用户名: 密码: 验证码:
长白山热泉生境微生物群落结构及嗜热菌分离鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微生物生态学是研究微生物与环境相互作用的基础学科,反映出了微生物群落与环境因素在物质、能量以及信息等方面的交互作用,体现出了生态系统的平衡机制。热泉是地下水经地热加热后的产物,与其特定的地质及环境因素相互作用,形成了特殊的生态系统。该系统中的微生物群落结构以及丰富的微生物资源一方面反映了热泉特殊生态系统的平衡机制和生物进化机制,另一方面为特定嗜热微生物的分离与利用提供了可能。
     本论文选择了长白山热泉群中三个代表性热泉(83oC,74oC,53oC)作为研究对象,通过16S rRNA基因文库及末端限制性片段长度多态性(T-RFLP)分析相结合的方法对长白山热泉微生物群落结构及其多样性进行了研究。综合两种方法所得结果表明:共检测出47个16S rRNA细菌序列,在系统进化树上可聚类为7大类群,包括17个属和一些未确定种属的细菌。微生物群落结构的物种组成、种群密度及相对丰度分析,发现栖热袍菌门(Thermotogae)、嗜热菌属(Thermus)、梭菌属(Clostridium Prazmowski)、嘉利翁氏菌科(Gallionellaceae)、产液菌门(Aquificae)和假单胞菌科(Pseudomonadaceae)在三个温度热泉中均存在,推测这些微生物是长白山热泉微生物群落的固有微生物。三个不同温度热泉中微生物群落分布有明显差异,处于生物进化最古老位置的栖热袍菌门(Thermotogae)和产液菌门(Aquificae)在两个高温热泉中(83oC,74oC)所占比例较大,鞘氨醇杆菌(Sphingobacteria)仅出现在2个高温热泉样品中。83oC热泉中的微生物群落多样性最丰富(R=10),74oC群落均匀性更好(E=0.924)。根据T-RFLP结果,高温热泉的微生物群落表现出更加多样化的特征。由于三个样品的来源环境接近,热泉泉水化学成分类似,因此我们认为三个热泉的温度差异是导致其微生物生态结构差异的主要因子。通过对三个样品的代谢类型进行分析,三个环境均富含化能自养型细菌,高温热泉中光能自养型细菌所占比重较大。
     对嗜热微生物的研究不仅在探讨生命起源、进化以及其高温适应机制方面有重要意义,更有实用价值的是能够获得具有工业应用潜力的嗜热酶资源。通过对基因文库的分析,以产纤维素酶微生物和产酯酶微生物为筛选目标。
     从长白山热泉分离得到具有纤维素降解能力的嗜热厌氧微生物CBS-ZT。经PCR扩增和16S rRNA全序列比较,CBS-ZT属于厚壁菌门,与其相似性最高的菌为Caldicellulosiruptor saccharolyticus DSM8903,相似度为97%。CBS-ZT的最适生长温度为74oC,最适pH为弱碱性(7.8左右),可利用纤维素作为其生长碳源,能产氢气;脂肪酸成分为C16:0(34.2%),iso-C16:0(18%),C18:0(12.8%),iso-C17:0(11.1%),DNA G+C含量比为36.8%,根据结果可确定其为Caldicellulosiruptor的新种。该菌具有产氢和可降解纤维素两大优势,是一株在生物能源领域很有应用潜力的新菌。
     根据嗜热微生物产酯酶能力分析,分离得到了嗜热菌CBS28,16S rRNA分析表明它属于地芽孢杆菌属成员,与Geobacillus属中成员Geobacillusstearothermophilus序列相似性97%。CBS28最适生长温度为65oC,但可以在80oC的高温下生存;最适pH值为8,但在较强碱性和酸性条件下均可以存活。生理生化特征的实验表明,CBS28还具有淀粉酶、酪素酶等胞外酶活性。这为开发在食品酿造工业、医药工业和环境保护等领域具有应用价值的嗜热酶提供了新基因资源。
Microbial ecology, the basic subject considering the interaction betweenmicroorganism and environment, could reflect the communication on substance,energy, or information between microbial community and circumstance, whichilluminate the balance of the ecosystem. Hot springs are formed by geothermal energyheating the underground water. The specific geological property and environmentalfactors make the hot springs become some distinctive ecosystems on our planet.Research on the microbial community structures of these ecosystems as well asnumerous microorganism resources would help us understand the balance mechanismof the hot springs special ecosystems and microorganism evolution mechanism. Alsoit may provide more opportunities for exploring and utilizing novel thermophilicmicroorganisms.
     In this study, the microbial community structure of three Changbai Mountain HotSprings (83oC,74oC,53oC respectively) were analysed by16S rRNA gene librarysequencing and terminal restriction fragment length polymorphism (T-RFLP).47bacterial16S rRNA sequences were determined in the phylogenetic tree, which can beclassified into7groups,17genus and some unassigned bacteria. The speciescomposition, population density, and relative abundance analysis of three hot springsmicrobial community structure indicated that Thermotogae, Thermus, Clostridium,Gallionellaceae, Aquificales and Pseudomonas existed in three hot springs. Wespeculated that they were the endogenous populations in three hot springs. On theother hand, microbial community distribution were different among three hot springs.The oldest Thermotogae and Aquificales in the community structure in twohigh-temperature hotsprings in the dominant flora. And Sphingobacteriia appears only in the samples of the two high-temperature hotsprings. The74oC hot spring in themost abundant microbial community diversity and evenness better. The dominant taxain these three samples indicated that the structure of74oC hot spring exhibit morediversity but most bacteria are mesophilic bacteria compare to83oC. The differenceevolution of groups is cased by temperature when the other factors are similar. Toverify the phylogenitic relationships between phylotyes in74oC and83oC samples, theaverage taxonomic distinctness were also take into account. Three samples of thesource environment close to the hotsprings springs chemical composition similar,sowe believe that the three hotsprings temperature differences lead to the bacterialecological structural differences only selection pressure. Through the analysis of threesamples of the metabolic type, three environments are rich autotrophic bacteria,hightemperature hotsprings in the light energy is dominant autotrophic bacteria.Speculated that this related to the physical and chemical factors of the ChangbaiMountain Hotsprings.
     On the Basis of16S rRNA sequence similarity, the thermophilic anaerobicCBS-ZTwhich was isolated from Changbai Mountain was shown to belong toFirmicutes, being most closely related to Caldicellulosiruptor saccharolyticus DSM8903(97%). The optimum temperature and pH of CBS-ZTwas74oC and7.8withcellulose as a carbon source, moreover, CBS-ZTwas capable of producing hydrogen.The fatty acid of CBS-ZTincluded C16:0(34.2%),iso-C16:0(18%), C18:0(12.8%),andiso-C17:0(11.1%). The DNA G+C content of CBS-ZTwas36.8%. Based on these data,CBS-ZTrepresents a novel species, meanwhile, it was a promising bacteria which canbe used to produce hydrogen and degradate cellulose.
     According to the16S rRNA sequence similarity, CBS28was shown to be themember of the Bacillus, with high similarity (>97%) to the Geobacillusstearothermophilus. Optimal growth of CBS28occurs at65oC and pH8.0. It can alsosurvive at80oC or in strong alkaline and acidic conditions. On the basis of thephysiological and biochemical characteristics, the extracellular enzymes of CBS28displayed activity of amylase, esterase and so on, which make it good candidate for ne w genes applied in food industry, medicine and envir onmental protecti on.
引文
[1]池振明.现代微生物生态学[M].北京:科学出版社,2005.
    [2] Bernard L, Vincent V, Lortholary O,et al. Mycobacterium kansasii septic arthritis:French retrospective study of5years and review[J]. Clin Infect Dis,1999,29(6):1455-1460.
    [3] Wayne LG, Brenner DJ, Colwell RR,et al. Report of the Ad Hoc Committee onReconciliation of Approaches to Bacterial Systematics[J]. Int. J. Syst. Bacteriol,1987(37):463-464.
    [4]和致中,彭谦,陈俊英.高温菌生物学[M].北京:科学出版社,2000.
    [5] Flores GE, Campbell JH, Kirshtein JD, et al. Microbial community structure ofhydrothermal deposits from geochemically different vent fields along theMid-Atlantic Ridge[J]. Environ Microbiol,2011,13(8):2158-2171.
    [6] Hui L, Zhao J, Wu L, Shao Y, Li J, Zhu B. Community structure ofammonia-oxidizing prokaryotes at the dry-up lake in Huitengxile grassland [J].Wei Sheng Wu Xue Bao.2012,52(1):104-113.
    [7] Kan J, Wang Y, Obraztsova A. Marine microbial community response toinorganic and organic sediment amendments in laboratory mesocosms[J].Ecotoxicol Environ Saf,2011,74(7):1931-1941.
    [8] Pessi IS, Elias Sde O, Sim es FL, et al. Functional diversity of microbialcommunities in soils in the vicinity of Wanda Glacier, Antarctic Peninsula[J].Microbes Environ,2012,27(2):200-203.
    [9] Setter, K. O., Huber, G., Segerer, A.. Hyperthermophilic microorganisms[J].FEMS Microbiol Rev,1990,75:117-124.
    [10] Rothschild, L. J., Mancinelli, R. L.. Life in extreme environments[J]. Nature,2001,409:1092-1101.
    [11] Stackebrandt, E., Goebel B.M.. Taxonomic note: a place for DNA-DNAreassociation and16S rRNA analysis in the present species definition inbacteriology[J]. Int J Syst Bacteriol,1994,44:846-849.
    [12] Gupta RS, Bhandari V. Phylogeny and molecular signatures for the phylumThermotogae and its subgroups [J]. Antonie Van Leeuwenhoek,2011,100(1):1-34.
    [13] Briukhanov AL, Thauer RK, Netrusov AI. Catalase and superoxide dismutase inthe cells of strictly anaerobic microorganisms[J]. Mikrobiologiia,2002,71(3):330-335.
    [14] Carius L, H dicke O, Grammel H. Stepwise reduction of the culture redoxpotential allows the analysis of microaerobic metabolism and photosyntheticmembrane synthesis in Rhodospirillum rubrum[J]. Biotechnol Bioeng,2012,5:215-219.
    [15] Bekins BA, Godsy EM, Warren E. Distribution of Microbial Physiologic Typesin an Aquifer Contaminated by Crude Oil[J]. Microb Ecol,1999,37(4):263-275.
    [16] Rodríguez-Blanco A, Antoine V, Pelletier E, Effects of temperature andfertilization on total vs. active bacterial communities exposed to crude anddiesel oil pollution in NW Mediterranean Sea[J]. Environ Pollut,2010,158(3):663-673.
    [17] Berthe-Corti L, Bruns A. The Impact of Oxygen Tension on Cell Density andMetabolic Diversity of Microbial Communities in Alkane DegradingContinuous-Flow Cultures[J]. Microb Ecol,1999,37(1):70-77.
    [18]贾文祥,杨宏伟,曾丽,等.川藏热泉嗜热菌的筛选与鉴定[J].华西医大学报,1995,26(3):319-321.
    [19]刘志培,杨惠芳.微生物分子生态学进展.应用与环境生物学报[J],1999,5(Suppl):43-48.
    [20]张洪勋,王晓谊,齐鸿雁.微生物生态学研究方法进展[J].生态学报,2003,5:(23):75-79.
    [21]袁三青,薛燕芬,高鹏等.T-PFLP技术分析油藏微生物多样性[J].微生物学报,2007,4:47-49.
    [22] Das S, Hirano M, Tako R, McCallister C, Nikolaidis N. Evolutionary genomicsof immunoglobulin-encoding Loci in vertebrates[J]. Curr Genomics,2012,13(2):95-102.
    [23]沈萍,彭珍荣等译, Lansing, M.P.等编.微生物学[M].北京:高等教育出版社,2003.
    [24] Wu D, Wu M, Halpern A, Rusch DB. Stalking the fourth domain in metagenomicdata: searching for, discovering, and interpreting novel, deep branches in markergene phylogenetic trees[J]. PLoS One,2011,186(3):8-11.
    [25] Li Y, Li F, Zhang X, Qin S.1.Vertical distribution of bacterial and archaealcommunities along discrete layers of a deep-sea cold sediment sample at the EastPacific Rise (approximately13degrees N)[J]. Extremophiles,2008,12(4):573-585.
    [26] Adrian Hetzer, Hugh W. Morgan et al. Microbial life in Champagne Pool, ageothermal spring in Waiotapu, New Zealand Microbial life in Champagne Pool,a geothermal spring in Waiotapu, New Zealand[J]. Extremophiles,2007,11:605–614.
    [27] Gabriel J. Development of soil microbiology methods: from respirometry tomolecular approaches[J]. J Ind Microbiol Biotechnol.,2010,37(12):1289-1297.
    [28] Anderson IC, Cairney JW. Diversity and ecology of soil fungal communities:increased understanding through the application of molecular techniques[J].Environ Microbiol,2004,6(8):769-779.
    [29] Kitts CL.Terminal restriction fragment patterns: a tool for comparing microbialcommunities and assessing community dynamics[J].Curr Issues Intest Microbiol,2001,2(1):17-25.
    [30] Zhalnina K, de Quadros PD, Camargo FA, Triplett EW.Drivers of archaealammonia-oxidizing communities in soil[J]. Front Microbiol,2012,3:210-125.
    [31] Mengoni A, Tatti E, Decorosi F,et al. Comparison of16S rRNA and16S rRNA T-RFLPapproaches to study bacterial communities in soil microcosms treated with chromate asperturbing agent[J]. Microb Ecol.2005,50(3):375-384.
    [32] Janus LR, Angeloni NL, McCormack J, Rier ST, Tuchman NC, Kelly JJ.Elevatedatmospheric CO2alters soil microbial communities associated with trembling aspen(Populus tremuloides) roots[J].Microb Ecol,2005,50(1):102-109.
    [33] Woese, C.R., Fox, G.E. Phylogenetic structure of the prokaryotic domain: Theprimary kingdoms[J]. Proc Natl Acad USA,1977,74:5088-5090.
    [34]曹军卫,沈萍等.嗜极微生物[M].武汉:武汉大学出版社,2004.
    [35] Woese, C.R., Kandler, O., Wheelis, M. L. Toward a natural system of organism:Proposal for the domains archaea, bacteria and eucarya[J]. Proc Natl Acad USA,1990,87:4576-4579.
    [36] James, R. B., Andrei, N. L. What makes a thermophile[J].Trends inMicrobiology,1998,6:349-351.
    [37] Blochl, E., Rachel R., Burggraf, S., Hafenbradl, D., Jannasch, H. W., Stetter, K.O. Pyrolobus fumarii, gen. and sp. nov., represents a novel group of. archaea,extending the upper temperature limit for life to113°C[J]. Extremophiles,1997,1:14-21.
    [38] Zhou, Y., Zhang, P., Meng, Q. Breeding of High Produring Strain of LipaseUsing Fast Neutron [J]. Microbiology,2001,28(2):81-85.
    [39] Forterre, P. A hot topic: the origin of hyperthermophiles[J]. Cell,1996,85:789-792.
    [40] Blochl, E., Rachel R., Burggraf, S., Hafenbradl, D., Jannasch, H. W., Stetter, K.O. Pyrolobus fumarii, gen. and sp. nov., represents a novel group of. archaea,extending the upper temperature limit for life to113°C[J]. Extremophiles,1997,1:14-21.
    [41] Kato, C., Inoue, A., Horikoshi, K. Isolating and characterizing deep-sea marinemicroorganisms[J]. Trends Biotechnol,1996,14(1):6-12.
    [42] Spain, J.C. Biodegradation of nitroaromatic compounds[J]. Annu Rev Microbiol.1995,49:523-555.
    [43] Adams M.W., Perler F.B., Kelly R.M..Extremozymes: expanding the limits ofbiocatalysis[J]. Biotechnology (N Y),1995,13(7):662-668.
    [44] Cai J, Wang Y, Liu D, Zeng Y, Xue Y, Ma Y, Feng Y. Fervidobacteriumchangbaicum sp. nov., a novel thermophilic anaerobic bacterium isolated from ahot spring of the Changbai Mountains, China[J]. Int J Syst Evol Microbiol,2007,57(10):2333-2336.
    [45] Adams M.W., Perler F.B., Kelly R.M.. Extremozymes: expanding the limits ofbiocatalysis[J]. Biotechnology (N Y),1995,13(7):662-668.
    [46] Boucher N1, Noll KM. Ligands of thermophilic ABC transporters encoded in anewly sequenced genomic region of Thermotoga maritimaMSB8screened bydifferential scanning fluorimetry[J]. Appl Environ Microbiol,2011Sep;77(18):6395-6399.
    [47] Ahsan M, Matsumoto M, Karita S, Kimura T, Sakka K and OhmiyaK,Purification and characterization of the family J catalyticdomain derived fromtheClostridium thermocellum endoglucanase CelJ [J]. Biosci. Biotechnol.Biochem,1997,61:427-431.
    [48] Bok J D, Yernool D A. Purification, characterization, and molecular analysisofthermostable cellulases CelA and CelB from Thermotoga neapolitana [J].Applied and Environmental Microbiology,1998,64:4774-4781.
    [49] Chhabra S R, Kelly R M, Biochemical characterization of Thermotogamaritimaendoglucanase Cel74with and without a carbohydrate binding module(CBM)[J].FEBS Lett,2002,531:375-380.
    [50] Kamrat T, Nidetzky B. Entrapment in E. coli improved the operationalstability ofrecombinant-glucosidase CelB from Pyrococcus furiosus and facilitatesbiocatalyst recovery [J]. Journal of Biotechnology,2007,129:69-76.
    [51] Ando S, Ishida H, Kosugi Y, Ishikawa K. Hyperthermostable endoglucanasefrom Pyrococcus horikoshii [J]. Appl Environ Microbiol.2002,68(1):430-433.
    [52] Halldorsdottir S, Thorolfsdottir E. Cloning, sequencing and overexpressionof aRhodothermus marinus gene encoding a thermostable cellulase ofglycosilhydrolase family12[J]. Applied Microbiology and Biotechnology,1998,49:277-284.
    [53] Chandrasekharaiah.M, Thulasi A, Bagath M, et al. Molecular cloning, expressionand characterization of a novel feruloyl esterase enzyme from the symbionts oftermite(Coptotermes formosanus) gut[J]. BMB Rep,2011,44(1):52-57.
    [54] Yuan H, Liu XP, Han Z, et,al.RecJ-like protein from Pyrococcus furiosus has3'-5' exonuclease activity on RNA: implications for proofreading of3'-mismatched RNA primers in DNA replication[J]. Nucleic Acids Res,201341(11):5817-5826.
    [55] Xiaoli Zhou, Honglei Wang, Yuhang Zhang, Le Gao, Yan Feng. Alteration ofsubstrate specificities of thermophilic alpha/beta hydrolases through domainswapping and domain interface optimization[J]. Acta Biochim Biophys Sin,2012,44(12):965-973.
    [56] Brock TD.The value of basic research: discovery of Thermus aquaticus and otherextreme thermophiles[J], Genetics,1997,146(4):1207-1210.
    [57] Gupta RS, Bhandari V,Phylogeny and molecular signatures for the phylumThermotogae and its subgroups[J]. Antonie Van Leeuwenhoek,2011,100(1):1-34.
    [58] Kawaichi S, Ito N, Yoshida T, Sako Y. Bacterial and archaeal diversity in aniron-rich coastal hydrothermal field in Yamagawa, Kagoshima, Japan[J].Microbes Environ,2013,28(4):405-413.
    [59] Thennarasu S, Polireddy D, Antony A, et al. Draft Genome Sequence of a HighlyFlagellated, Fast-Swimming Archaeon, Methanocaldococcus villosus StrainKIN24-T80(DSM22612)[J]. Genome Announc,2013,11(1):4.
    [60] Labes A, Sch nheit P.[J], Arch Microbiol,2003,180(1):69-75.
    [61] Rosewarne CP, Greenfield P, Li D, et al. Draft Genome Sequenceof Methanobacterium sp. Maddingley, Reconstructed from MetagenomicSequencing of a Methanogenic Microbial Consortium Enriched from Coal-SeamGas Formation Water[J]. Genome Announc,2013,1(1).
    [62]Kawarabayasi Y. Genome of Pyrococcus horikoshii OT3[J]. Methods Enzymol,2001,330:124-134.
    [63] Kawarabayasi Y, Hino Y, Horikawa H, et al.Complete genome sequence of anaerobic hyper-thermophilic crenarchaeon, Aeropyrum pernix K1[J]. DNA Res.,1999,306(2):83-101,145-152.
    [64] Fujita K, Baba T, Isono K.Genomic Analysis of the Genes Encoding RibosomalProteins in Eight Eubacterial Species and Saccharomyces cerevisiae[J].Genome Inform Ser Workshop Genome Inform,1998,9:3-12.
    [1]林元武,高清武,于青桐.长白山天池火山区长白聚龙泉热水氢氧稳定同位素组成与氚分布规律[J].地质评论,1999,45(增刊):236-240.
    [2]林元武,高清武,于青桐.长白山天池火山区地下热流体化学特征研究[J].地质评论,1999,8(45):1-5.
    [3]蔡锦刚.长白山热泉嗜热微生物的分离鉴定及新型嗜热脂肪酶性质研究[D].吉林:吉林大学,2008.
    [4](美)萨姆布鲁克等著,金冬雁等译.分子克隆实验指南(第三版)[M].北京:科学出版社,2003.
    [5] Benndorf D, Balcke GU, Harms H, von Bergen M.Functional metaproteomeanalysis of protein extracts from contaminated soil and groundwater[J]. ISME J.,2007,1(3):224-234.
    [6] Chaudhary PP, Sirohi SK, Saxena J.Gene.Diversity analysis of methanogens inrumen of Bubalus bubalis by16S riboprinting and sequence analysis[J].2012,493(1):13-17.
    [7] Lin YT, Whitman WB, Coleman DC, Chih-Yu C. Molecular characterization ofsoil bacterial community in a perhumid, low mountain forest[J].Microbes Environ,2011,26(4):325-331.
    [8] Kantartzi SK, Ulloa M, Sacks E, Stewart JM. Assessing genetic diversity inGossypium arboreum L. cultivars using genomic and EST-derivedmicrosatellites[J]. Genetica,2009,136(1):141-147.
    [9]袁三青.油藏微生物群落结构多样性[D].北京:中科院微生物所,2005.
    [10] Cavalier-Smith T. Rooting the tree of life by transition analyses[J]. Biol Direct,2006,11(1):19.
    [11] Derakshani M, Lukow T, Liesack W. Novel bacterial lineages at the (sub)division level as detected by signature nucleotide-targeted recovery of16S rRNAgenes from bulk soil and rice roots of flooded rice microcosms[J]. Appl EnvironMicrobiol.2001,67(2):623-631.
    [12] Cai J, Wang Y, Liu D, Zeng Y, Xue Y, Ma Y, Feng Y. Fervidobacteriumchangbaicum sp. nov., a novel thermophilic anaerobic bacterium isolated from ahot spring of the Changbai Mountains, China[J]. Int J Syst Evol Microbiol,2009,57(10):2333-2336.
    [13] Skirnisdottir S, Hreggvidsson GO, Hj rleifsdottir S, Marteinsson VT,Petursdottir SK, Holst O, Kristjansson JK. Influence of sulfide and temperatureon species composition and community structure of hot spring microbialmats[J].Appl Environ Microbiol,2000,66(7):2835-2841.
    [14] Ferris MJ, Ruff-Roberts AL, Kopczynski ED, Bateson MM, Ward DM.Enrichment culture and microscopy conceal diverse thermophilicSynechococcus populations in a single hot spring microbial mat habitat[J]. ApplEnviron Microbiol.,1996,62(3):1045-1050.
    [15] Nakagawa T, Fukui M. Phylogenetic characterization of microbial mats andstreamers from a Japanese alkaline hot spring with a thermal gradient[J]. J GenAppl Microbiol,2002,48(4):211-222.
    [16] Everroad RC, Otaki H, Matsuura K, Haruta S. Diversification of BacterialCommunity Composition along a Temperature Gradient at a Thermal Spring[J].Microbes Environ,2012:17.
    [17] Blackwood CB, Hudleston D, Zak DR, Buyer JS. Interpreting ecologicaldiversity indices applied to terminal restriction fragment length polymorphismdata: insights from simulated microbial communities[J]. Appl Environ Microbiol,2007,73(16):5276-5283.
    [18] Berthe-Corti L, Bruns A. The Impact of Oxygen Tension on Cell Density andMetabolic Diversity of Microbial Communities in Alkane DegradingContinuous-Flow Cultures[J]. Microb Ecol.,1999,37(1):70-77.
    [19] Bhandari V, Naushad HS, Gupta RS. Protein based molecular markers providereliable means to understand prokaryotic phylogeny and support Darwinianmode of evolution[J]. Front Cell Infect Microbiol.,2012,2:98.
    [20] Zhang XQ, Ying Y, Ye Y, Xu XW, Zhu XF, Wu M.Thermus arciformis sp. nov., athermophilic species from a geothermal area[J]. Int J Syst Evol Microbiol.,2010,60(4):834-839.
    [21] Wagner ID, Zhao W, Zhang CL, Romanek CS, Rohde M, Wiegel J.Thermoanaerobacter uzonensis sp. nov., an anaerobic thermophilic bacteriumisolated from a hot spring within the Uzon Caldera, Kamchatka, Far EastRussia[J]. Int J Syst Evol Microbiol.,2008,58(11).
    [22] Suzuki T, Hashimoto H, Matsumoto N, Furutani M, Kunoh H, Takada J.Nanometer-scale visualization and structural ana lysis of the inorganic/organichybrid structure of Gallionella ferruginea twisted stalks[J]. Appl EnvironMicrobiol,2011,77(9):2877-2881.
    [23] Caldwell SL, Liu Y, Ferrera I, Beveridge T, Reysenbach AL. Thermocrinisminervae sp. nov., a hydrogen-and sulfur-oxidizing, thermophilic member ofthe Aquificales from a Costa Rican terrestrial hot spring[J]. Int J Syst EvolMicrobiol,2010,60(2):338-343.
    [24] Nakai R, Abe T, Takeyama H, Naganuma T.Metagenomic analysis of0.2-μm-passable microorganisms in deep-sea hydrothermal fluid[J]. MarBiotechnol (NY),2011,13(5):900-908.
    [1] Forse GJ, Ram N, Banatao DR, Cascio D, Sawaya MR, Klock HE, Lesley SA,Yeates TO. Synthetic symmetrization in the crystallization and structuredetermination of CelA from Thermotoga maritima. Protein. Sci.2011,20:168-178.
    [2] Gloster TM, Macdonald JM, Tarling CA, Stick RV, Withers SG, Davies GJ.Structural, thermodynamic, and kinetic analyses of tetrahydrooxazine-derivedinhibitors bound to beta-glucosidases. J. Biol. Chem.2004,19:49236-49242.
    [3] Anderson I, Abt B, Lykidis A, Klenk HP, Kyrpides N, Ivanova N. Genomics ofaerobic cellμlose utilization systems in actinobacteria. PLoS. One.2012,7:e39331.
    [4] Maki M, Leung KT, Qin W. The prospects of cellμlase-producing bacteria for thebioconversion of lignocellμlosic biomass. Int. J. Biol. Sci.2009,29:500-516.
    [5]萨姆布鲁克等著,金冬雁等译.分子克隆实验指南(第三版)[M].北京:科学出版社,2003.
    [7] Abdellaoui R, Gouja H, Sayah A, Neffati M. An efficient DNA extraction method fordesert Calligonum species.Biochem Genet.2011,49:695-703.
    [8]东秀珠等编.常用细菌常用鉴定方法[M].北京:科学出版社,2001.
    [9] R.E.布坎南,N.E.吉本斯等编.伯杰细菌鉴定手册[M].北京:科学出版社.
    [10] Ou G, Hedberg M, H rstedt P, Baranov V, Forsberg G, Drobni M, Sandstr m O,Wai SN, Johansson I, Hammarstr m ML, Hernell O, Hammarstr m S. Proximalsmall intestinal microbiota and identification of rod-shaped bacteria associatedwith childhood celiac disease. Am. J. Gastroenterol.2009,104(12):3058-3067.
    [11] Morillo JA, Aguilera M, Antízar-Ladislao B, Fuentes S, Ramos-Cormenzana A,Russell NJ, Monteoliva-Sánchez M. Molecμlar microbial and chemicalinvestigation of the bioremediation of two-phase olive mill waste usinglaboratory-scale bioreactors. Appl. Microbiol. Biotechnol.2008,79(2):309-317.
    [12] Somerville W, Thibert L, Schwartzman K, Behr MA. Extraction ofMycobacterium tubercμlosis DNA: a question of containment. J. Clin.Microbiol.2005,43(6):2996-2997.
    [13] Kumar S, Tamura K, Nei M. MEGA3: Integrated software for MolecμlarEvolutionary Genetics Analysis and sequence alignment. Brie. Bioinform.2004,5:150-163.
    [14] Phylogenetic and molecμlar evolutionary analyses were conducted using MEGAversion5.1(Kumar, Tamura, Nei2011). http://www.megasoftware.net.
    [15] Saitou N, Nei M. The neighbor-joining method: A new method forreconstructingphylogenetic trees. Mol. Biol. Evol.1987,4:406-425.
    [16] Zhuo YH, He Y, Leung KW, Hou F, Li YQ, Chai F, Ge J. Dexamethasonedisrupts intercellμlar junction formation and cytoskeleton organization in humantrabecμlar meshwork cells. Mol. Vis.2010,16:61-71.
    [17] Maki M, Leung KT, Qin W. The prospects of cellμlase-producing bacteria for thebioconversion of lignocellμlosic biomass. Int. J. Biol. Sci.2009,5(5):500-516.
    [1] Manco G, Giosuè E, D’Auria S, Herman P, Carrea G, Rossi M. Cloning,overexpression, and properties of a new thermophilic and thermostable esterasewith sequence similarity to hormone-sensitive lipase subfamily from thearchaeon Archaeoglobus fulgidus[J]. Arch Biochem Biophys.,2000,373:182-192.
    [2] R tt M, Mathrani IM, Ahring B, Viikari L. Application of thermostablexylanase of Dictyoglomus sp. in enzymatic treatment of kraft pulps[J]. Appl.Micobiol. Biotech.1994,41:130-133.
    [3] Cai J, Wang Y, Liu D, Zeng Y, Xue Y, Ma Y, Feng Y. Fervidobacteriumchangbaicum sp. nov., a novel thermophilic anaerobic bacterium isolated from ahot spring of the Changbai Mountains, China[J]. Int J Syst Evol Microbiol,2007,57(10):2333-2336.
    [4]东秀珠等编.常用细菌常用鉴定方法[M].北京:科学出版社,2001.
    [5] R.E.布坎南,N.E.吉本斯等编.伯杰细菌鉴定手册[M].北京:科学出版社,2001.
    [6] Somerville W, Thibert L, Schwartzman K, Behr MA. Extraction ofMycobacterium tuberculosis DNA: a question of containment[J]. J ClinMicrobiol,2005,43(6):2996-2997.
    [7] Kumar, S., Tamura, K., Nei, M. MEGA3: Integrated software for MolecularEvolutionary Genetics Analysis and sequence alignment[J]. Briefings inBioinformatics,2004,5:150-163.
    [8] Phylogenetic and molecular evolutionary analyses were conducted using MEGAversion5.1(Kumar, Tamura, Nei2011). http://www.megasoftware.net.
    [9] Saitou, N., Nei, M. The neighbor-joining method: A new methodforreconstructing phylogenetic trees. Molecular Biology and Evolution[J/OL],1987,4:406-425.
    [10] Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler P, Krichevsky MI,Moore LH, Murray RGE, Stackebrandt E, Starr MP and Trüper HG. Report ofthe Ad Hoc Committee on Reconciliation of Approaches to BacterialSystematics[J]. Int. J. Syst. Bacteriol,1987,37:463-464.
    [11] Spain J.C. Biodegradation of nitroaromatic compounds[J]. Annu Rev Microbiol,1995,49:523-555.
    [12] M.W.Adams, F.B.Perler, R.M.Kelly. Extremozymes: expanding the limits ofbiocatalysis[J]. Biotechnology (N Y),1995,13(7):662-668.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700