cape Fear River estuary. 107th General Meeting of the American-Society-for-Microbiology. 2007, Toronto, CANADA.
    36. Dalsgaard T, Canfield DE, Petersen J, Thamdrup B, Acuna-Gonzalez J. N2 production by the anammox reaction in the anoxic water column of Golfo Dulce, Costa Rica. Nature,2003,422:606-608
    37. Dalsgaard T, Thamdrup B, Canfield DE. Anaerobic ammonium oxidation (anammox) in the marine environment. Res Microbiol, 2005,156(4):457-464
    38. Damste'JSS, Strous M, Rijpstra WIC, Hopmans EC, Geenevasen JAJ, Duin ACTv, Niftrik LAv, Jetten MSM. Linearly concatenated cyclobutane lipids form a dense bacterial membrane. Nature,2002,419: 708-712
    39. Devaraja TN, Yusoff FM, Shariff M. Changes in bacterial populations and shrimp production in ponds treated with commercial microbial products. Aquaculture, 2002, 206(3-4):245-256
    40. Di HJ, Cameron KC, Shen J P, Winefield CS, O'Callaghan M, Bowatte S, He JZ. Ammonia-oxidizing bacteria and archaea grow under contrasting soil nitrogen conditions. Fems Microbiol Ecol, 2010,72(3):386-394
    41. Dodsworth JA, Hungate BA, Hedlund BP. Ammonia oxidation, denitrification and dissimilatory nitrate reduction to ammonium in two US Great Basin hot springs with abundant ammonia-oxidizing archaea. Environ Microbiol, 2011,13(8):2371-2386
    42. Dong D, Yan A, Liu H, Zhang X, Xu Y. Removal of humic substances from soil DNA using aluminium sulfate. JMicrobiol Meth, 2006,66(2):217-222
    43. Ebeling JM, Timmons MB, Bisogni JJ. Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia-nitrogen in aquaculture systems. Aquaculture, 2006,257(1-4):346-358
    44. Emerson K, Russo RC, Lund RE, Thurston RV. Aqueous ammonia equilibrium calculations: effect of pH and temperature. J Fish Res Board Can, 1975,32(12): 2379-2383
    45. Erler D, Songsangjinda P, Keawtawee T, Chaiyakam K. Nitrogen dynamics in the settlement ponds of a small-scale recirculating shrimp farm (Penaeus monodon) in rural Thailand. Aquacult Int, 2007,15(1):55-66
    46. Foss A, Evensen TH, Vollen T, Oiestad V. Effects of chronic ammonia exposure on growth and food conversion efficiency in juvenile spotted wolffish. Aquaculture, 2003,228(1-4):215-224
    47. Foss A, Siikavuopio SI, Saether B-S, Evensen TH. Effect of chronic ammonia exposure on growth in juvenile Atlantic cod. Aquaculture, 2004,237(1-4):179-189
    48. Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakley BB. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. PNAS, 2005,102(41):14683-14688
    49. French E, Kozlowski JA, Mukherjee M, Bullerjahn G, Bollmann A. Ecophysiological characterization of ammonia-oxidizing archaea and bacteria from freshwater. Appl Environ Microbiol, 2012,78(16):5773-5780
    50. Frostegard A, Courtois S, Ramisse V, Clerc S, Bernillon D, Le Gall F, Jeannin P, Nesme X, Simonet P. Quantification of bias related to the extraction of DNA directly from soils. Appl Environ Microb,1999,65(12):5409-5420
    51. Fukushima T, Wu YJ, Whang LM. The influence of salinity and ammonium levels on amoA mRNA expression of ammonia-oxidizing prokaryotes. Water Sci Technol, 2012, 65(12):2228-2235
    52. Geets J, Boon N, Verstraete W. Strategies of aerobic ammonia-oxidizing bacteria for coping with nutrient and oxygen fluctuations. FEMS Microbiol Ecol, 2006,58(1): 1-13
    53. Griffiths RI, Whiteley AS, O'Donnell AG, Bailey MJ. Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Appl Environ Microb, 2000,66(12): 5488-5491
    54. Gross A, Boyd CE, Wood CW. Nitrogen transformations and balance in channel catfish ponds. Aquacult Eng, 2000,24(1):1-14
    55. Gubry-Rangin C, Hai B, Quince C, Engel M, Thomson BC, James P, Schloter M, Griffiths RI, Prosser JI, Nicol GW. Niche specialization of terrestrial archaeal ammonia oxidizers. PNAS, 2011,108(52):21206-21211
    56. Gubry-Rangin C, Nicol GW, Prosser JI. Archaea rather than bacteria control nitrification in two agricultural acidic soils. FEMS Microbiol Ecol, 2010,74(3): 566-574
    57. Guerrero MA, Jones RD. Photoinhibition of marine nitrifying bacteria. I. Wavelength-dependent response. Mar Ecol-Prog Ser, 1996a,141:183-192
    58. Guerrero MA, Jones RD. Photoinhibition of marine nitrifying bacteria. II. Dark recovery after monochromatic or polychromatic irradiation. Mar Ecol-Prog Ser, 1996b,141:183-192
    59. Handelsman J. Metagenomics: Application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev, 2004,68(4):669-685
    60. Handy RD, Poxton MG Nitrogen pollution in mariculture: toxicity and excretion of nitrogenous compounds by marine fish. Rev Fish Biol Fish, 1993,3:205-241
    61. Hao C, Wang H, Liu Q, Li X. Quantification of anaerobic ammonium-oxidizing bacteria in enrichment cultures by quantitative competitive PCR. J Environ Sci-China, 200921(11):1557-1561
    62. Hatzenpichler R, Lebedeva EV, Spieck E, Stoecker K, Richter A, Daims H, Wagner M. A moderately thermophilic ammonia-oxidizing crenarchaeote from a hot spring. PNAS, 2008,105(6):2134-2139
    63. Haywood GP. Ammonia toxicity in teleost fish:a review. Can Tech Rep Fish Aquat Sci, 1983,1177:1-35
    64. He JZ, Shen JP, Zhang LM, Zhu YG, Zheng YM, Xu MG, Di HJ. Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices. Environ Microbiol, 2007,9:3152-3152
    65. Herrmann M, Saunders AM, Schramm A. Archaea dominate the ammonia-oxidizing community in the rhizosphere of the freshwater macrophyte Littorella uniflora. Appl Environ Microb,2008,74(10):3279-3283
    66. Hong Y-G, Li M, Cao H, Gu J-D. Residence of habitat-specific anammox bacteria in the deep-sea subsurface sediments of the South China Sea: analyses of marker gene abundance with physical chemical parameters. Microbial Ecol, 2011,62:36-47
    67. Hooper AB, Terry KRSpecific Inhibitors of ammonia oxidation in nitrosomonas. J Bacteriol, 1973,15(2):80-485
    68. Horz HP, Barbrook A, Field CB, Bohannan BJM. Ammonia-oxidizing bacteria respond to multifactorial global change. PNAS, 2004,1(42):15136-15141
    69. Hu B-l, Shen L-d, Xu X-y, Zheng P. Anaerobic ammonium oxidation (anammox) in different natural ecosystems. Biochem Soc T,2011,39(6):1811-1816
    70. Hu B-l, Zheng P, Tang C-j, Chen J-w, van der Biezen E, Zhang L, Ni B-j, Jetten MSM, Yan J, Yu H-Q, Kartal B. Identification and quantification of anammox bacteria in eight nitrogen removal reactors. Water Res, 2010,44(17):5014-5020
    71. Hu G-J, Zhou M, Hou H-B, Zhu X, Zhang W-H. An ecological floating-bed made from dredged lake sludge for purification of eutrophic water. Ecol Eng, 2010,36(10): 1448-1458
    72. Hugoni M, Etien S, Bourges A, Lepere C, Domaizon I, Mallet C, Bronner G, Debroas D, Mary I. Dynamics of ammonia-oxidizing archaea and bacteria in contrasted freshwater ecosystems. Res Microbiol, 2013,164(4):360-370
    73. Humbert S, Tarnawski S, Fromin N, Mallet M-P, Aragno M, Zopfi J. Molecular detection of anammox bacteria in terrestrial ecosystems: distribution and diversity. Isme Journal,2010,4(3):450-454
    74. Humbert S, Zopfi J, Tarnawski S-E. Abundance of anammox bacteria in different wetland soils. Environ Microbiol Rep, 2012,4(5):484-490
    75. Hyman MR, Arp DJ. 14C2H2-and 14CO2-labeling studies of the de novo synthesis of polypeptides by Nitrosomonas europaea during recovery from acetylene and light inactivation of ammonia monooxygenase. JBiol Chem, 1992,267:1534-1545
    76. Igarashi T, Watanabe Y, Asano T, Tambo N. The moving bed biofilm reactor. Water Environmental Engineering and Reuse of Water. Hokkaido Press, 1999,250-305
    77. Jackson C, Preston N, Thompson PJ, Burford M. Nitrogen budget and effluent nitrogen components at an intensive shrimp farm. Aquaculture, 2003,218(1-4): 397-411
    78. Jensen MM, Lam P, Revsbech NP, Nagel B, Gaye B, Jetten MSM, Kuypers MMM. Intensive nitrogen loss over the Omani Shelf due to anammox coupled with dissimilatory nitrite reduction to ammonium. Isme Journal, 2011,5(10):1660-1670
    79. Jeschke C, Falagan C, Knoeller K, Schultze M, Koschorreck M. No nitrification in lakes below pH 3. Environ Sci Technol, 2013,47(24):14018-14023
    80. Jetten MSM, van Niftrik L, Strous M, Kartal B, Keltjens JT, Op den Camp HJM. Biochemistry and molecular biology of anammox bacteria. Crit Rev Biochem Mol, 2009,44(2-3):65-84
    81. Jiang H, Dong H, Yu B, Lv G, Deng S, Berzins N, Dai M. Diversity and abundance of ammonia-oxidizing archaea and bacteria in Qinghai Lake, northwestern China. Geomicrobiol J, 2009,26(3):199-211
    82. Konneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature, 2005, 437(7058):543-546
    83. Kaggwa RC, van Dam AA, Kipkemboi J, Denny P. Evaluation of nitrogen cycling and fish production in seasonal ponds ('Fingerponds1) in Lake Victoria wetlands, East Africa using a dynamic simulation model. Aquacult Res, 2010,42(1):74-90
    84. Karpiscak MM, Foster KE, Hopf SB, Bancroft JM, Warshall PJ. Using water hyacinth to treat municipal wastewater in the desert southwest. Water Resour Bull, 1994,30(2):219-227
    85. Kartal B, Rattray J, van Niftrik LA, van de Vossenberg J, Schmid MC, Webb RI, Schouten S, Fuerst JA, Damste JSS, Jetten MSM, Straus M. Candidatus "Anammoxoglobus propionicus" a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria. Syst Appl Microbiol, 2007,30(1):39-49
    86. Kartal B, van Niftrik L, Rattray J, de Vossenberg JLCMv, Schmid MC, Damste JSS, Jetten MSM, Strous M. Candidatus' Brocadia fulgida':an autofluorescent anaerobic ammonium oxidizing bacterium. FEMS Microbiol Ecol, 2008 63(1):46-55
    87. Kartal B, van Niftrik L, Sliekers O, Schmid MC, Schmidt I, van de Pas-Schoonen K, Cirpus I, van der Star W, van Loosdrecht M, Abma W, Kuenen JG, Mulder J-W, Jetten MSM, den Camp HO, Strous M, van de Vossenberg J. Application, eco-physiology and biodiversity of anaerobic ammonium-oxidizing bacteria. Rev Environ Sci Biotechnol,2004,3(3):255-264
    88. Khramenkov SV, Kozlov MN, Kevbrina MV, Dorofeev AG, Kazakova EA, Grachev VA, Kuznetsov BB, Polyakov DY, Nikolaev YA. A novel bacterium carrying out anaerobic ammonium oxidation in a reactor for biological treatment of the filtrate of wastewater fermented sludge. Microbiology, bacteria: a model for molecular
    89 Kowalchhuk GA, Stephen JR.Ammonia-oxidizing bacteria: a model foe molecular microbial ecology. Annu rev microbiol, 2001,55:485-529
    90. Krsek M, Wellington EM. Comparison of different methods for the isolation and purification of total community DNA from soil. J Microbiol Meth, 1999,39(1):1-16
    91. Kuypers MMM, Lavik G, Woebken D, Schmid M, Fuchs BM, Amann R, Joergensen BB, Jetten MSM. Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation. PNAS, 2005,102(18):6478-6483
    92. Kuypers MMM, Sliekers AO, Lavik G, Schmid M, Jorgensen BB, Kuenen JG, Damste JSS, Strous M, Jetten MSM. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature,2003,422(6932):608-611
    93. Lam P, Jensen MM, Lavik G, McGinnis DF, Mueller B, Schubert CJ, Amann R, Thamdrup B, Kuypers MMM. Linking crenarchaeal and bacterial nitrification to anammox in the Black Sea. PNAS, 2007,104(17):7104-7109
    94. Lam P, Lavik G, Jensen MM, van de Vossenberg J, Schmid M, Woebken D, Gutierrez D, Amann R, Jetten MSM, Kuypers MMM. Revising the nitrogen cycle in the Peruvian oxygen minimum zone. PNAS, 2009,106(12):4752-4757
    95. Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol GW, Prosser JI, Schuster SC, Schleper C. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature,2006,442:806-809
    96. Lemarie G, Dosdat A, Coves D, Dutto G, Gasset E, Person-Le Ruyet J. Effect of chronic ammonia exposure on growth of European seabass (Dicentrarchus labrax) juveniles. Aquaculture, 2004,229(1-4):479-491
    97. Li H, Chen S, Mu B-Z, Gu J-D. Molecular Detection of Anaerobic Ammonium-Oxidizing (Anammox) Bacteria in high-temperature petroleum Reservoirs. Microbial Ecol, 2010,60(4):771-783
    98. Li M, Cao H, Hong Y-G, Gu J-D. Seasonal Dynamics of Anammox Bacteria in Estuarial Sediment of the Mai Po Nature Reserve Revealed by Analyzing the 16S rRNA and Hydrazine Oxidoreductase (hzo) Genes. Microbes Environ, 2011,26(1): 15-22
    99. Li W, Li Z. In situ nutrient removal from aquaculture wastewater by aquatic vegetable Ipomoea aquatica on floating beds. Water Sci Technol, 2009,59(10): 1937-1943
    100.Li Z, Jin W, Liang Z, Yue Y, Lv J. Abundance and diversity of ammonia-oxidizing archaea in response to various habitats in Pearl River Delta of China, a subtropical maritime zone. J Environ Sci-China, 2013,25(6):1195-1205
    101.Limpiyakorn T, Fuerhacker M, Haberl R, Chodanon T, Srithep P, Sonthiphand P. amoA-encoding archaea in wastewater treatment plants:a review. Appl Microbiol Biotechnol, 2013,97(4):1425-1439
    102.Limpiyakorn T, Sonthiphand P, Rongsayamanont C, Polprasert C. Abundance of amoA genes of ammonia-oxidizing archaea and bacteria in activated sludge of full-scale wastewater treatment plants. Bioresource Technology, 2011,102(4): 3694-3701
    103.Liu C-H, Chen J-C. Effect of ammonia on the immune response of white shrimp Litopenaeus vannamei and its susceptibility to Vibrio alginolyticus. Fish Shellfish Immun,2004,16:321-334
    104.Liu S, Yang F, Gong Z, Meng F, Chen H, Xue Y, Furukawa K. Application of anaerobic ammonium-oxidizing consortium to achieve completely autotrophic ammonium and sulfate removal. Bioresource Technol, 2008,99(15):6817-6825
    105.Lliros M, Gich F, Plasencia A, Auguet J-C, Darchambeau F, Casamayor EO, Descy J-P, Borrego C. Vertical Distribution of Ammonia-Oxidizing Crenarchaeota and Methanogens in the Epipelagic Waters of Lake Kivu (Rwanda-Democratic Republic of the Congo). Appl Environ Microb, 2010,76(20):6853-6863
    106.Lu L, Jia Z. Urease gene-containing Archaea dominate autotrophic ammonia oxidation in two acid soils. Environ Microbiol, 2013,15(6):1795-1809
    107.Martens-Habbena W, Berube PM, Urakawa H, de la Torre JR, Stahl DA. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature, 2009,461(7266):976
    108.Matsutani N, Nakagawa T, Nakamura K, Takahashi R, Yoshihara K, Tokuyama T. Enrichment of a Novel Marine Ammonia-Oxidizing Archaeon Obtained from Sand of an Eelgrass Zone. Microbes Environ, 2011,26(1):23-29
    109.Merbt SN, Auguet J-C, Casamayor EO, Marti E. Biofilm recovery in a wastewater treatment plant-influenced stream and spatial segregation of ammonia-oxidizing microbial populations. Limnol Oceanogr, 2011,56(3):1054-1064
    110.Merbt SN, Stahl DA, Casamayor EO, Marti E, Nicol GW, Prosser JI. Differential photoinhibition of bacterial and archaeal ammonia oxidation. FEMS Microbiol Lett, 2012,327(1):41-46
    111.Miller DN, Bryant JE, Madsen EL, Ghiorse WC. Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples. Appl Environ Microb,1999,65(11):4715-4724
    112.Mincer TJ, Church MJ, Taylor LT, Preston C, Kar DM, DeLong EF. Quantitative distribution of presumptive archaeal and bacterial nitrifiers in Monterey Bay and the North Pacific Subtropical Gyre. Environ Microbiol, 2007,9:1162-1175
    113.Molina V, Belmar L, Ulloa O. High diversity of ammonia-oxidizing archaea in permanent and seasonal oxygen-deficient waters of the eastern South Pacific. Environ Microbiol, 2010,12(9):2450-2465
    114.Moore TA, Xing Y, Lazenby B, Lynch MDJ, Schiff S, Robertson WD, Timlin R, Lanza. S, Ryan MC, Aravena R, Fortin D, Clark ID, Neufeld JD. Prevalence of Anaerobic Ammonium-Oxidizing Bacteria in Contaminated Groundwater. Environ Sci Technol, 2011,45(17):7217-7225
    115.Moorhead KK, Reddy KK Oxygen Transport through Selected Aquatic Macrophytes. J Environ Qual, 1988,17(1):138-142
    116.Mulder A. Anoxic ammonia oxidation. US Patent, 5078884,1992
    117.Mulder A, van de Graaf AA, Robertson LA, Kuenen JG. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol Ecol, 1995,16(3):177-183
    118.Neef A, Amann R, Schlesner H, Schleifer KH. Monitoring a widespread bacterial group: in situ detection of planctomycetes with 16S rRNA-targeted probes. Microbiology, 1998,144:3257-3266
    119.Nhan DK, Verdegem MCJ, Milstein A, Verreth JAV. Water and nutrient budgets of ponds in integrated agriculture-aquaculture systems in the Mekong Delta, Vietnam. Aquacult Res, 2008,39(11):1216-1228
    120.Ni B-J, Hu B-L, Fang F, Xie W-M, Kartal B, Liu X-W, Sheng G-P, Jetten M, Zheng P, Yu H-Q. Microbial and Physicochemical Characteristics of Compact Anaerobic Ammonium-Oxidizing Granules in an Upflow Anaerobic Sludge Blanket Reactor. Appl Environ Microb,2010,76(8):2652-2656
    121.Nicol GW, Leininger S, Schleper C, Prosser JI. The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environ Microbiol, 2008,10(11):2966-2978
    122.Park HD, Wells GF, Bae H, Criddle CS, Francis CA. Occurrence of ammonia-oxidizing archaea in wastewater treatment plant bioreactors. Appl Environ Microb,2006,72(8):5643-5647
    123.Paungfoo C, Prasertsan P, Burrell PC, Intrasungkha N, Blackall LL. Nitrifying bacterial communities in an aquaculture wastewater treatment system using fluorescence in situ hybridization (FISH), 16S rRNA gene cloning, and phylogenetic analysis. Biotechnol Bioeng, 2007,97(4):985-990
    124.Peng X, Jayakumar A, Ward BB. Community composition of ammonia-oxidizing archaea from surface and anoxic depths of oceanic oxygen minimum zones. Front Microbiol, 2013,4(177):1-12
    125.Penton CR, Devol AH, Tiedje JM. Molecular evidence for the broad distribution of anaerobic ammonium-oxidizing bacteria in freshwater and marine sediments. Appl Environ Microb,2006,72(10):6829-6832
    126.Perez-Velazquez M, Gonzalez-Felix ML, Gomez-Jimenez S, Davis DA, Miramontes-Higuera N. Nitrogen budget for a low-salinity, zero-water exchange culture system: Ⅱ. Evaluation of isonitrogenous feeding of various dietary protein levels to Litopenaeus vannamei (Boone). Aquacult Res, 2008,39(9):995-1004
    127.Person-Le Ruyet J, Galland R, Le Roux A, Chartois H. Chronic ammonia toxicity in juvenile turbot (Scophthalmus maximus). Aquaculture, 1997,154:155-171
    128.Pitcher A, Villanueva L, Hopmans EC, Schouten S, Reichart G-J, Damste JSS. Niche segregation of ammonia-oxidizing archaea and anammox bacteria in the Arabian Sea oxygen minimum zone. Isme Journal, 2011,5(12):1896-1904
    129.Prosser JI, Nicol GW. Relative contributions of archaea and bacteria to aerobic ammonia oxidation in the environment. Environ Microbiol, 2008,10(11):2931-2941
    130.Quan Z-X, Rhee S-K, Zuo J-E, Yang Y, Bae J-W, Park JR, Lee S-T, Park Y-H. Diversity of ammonium-oxidizing bacteria in a granular sludge anaerobic ammonium-oxidizing (anammox) reactor. Environ Microbiol, 2008,10(11): 3130-3139
    131.Radax R, Hoffmann F, Rapp HT, Leininger S, Schleper C. Ammonia-oxidizing archaea as main drivers of nitrification in cold-water sponges. Environ Microbiol, 2012,14(4):909-923
    132.Rich JJ, Dale OR, Song B, Ward BB. Anaerobic ammonium oxidation (anammox) in Chesapeake bay sediments. Microb Ecol, 2008,55:311-320
    133.Risgaard-Petersen N. Coupled nitrification-denitrification in autotrophic and heterotrophic estuarine sediments: On the influence of benthic microalgae. Limnol Oceanogr,2003,48(1):93-105
    134.Risgaard-Petersen N, Meyer RL, Revsbech NP. Denitrification and anaerobic ammonium oxidation in sediments:effects of microphytobenthos and NO3-. Aquatic Microbial Ecol, 2005,40(1):67-76
    135.Risgaard-Petersen N, Meyer RL, Schmid M, Jetten MSM, Enrich-Prast A, Rysgaard S, Revsbech NP. Anaerobic ammonium oxidation in an estuarine sediment. Aquatic Microbial Ecol, 2004,36(3):293-304
    136.Rotthauwe JH, Witzel KP, Liesack W. The ammonia monooxygenase structural gene amoA as a functional marker: Molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl Environ Microb, 1997,63(12):4704-4712
    137.Ruffier PJ, Boyle WC, Kleinschmidt J. Short-term acute bioassays to evaluate ammonia toxicity and effluents standards. Water Sci Technol, 1981,53:367-377
    138.Ruyters S, Nicol GW, Prosser JI, Lievens B, Smolders E. Activity of the ammonia oxidising bacteria is responsible for zinc tolerance development of the ammonia oxidising community in soil: A stable isotope probing study. Soil Biol Biochem, 2013, 58:244-247
    139.Rysgaard S, Glud RN, Risgaard-Petersen N, Dalsgaard T. Denitrification and anammox activity in Arctic marine sediments. Limnol Oceanogr, 2004,49(5): 1493-1502
    140.Sahan E, Muyzer G Diversity and spatio-temporal distribution of ammonia-oxidizing Archaea and Bacteria in sediments of the Westerschelde estuary. FEMS Microbiol Ecol, 2008,64(2):175-186
    141.Sanjitt K, Jaras S. Comparative study of domestic wastewater treatment efficiencies between facultative pond and water spinach pond. Water Sci Technol, 1995,32(3): 263-270
    142.Sauder LA, Engel K, Stearns JC, Masella AP, Pawliszyn R, Neufeld JD. Aquarium Nitrification Revisited: Thaumarchaeota Are the Dominant Ammonia Oxidizers in Freshwater Aquarium Biofilters. PLoS One, 2011,6(8):e23281
    143.Schleper C, Jurgens G, Jonuscheit M. Genomic studies of uncultivated archaea. Nat Rev Microbiol, 2005,3(6):479-488
    144.Schmid M, Schmitz-Esser S, Jetten M, Wagner M. 16S-23S rDNA intergenic spacer and 23 S rDNA of anaerobic ammonium-oxidizing bacteria: implications for phylogeny and in situ detection. Environ Microbiol, 2001,3(7):450-459
    145.Schmid M TU, Klein M, Strous M, Juretschko S, Jetten M, Metzger JW, Schleifer KH, Wagner M. Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation. SystAppl Microbiol, 2000,23(1):93-106
    146.Schmid M, Twahtmann U, Klein M, Strous M, Juretschko S, Jetten M, Metzger JW, Schleifer K-H, Wagner M. Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation. Syst Appl Microbiol, 2000, 23(1):93-106
    147.Schmid M, Walsh K, Webb R, Rijpstra WIC, van de Pas-Schoonen K, Verbruggen MJ, Hill T, Moffett B, Fuerst J, Schouten S, Damste JSS, Harris J, Shaw P, Jetten M, Strous M. Candidatus "Scalindua brodae", sp nov., Candidatus "Scalindua wagneri", sp nov., two new species of anaerobic ammonium oxidizing bacteria. 2003, Syst Appl Microbiol,26(4):529-538
    148.Schmid MC, Maas B, Dapena A, van de Pas-Schoonen K, van de Vossenberg J, Kartal B, van Niftrik L, Schmidt I, Cirpus I, Kuenen JG, Wagner M, Damste JSS, Kuypers M, Revsbech NP, Mendez R, Jetten MSM, Strous M. Biomarkers for in situ detection of anaerobic ammonium-oxidizing (anammox) bacteria. Appl Environ Microb, 2005,71(4):1677-1684
    149.Schubert CJ, Durisch-Kaiser E, Wehrli B, Thamdrup B, Lam P, Kuypers M M M. Anaerobic ammonium oxidation in a tropical freshwater system (Lake Tanganyika). Environ Microbiol, 2006,8(10):1857-1863
    150.Shen J-P, Zhang L-M, Di HJ, He J-Z. A review of ammonia-oxidizing bacteria and archaea in Chinese soils. Front microbiol, 2012,3:296-296
    151.Shen JP, Zhang LM, Zhu YG, Zhang JB, He JZ. Abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea communities of an alkaline sandy loam. Environ Microbiol, 2008,10(6):1601-1611
    152.Siegert M, Taubert M, Seifert J, von Bergen-Tomm M, Basen M, Bastida F, Gehre M, Richnow H-H, Krueger M. The nitrogen cycle in anaerobic methanotrophic mats of the Black Sea is linked to sulfate reduction and biomass decomposition. FEMS Microbiol Ecol, 2013,86(2):231-245
    153.Sims A, Gajaraj S, Hu Z. Seasonal population changes of ammonia-oxidizing organisms and their relationship to water quality in a constructed wetland. Ecol Eng, 2012,40:100-107
    154.Sonthiphand P, Cejudo E, Schiff SL, Neufeld JD. Wastewater Effluent Impacts Ammonia-Oxidizing Prokaryotes of the Grand River, Canada. Appl Environ Microb, 2013,79(23):7454-7465
    155.Stark JM. Modeling the temperature response of nitrification. Biogeochemistry, 1996, 35:433-445
    156.Stewart FJ, Ulloa O, DeLong EF. Microbial metatranscriptomics in a permanent marine oxygen minimum zone. Environ Microbiol, 2012,14(1):23-40
    157.Stottmeister U, Wiessner A, Kuschk P, Kappelmeyer U, Kaestner M, Bederski O, Mueller RA, Moormann H. Effects of plants and microorganisms in constructed wetlands for wastewater treatment. Biotechnol Adv, 2003,22(1-2):93-117
    158.Strous M, Fuerst JA, Kramer EHM, Logemann S, Muyzer G, Pas-Schoonen KTvd, Webb R, Kuenen JG, Jetten MSM. Missing lithotroph identified as new planctomycete. Nature, 1999,400(29):446-449
    159.Sun W, Xia C, Xu M, Guo J, Wang A, Sun G. Distribution and Abundance of Archaeal and Bacterial Ammonia Oxidizers in the Sediments of the Dongjiang River, a Drinking Water Supply for Hong Kong. Microbes Environ,2013,28(4):457-465
    160.Tanner CC. Plants for constructed wetland treatment systems-a comparison of the growth and nutrient uptake of eight emergent species. Ecol Eng, 1996,7:59-83
    161.Teixeira C, Magalhaes C, Joye SB, Bordalo AA. Potential rates and environmental controls of anaerobic ammonium oxidation in estuarine sediments. Aquatic Microbial Ecol, 2012,66(1):23-32
    162.Terada A, Zhou S, Hosomi M. Presence and detection of anaerobic ammonium-oxidizing (anammox) bacteria and appraisal of anammox process for high-strength nitrogenous wastewater treatment: a review. Clean Technol Envir, 2011, 13:759-781
    163.Thamdrup B, Dalsgaard T. Anaerobic ammonium oxidation by nitrite (anammox): Implications for N2 production in coastal marine sediments. Appl Microbiol Biot, 2002a, 68(3):1312-1318
    164.Thamdrup B, Dalsgaard T. Production of N2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments. Appl Microbiol Biot, 2002b,68(3): 1312-1318
    165.Thamdrup B, Dalsgaard T, Jensen MM, Ulloa O, Farias L, Escribano R. Anaerobic ammonium oxidation in the oxygen-deficient waters off northern Chile. Limnol Oceanogr,2006,51(5):2145-2156
    166.Thurston RV, Phillips GR, Russo RC, M HS. Increased toxicity of ammonia to rainbow trout (Sukrno gcrirotlaeri) resulting from reduced concentrations of dissolved oxygen. Can J Fish Aquat Sci, 1981,38:983-988
    167.Tilley DR, Badrinarayanan H, Rosati R, Son J. Constructed wetlands as recirculation filters in large-scale shrimp aquaculture. Aquacult Eng, 2002,26(2):81-109
    168.Tourna M, Freitag TE, Nicol GW, Prosser JI. Growth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms. Environ Microbiol, 2008,10(5):1357-1364
    169.Trimmer M, Nicholls JC, Deflandre B. Anaerobic ammonium oxidation measured in sediments along the Thames estuary, United Kingdom. Appl Environ Microb,2003, 69(11):6447-6454
    170.Tripathi BM, Kim M, Lai-Hoe A, Shukor NAA, Rahim RA, Go R, Adams JM. pH dominates variation in tropical soil archaeal diversity and community structure. FEMS Microbiol Ecol, 2013,86(2):303-311
    171.Tsai YL, Olson BH. Rapid method for direct extraction of DNA from soil and sediments. Appl Environ Microb, 1991,57(4):1070-1074
    172.Tsushima I, Kindaichi T, Okabe S. Quantification of anaerobic ammonium-oxidizing bacteria in enrichment cultures by real-time PCR. Water Res, 2007,41(4):785-794
    173.Van de Graaf AA, Mulder A, de Bruijn P, Jetten MS, Robertson LA, Kuenen JG. Anaerobic oxidation of ammonium is a biologically mediated process. Appl Environ Microb, 1995,61(4):1246-51
    174.Van Niftrik LA, Fuerst JA, Damste JSS, Kuenen JG, Jetten MSM, Strous M. The anammoxosome: an intracytoplasmic compartment in anammox bacteria. Fems Microbiol Lett, 2004,233(1):7-13
    175.Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu D, Paulsen I, Nelson KE, Nelson W, Fouts DE, Levy S, Knap AH, Lomas MW, Nealson K, White O, Peterson J, Hoffman J, Parsons R, Baden-Tillson H, et al. Environmental genome shotgun sequencing of the Sargasso Sea. Science, 2004,304(5667):66-74
    176.Vymazal J. Removal of nutrients in various types of constructed wetlands. Sci Total Environ,2007,380(1-3):48-65
    177. Wang Y-F, Feng Y-Y, Ma X, Gu J-D. Seasonal dynamics of ammonia/ammonium-oxidizing prokaryotes in oxic and anoxic wetland sediments of subtropical coastal mangrove. Appl Microbiol Biot, 2013,97(17):7919-7934
    178. Wang Y, Ke X, Wu L, Lu Y. Community composition of ammonia-oxidizing bacteria and archaea in rice field soil as affected by nitrogen fertilization. Syst Appl Microbiol, 2009,32(1):27-36
    179.Wang Z, Zuo M, Wang Y, Liu Y, Li D. Dynamics of chlorophyll fluorenscence and eco-morphological properties of Microcystis bloom in Meiliang Bay of Lake Taihu, China. Fresen Environ Bull, 2011,20(9):2295-2305
    180.Ward BB, Devol AH, Rich JJ, Chang BX, Bulow SE, Naik H, Pratihary A, Jayakumar A. Denitrification as the dominant nitrogen loss process in the Arabian Sea. Nature, 2009,461(7260):78-82
    181.Wei B, Yu X, Zhang S, Gu L. Comparison of the community structures of ammonia-oxidizing bacteria and archaea in rhizoplanes of floating aquatic macrophytes. Microbiolo Res, 2011,166(6):468-474
    182.Weidler GW, Dornmayr-Pfaffenhuemer M, Gerbl FW, Heinen W, Stan-Lotter H. Communities of Archaea and Bacteria in a subsurface radioactive thermal spring in the Austrian Central Alps, and evidence of ammonia-oxidizing Crenarchaeota. Appl Environ Microb,2007,73:259-270
    183.Woebken D, Lam P, Kuypers M M M, Naqvi SWA, Kartal B, Strous M, Jetten MSM, Fuchs BM, Amann R. A microdiversity study of anammox bacteria reveals a novel Candidatus Scalindua phylotype in marine oxygen minimum zones. Environ Microbiol, 2008,10(11):3106-3119
    184.Wu Y-J, Whang L-M, Fukushima T, Chang S-H. Responses of ammonia-oxidizing archaeal and betaproteobacterial populations to wastewater salinity in a full-scale municipal wastewater treatment plant. JBiosci Bioeng, 2013,115(4):424-432
    185.Wu Y, Xiang Y, Wang J, Zhong J, He J, Wu QL. Heterogeneity of archaeal and bacterial ammonia-oxidizing communities in Lake Taihu, China. Environ Microbiol Rep, 2010,2(4):569-576
    186.Wurts WA, Durborow RM. Interactions of pH, Carbon Dioxide, Alkalinity and Hardness in Fish Ponds. SRAC Publication, 1992,464:1-4
    187. Ye W, Liu X, Lin S, Tan J, Pan J, Li D, Yang H. The vertical distribution of bacterial and archaeal communities in the water and sediment of Lake Taihu. FEMS Microbiol Ecol, 2009a,70(2):107-20
    188. Ye W, Liu X, Lin S, Tan J, Pan J, Li D, Yang H. The vertical distribution of bacterial and archaeal communities in the water and sediment of Lake Taihu. FEMS Microbiol Ecol, 2009b,70(2):263-276
    189.Yoshinaga I, Amano T, Yamagishi T, Okada K, Ueda S, Sako Y, Suwa Y. Distribution and Diversity of Anaerobic Ammonium Oxidation (Anammox) Bacteria in the Sediment of a Eutrophic Freshwater Lake, Lake Kitaura, Japan. Microbes Environ, 2011,26(3):189-197
    190.Zeng J, Zhao D-Y, Huang R, Wu QL. Abundance and community composition of ammonia-oxidizing archaea and bacteria in two different zones of Lake Taihu. Can J Microbiol, 2012,58(8):1018-1026
    191.Zhang L-M, Hu H-W, Shen J-P, He J-Z. Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils. Isme Journal, 2012,6(5):1032-1045
    192.Zhang T, Ye L, Tong AHY, Shao M-F, Lok S. Ammonia-oxidizing archaea and ammonia-oxidizing bacteria in six full-scale wastewater treatment bioreactors. Appl Microbiol Biot,2011,91(4):1215-1225
    193.Zhang Y, Ruan X-H, Camp HJMOd, Smits TJM, Jetten MSM, Schmid MC. Diversity and abundance of aerobic and anaerobic ammonium-oxidizing bacteria in freshwater sediments of the Xinyi River (China). Environ Microbiol, 2007,9(9):2375-2382
    194.Zhao D-y, Luo J, Zeng J, Wang M, Yan W-m, Huang R, Wu QL. Effects of submerged macrophytes on the abundance and community composition of ammonia-oxidizing prokaryotes in a eutrophic lake. Environ Sci Pollut R, 2014,21(1): 389-398
    195.Zhao F, Xi S, Yang X, Yang W, Li J, Gu B, He Z. Purifying eutrophic river waters with integrated floating island systems. Ecol Eng, 2012,40:53-60
    196.Zhao Y, Xia Y, Kana TM, Wu Y, Li X, Yan X. Seasonal variation and controlling factors of anaerobic ammonium oxidation in freshwater river sediments in the Taihu Lake region of China. Chemosphere, 2013,93(9):2124-2131
    197.Zhou J, Bruns MA, Tiedje JM. DNA recovery from soils of diverse composition. Appl Environ Microb, 1996,62(2):316-322
    198.Zhu G, Jetten MSM, Kuschk P, Ettwig KF, Yin C. Potential roles of anaerobic ammonium and methane oxidation in the nitrogen cycle of wetland ecosystems. Appl Microbiol Biot, 2010, 86(4):1043-1055
    199.Zhu L, Li Z, Ketola T. Biomass accumulations and nutrient uptake of plants cultivated on artificial floating beds in China's rural area. Ecol Eng, 2011,37(10): 1460-1466

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700