用户名: 密码: 验证码:
鳞翅目线粒体基因组分析及部分蛾类DNA条形码鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
线粒体基因组结构稳定、长度较小,较少发生重组,普遍为母性遗传,被广泛应用于种群遗传结构、基因漂流、谱系地理学和系统发育等研究。鳞翅目是昆虫纲四大目之一,种类繁多,全世界已知鳞翅目昆虫约达25万种,但目前已测定的鳞翅目线粒体基因组仅34种,对于庞大的鳞翅目种群来说,十分有限。加快鳞翅目线粒体基因组的测序和分析,对揭示鳞翅目线粒体基因组的进化和研究该类群复杂的系统发育关系有重要意义。
     本文选取了鳞翅目2个种米蛾及旋纹潜叶蛾进行了线粒体基因组测序和注释,比较分析了鳞翅目34种昆虫的线粒体基因组结构、碱基组成特点、密码子使用情况、各蛋白质编码基因的进化速率。基于线粒体基因组进行了鳞翅目高阶元系统发育分析。
     鳞翅目蛾类绝大多数是农、林业害虫,而且主要在幼虫时期进行危害,构建DNA条形码数据库,可确保对蛾类幼虫的快速准确鉴定,保证防控措施的有效实施。本文基于线粒体coxl基因对采自果园内的鳞翅目蛾类进行了调查鉴定,充实了鳞翅目DNA条形码数据库,检验了目前BOLD系统对农林害虫的鉴定成功率,检验了NJ树鉴定物种的准确度,对种内种间遗传距离进行了计算与讨论。
     主要研究结果如下:
     1.首次测定了螟蛾总科米蛾及巢蛾总科旋纹潜叶蛾线粒体全基因组序列,并分别进行了注释,预测了tRNA和rRNA基因的二级结构,分析了A+T富含区结构。米蛾及旋纹潜叶蛾的22个tRNA除了trns1     2.鳞翅目线粒体基因组的AT含量较高,各线粒体基因组H链上蛋白质基因编码区所有密码子位点的AT偏斜和GC偏斜均为负值,表示T含量高于A,C含量高于G。综合线粒体蛋白质编码基因的Ka/Ks比率、种间基因差异位点和基因变异分析,得出整个鳞翅目线粒体基因组进化速率比较快,其中脱氢酶亚基NADH基因进化速率通常快于细胞色素氧化酶基因。其中线粒体coX1基因进化速率居中,引物通用,适用于DNA条形码研究。
     3.基于线粒体基因组所构建的鳞翅目系统发育树的基本结构为(巢蛾总科+(卷蛾总科+(凤蝶总科+(螟蛾总科+(夜蛾总科+(尺蛾总科+蚕蛾总科))))))。其中凤蝶总科、螟蛾总科和夜蛾总科的位置与传统形态分类不同,旋纹潜叶蛾所代表的巢蛾总科的位置与传统形态分类相同。
     4.基于线粒体cox1基因所构建的NJ树,对果园采集的蛾类鉴定成功率为99.3%,证明线粒体coxl基因适用于鳞翅目蛾类鉴定。BOLD系统的鉴定成功率为75.1%,大蛾类比小蛾类成功率高,说明小蛾类数据欠缺。BOLD系统鉴定结果相似度在99%的鉴定成功率为94.6%;相似度在98-99%之间的鉴定成功率为89.6%;低于98%的鉴定成功率为12.2%。利用BOLD系统对鳞翅目蛾类进行鉴定时,建议常见种类以相似度大于99%为准确鉴定结果。种内种间遗传距离计算结果表明,86%的种类种内遗传距离低于1%,14%的种类在1-4.3%,同属种间遗传距离在1.3-15.3%,种内种间遗传距离有重叠,且无明显的种间阈值存在。
The mitochondrial genome is widely used for population genetic structure, gene flow, phylogeography and phylogenetic study, because of the structural stability, smaller length, less frequent reorganization and generally maternal inheritance. Lepidoptera is classified as Insecta, and widely distributed around the world with approximately250,000species. At present, there are34species mitochondrial genome sequenced successfully in Lepidoptera. But it is still very limited for large Lepidopteran populations. To reveal mitochondrial genome evolution and the phylogenetic relationship of Lepidoptera, it is very necessary that accelerating the Lepidopteran mitochondrial genome sequencing and analysis.
     We selected two species (rice moth Corcyra cephalonica and leafminer moth Leucoptera malifoliella) to sequence and annotate the complete mitochondrial genome, and conducted a comparative analysis of the mitochondrial genomes in Lepidoptera, which mainly include the characteristics of base composition, codon usage, evolutionary rate of each protein-coding genes. Based on the mitochondrial genome we reconstructed phylogenetic relationship of Lepidoptera.
     Lepidopteran moths mostly are agricultural and forestry pests, and mainly feeding on host plant during the larval stage. The DNA barcode database can ensure fast and accurate identification of moths'caterpillars, and provide accurate information for pest control. Based on mitochondrial coxl gene we surveyed and identified lepidopteran moths collected from an orchard, tested the successful rate of BOLD system and NJ tree for lepidopteran pests, calculated and discussed the inter-and intra-specific genetic distances.
     The main results are as follows:
     1. Nucleotide composition of C. cephalonica and L. malifoliella mitogenome genome are highly A+T biased (80.43%) and (82.57%),like other insects. Twelve PCGs start with a typical ATN codon, with the exception of cox1gene, which uses CGA as the initial codon.22tRNA genes evidence cloverleaf secondary structure, but trnS1(AGN) is found to lack the DHU stem. The secondary structure of rrnL and rrnS are generally similar to other lepidopterans with some minor differences. The L. malifoliella A+T-rich region includes the motif ATAGA, but the poly (T) stretch is replaced by a stem-loop structure, which may have a similar function to the poly (T) stretch. There is a high sequence identity between the intergenic spacer sequence trnQ-nad2and the neighboring nad2from most lepidopteran insects, this indicated that the intergenic spacer sequence trnQ-nad2may have originated from a partial duplication of the nad2gene.
     2. The Lepidopteran mitochondrial genome have higher AT content, the AT skew and GC skew on the H chain of protein coding region are negative, which indicating that the T content is higher than A, the C content higher than G. Based on the Ka/Ks ratio, the interspecific gene loci divergence and gene mutation analysis, we found that evolutionary rate of dehydrogenase subunit the NADH gene usually faster than cytochrome oxidase gene. The coxl gene is moderate compared to other genes, and suitable for DNA barcode study.
     3. The basic structure of the phylogenetic tree based the mitochondrial genomes is (Yponomeutoidea+(Tortricoidea+(Papilionoidea+(Pyraloidea+(Noctuoidea+(Geometroidea+Bombycoidea)))))). The positions of Papilionoidea, Pyraloidea and Noctuoidea are different from the traditional classification. The position of Yponomeutoidea represented by L.malifoliella, is same as traditional classification. Yponomeutoidea is sister group to the other lepidopteran superfamilies covered in the present study.
     4. The NJ tree based on coxl gene shows identification successful rate is99.3%for moths collected from orchard, which prove that coxl gene is suitable for identification of Lepidopteran moths. The successful rate of the BOLD system is75.1%, and the the big moths have higher rates than the small moths,which shows the BOLD system lacked datas of small moths. The identification successful rate is94.6%when results similarity is greater than99%in the BOLD system, and successful rate is89.6%when the similarity in the range of98-99%, and successful rate is12.2%when the similarity less than98%. So it is accurate that the similarity of BOLD system identification is greater than99%for common species. Inter-and intra-specific genetic distances show that86%of the intraspecific genetic distances are less than1.0percent,14%are in the range of1.0-4.3percent. The interspecific genetic distances of the same genus are in the range of1.3-15.3percent, there are overlaps between inter-and intra-specific genetic distances, and not threshold value between inter-and intra-specific genetic distances.
引文
[1]Gabaldon T, HuynenM A. Reeonstruction of the proto-mitochondrial metabolism. Science,2003,301(5633):609.
    [2]曹阳,唐任天,刘良式.家蚕后部丝腺DNA的制备.1986,遗传学报,13(3):207-212.
    [3]Avise J C, Ellis D. Mitochondrial DNA and the evolutionary genetics of higher animals. PhilosoPhical Transactions of the Royal Society of London.1986,312(1154):325-342.
    [4]Wilson, A C, Cann, R L, Carr, S M, et al.. Mitochondrial DNA and two Perspectives on evolutionary genetics. Biological Joural of the Linnean Society,1985,26(4):375-400.
    [5]Gray M W, Burger G, Lang B F. Mitochondrial evolution. Science,1999, 283(5407):1476.
    [6]黄原.分子系统学原理、方法及应用.北京,中国农业出版社,1998,235-240.
    [7]Cummings D J, McNally K L, Domenico J M, et al.. The complete DNA sequence of the mitochondrial genome of Podospora anserina. Cuurent Genetics,1990,17(5):375-402.
    [8]Maehida R J, Miya M U, Nishida M. Complete mitochondrial DNA Sequence of Tigriopus japonicus (Crustaeea:Copepoda). Mar Bioteehnol,2002, 4(4):406-417.
    [9]Yamauehi M, Miya M, Nishida M. Complete mitochondrial DNA sequence of the Japanese spiny lobster, Panulirus joponicus(Crustaeea:Decapoda). Gene,2002,295(1):89-96.
    [10]Ogoh K, ohmiya Y. Complete mitochondrial DNA sequence of the sea firefiy, Vargula higendorfil (Crustaee:Ostraeoda) with duplicate control regions. Gene,2004,327(1):131-139.
    [11]Nardi F, Carapelli A, Dallai R, et al.. The mitochondrial genome of the olive fly Bactrocera oleae:two haplotypes from distant geographic locations. Insect Mol Biol,2003,12(6):605-611.
    [12]0jala D, Montoya J, Attardi G. tRNA punctuation model of RNA processing in Human micothnodira. Nature,1981,290(5806):470-474.
    [13]Kim L, Cha S Y, Yoon M H. The complete nucleotide sequence and gene Organization of the mitochondrial genome of the oriental mole cricket, Gryllotalpa orientalis (OrthoPtera:GryllotaIPidae). Gene,2005,353 (2):155-168.
    [14]Masta S E. Mitochondrial sequence evolution in spiders: intraspecific variation in tRNAs lacking the TΨC Arm. Mol Bio Evol,2000, 17(7):1091-1100.
    [15]Wolstenholme D R. Animal mitochondrial DNA:Structure and evolution. Int Rev Cytol,1992,141:173-216.
    [16]Lewis D L, Farr C L, Kaguni L S. Drosophila melanogaster mitochondrial DNA:Completion of the nucleotide sequence and evolutionary comparisons. Insect Mol Biol,1995,4:263-278.
    [17]Crozier R H, Crozier Y C. The mitochondrial genome of the honeybee Apis mellifera:Complete sequence and genome organization. Genetics,1993, 133(1)197-117.
    [18]Vila M, Bjorkiund M. The utility of the neglected mitochondrial control region for evolutionary studies in Lepidoptera (insecta). J Mol Evol,2004,58(3):280-290.
    [19]Mardulyn P, Termonia A, Milinkovitch M C. Structure and evolution of the Mitochondrial control region of leaf beetles (ColeoPtera: Chrysomelidae):a Hierarehical analysis of nucleotide sequence variation. J Mol Evol,2003,56(1):38-45.
    [20]Sehultheis A S, Weigt L A, Hendrieks A C. Arrangement and structural conservation of the mitochondrial control region of two species of Plecoptera:utility of tandem repeat-containing regions in studies of population genetics and evolutionary history. Inseet Mol Biol,2002, 11(6):605-610.
    [21]Zhang D X, Hewitt G M. Highly conserved nuclear copies of the mitochondrial control region int he desert locust Schistocerca gregaria:some implications for population studies. Mol Ecol,1996, 5(2):295-300.
    [22]Brown W M, George M, Wilson A C. Rapid evolution of animal mitochondrial DNA. Proceedings of the National Academy of Sciences of the United states of America,1979,76(4):1967-1971.
    [23]Ballard J W 0, Dean M D. The mitochondrial genome:mutation, selection and recombination. Current Opinion in Genetics & Development, 2001,11(6)-.667-672.
    [24]Simon C, Frati F, Bekenbach A, et al.. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain-reaction primers. Ann Entomol Soc Am,1994, 87:651-701.
    [25]Touehon M, Roeha E P C. From GC skews towavelets:Agentle guide to the analysis of compositional asymmeries in genomic data. Biochimie,2008, 90(4):648-659.
    [26]Cha S Y, Yoon H J, Lee E M, et al.. The complete nucleotide sequence and gene organization of the mitochondrial genome of the bumblebee, Bombus ignizus (Hymenoptera:Apidae). Gene,2007,392(1-2):206-220.
    [27]Hu J, Zhang D X, Hao J S, et al.. The complete mitochondrial genome of the yellow coaster, Acraea issoria (Lepidoptera:Nymphalidae: Heliconiinae:Acraeini):sequence, gene organization and a unique tRNA translocation event. Mol Biol Rep,2010,37(7):431-3438.
    [28]Richards 0 W, Davies R G. IMMS' General Textbook of Entomology Vol. 2, Classification and Biology 10th ed. London:Chapman and Hall,1977,932 pp.
    [29]Kristensen N P. (Ed.). Lepidoptera, Moths and Butterflies. Volume 1:Evolution, Systematics, and Biogeography. Handbuch der Zoologie. Eine Naturgeschichte der Stamme des Tierreiches/Handbook of Zoology. A Natural History of the phyla of the Animal Kingdom,1999, Band/Volume IV Arthropoda:Insecta Teilband/Part 35:491 pp.
    [30]Nardi F, Carapelli A, Dallai R. Population structure and colonization history of the olive fly Bactrocera oleae. Mol Ecol,2005, 14(9):2729-2738.
    [31]Simon C, Buckley T, Frati F. Incorporating molecular evolution into phylogenetic analysis, and a new compilation of conserved Polymerase Chain reaction primers for animal mitochondrial DNA. Annu. Rev. Ecol. Evol Syst,2006,37(1):545-579.
    [32]Cameron S, Whiting M. Mitochondfial genome comparisons of the subterranean termites from the genus Reticuliterms. Genome,2007,50(2): 188-202.34.
    [33]Armstrong K, Ball S. DNA barcodes for biosecurity:invasive species identification. Philos. Trans R Soc Biol Sc,2005,360(1462):1813-1823.
    [34]Caterino M S, Cho S, Sperling F A. The current state of insect molecular systematics:a thriving Tower of Babel. Annual Review of Entomology,2000,45:1-54.
    [35]戴金霞.线粒体Cytb基因与昆虫分子系统学研究.四川动物,2005,24(2):222-225.
    [36]黄华平,杨腊英,王国芬.rDNA和mtDNA在昆虫系统发育与区系研究中应用.华南热带农业大学学报,2006,12(4):45-49.
    [37]De Jong R, Vane-Wright R, Ackery P. The higher classification of butterflies:problems an d prospects. Entomol Scand,1996,27(1):65-101.
    [38]Mahendran B, Ghosh S, Kundu S. Molecular phylogeny of silk-producing insects based on 16S ribosomal RNA and cytochrome oxidase subunit I genes. J Genet,2006,85(1):31-38.
    [39]Miya M, Nishida M. Use of mitogenomic information in teleostean molceular phylogeneties:a tree-based exploration under the maximum-parsimony optimality criterion. Molecular Phylogenetics and Evolulion, 2000,17(3):437-455.
    [40]Ballard J W 0, Whitlock M C. The incomplete natural history of mitochondria. Molecular Ecology,2004,13(4):729-744.
    [41]Williams S T, Knowlton N. Mitochondrial pseudogenes are pervasive and often insidious in the snapping shrimp genus Alpheus. Mol Biol Evol, 2001,18:1484-1493.
    [42]Silva-Brandao K L, Lyra M L, Freitas A V L. Brcoding Lepidoptera: Current Situation and Perspectives on the Usefulness of a Contentious Technique. Neotropical Entomology,2009,38(4):441-451.
    [43]Thalmann 0, Hebler J, Poinar H N, et al.. Unreliable mtDNA data due to nuclear insertions:a cautionary tale from analysis of humans and other great apes. Mol Ecol,2004,13:321-335.
    [44]Hurst G D D, Jiggins F M. Problems with mitochondrial DNA as a marker in population, phylogeographic and Phylogenetic studies:the effeets of inherited symbionts. Proeeeding of the Royal Society B:Biological Sciences,2005,272(1572):1525-1534.
    [45]Hassanin A, Leger N, Deutsch J. Evidence for multiple reversals of asymmetric mutational constraints during the evolution of the mitochondrial genome of Metazoa, and consequences for phylogenetic inferences. Systematic Biology,2005,54(2):277-298.
    [46]Dowton M, Campbell N J H. Intramitochondrial recombination-is it why some mitochondrial genes sleep around? Tends in Ecology and Evolution, 2001,16(6):267-271.
    [47]Sun H, Zhou K, Song D. Mitochondrial genome of the Chinese mitten crab Eriocheir japonica sinenesis (Brachyura:Thoraeotremata:Grapsoidea) reveals a novel gene order and two target regions of gene rearrangements. Gene,2005,349:207-217.
    [48]Erwin T L. Tropical forests:their richness in Coleoptera and other arthropod species. Coleopt Bull,1982,36:74-75.
    [49]May R M. How many species? Phil. Trans. R. Soc. Lond. B.,1990, 330:293-304.
    [50]Hebert P D N, Penton E H, Burns J M, et al.. Ten species in one:DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc Natl Acad Sci USA,2004,101:14812-14817.
    [51]Ward R D, Zemlak T S, Innes B H, et al.. DNA barcoding Australia's fish species. Philos Trans R Soc Lond B Biol Sci,2005,360:1847-1857.
    [52]Barber P, Boyce S L. Estimating diversity of Indo-Pacific coral reef stomatopods through DNA barcoding of stomatopod larvae. Proc R Soc B,2006, 273:2053-2061.
    [53]Chantangsi C, Lynn D H, Brandl M T, et al.. Barcoding ciliates:a comprehensive study of 75 isolates of the genus Tetrahymena. Int J Syst Evol Microbiol,2007,57:2412-2425.
    [54]Smith M A, Rodriguez J, Whitfield J, et al.. Extraordinary diversity of parasitoid wasps exposed by iterative integration of natural history, DNA barcoding, morphology and collections. Proc Natl Acad Sci USA,2008, 105:12359-12364.
    [55]Tautz D, Arctander P, Minelli A, et al.. DNA points the way ahead in taxonomy. Nature,2002,418-479.
    [56]Tautz D, Arctander P, Minelli A, et al... A plea for DNA taxonomy. Trends Ecol Evol,2003,18:70-74.
    [57]Hebert P D N, Cywinska A, Ball S L, et al.. Biological identifications through DNA barcodes. Proc R Soc Biol Sci Ser B,2003, 270:313-321.
    [58]Hebert P D N, Ratnasingham S, deWaard J R. Barcoding animal life:cytochrome coxidase subunit 1 divergences among closely related species. Proc R Soc Biol Sci Ser B,2003,270:S96-S99.
    [59]Wilson J J. Assessing the Value of DNA Barcodes and Other Priority Gene Regions for Molecular Phylogenetics of Lepidoptera. PLoS One,2010, 5(5):e10525.
    [60]Min X J, Hickey D A. DNA Barcodes Provide a Quick Preview of Mitochondrial Genome Composition. PLoS ONE,2007,2(3):e325.
    [61]Luo A R, Zhang A B, Ho S Y I, et al.. Potential efficacy of mitochondrial genes for animal DNA barcoding:a case study using eutherian mammals, BMC Genomics,2011, Jan 28;12:84. doi:10.1186/1471-2164-12-84.
    [62]关申民,高邦权.CO Ⅰ序列:影响动物分类学与生态学的DNA Barcode.生态学杂志,2008,27(8):1406-1412.
    [63]Seifert K A, Samson R A, Dewaard J R, et al.. Prospects for fungus identification using C01 DNA barcodes, with Penicillium as a test case. Proc Natl Acad Sci USA,2007,104:3901-3906.
    [64]Kress W J, Erickson D L A T. A Two-Locus Global DNA Barcode for Land Plants:The Coding rbcL Gene Complements the Non-Coding trnH-psbA Spacer Region. PLoS ONE,2007,2(6):e508.
    [65]Remigio E A, Hebert P D N. Testing the utility of partial CO Ⅰ sequences for phylogenetic estimates of Gastropod relationships. Mol Phylogenet Evol,2003,29:641-647.
    [66]Greenstone M H, Rowley D L, Heimbach U, et al.. Barcoding generalist predators by polymerase chain reaction:carabids and spiders. Mol Ecol, 2005,14:3247-3266.
    [67]Costa F O, deWaard J R, Boutillier J, et al.. Biological identifications through DNA barcodes:the case of the Crustacea. Can J FishAquat Sci,2007,64:272-295.
    [68]Hajibabaei M, Janzen D H, Burns J M, et al.. DNA barcodes distinguish species of tropical Lepidoptera. Proc Natl Acad Sci USA,2006, 103:968-971.
    [69]Burns J M, Janzen, D H, Hajibabaei M, et al.. DNA barcodes and cryptic species of skipper butterflies in the genus Perichares in Area de Conservacion Guanacaste. Costa Rica. Proc Natl Acad Sci USA,2008, 105:6350-6355.
    [70]Kumar N P, Rajavel A R, Natarajan R, et al.. DNA barcodes can distinguish species of Indian mosquitoes (Diptera:Culicidae). J Med Entomol,2007,44:1-7.
    [71]Vences M, Thomas M, van der Mei jden A, et al.. Comparative performance of the 16SrRNA gene in DNA barcoding of amphibians. Frontiers in Zoology,2005,2:51-53
    [72]Hebert P D N, Stoeckle M Y, Zemlak T S, et al.. Identification of birds through DNA barcodes. Plos Biol,2004,2:1657-1663.
    [73]Lorenz J G, Jackson W E, Beck J C, et al.. The problems and promise of DNA barcodes for species diagnosis of primate biomaterials. Phil Trans R Soc,2005,360:1869-1878.
    [74]高玉石,屠云洁,童海兵等.6个地方鸡种线粒体CO Ⅰ基因的DNA条形码.农业生物技术学报,2007,15(6):924-930.
    [75]屠云洁,陈国宏,高玉石等.3个地方鸡种线粒体DNACO I基因条形码遗传多样性研究.家畜生态学报,2009,30(1):16-19.
    [76]冯毅,王莉,白云峰等.基于CO Ⅰ序列快速鉴定花蓟马的DNA条形码芯片初探.生物技术通报,2009,8:169-173.
    [77]彭居俐,王绪祯,王丁等.基于线粒体CO Ⅰ基因序列的DNA条形码在鲤科鲌属鱼类物种鉴定中的应用.水生生物学报,2009,33(2):271-276.
    [78]王中铎,郭昱嵩,陈荣玲等.南海常见硬骨鱼类CO Ⅰ条码序列.海洋与湖沼,2009,40(5):608-614.
    [79]Huang J, Qin X Q, Sun Z J, et al.. Identifying earthworms through DNA barcodes. Pedobiologia,2007,51:301-309.
    [80]Evans K M, Wortley A H, Mann D G. An assessment of potential diatom "barcode" genes (coxl, rbcL,18S and ITS rDNA) and their effectiveness in determining relationships in Sellaphora (Bacillariophyta). Protist, 2007,158:349-364.
    [81]Janzen D H, Hajibabaei M, Burns J M, et al.. Wedding biodiversity inventory of a large complex Lepidoptera fauna with DNA barcoding. Philos Trans R Soc Lond B Biol Sci,2005,360:1835-1845.
    [82]Monaghan M T, Wild R, Elliot M, et al.. Accelerated species inventory on madagascar using coalescent-based models of species delineation. Syst Biol,2009,58:298-311.
    [83]Vaglia T, Haxaire J, Kitching I J, et al.. Morphology and DNA barcoding reveal three cryptic species within the Xylophanes neoptolemus and loelia species-groups (Lepidoptera:Sphingidae). Zootaxa,2008, 1923:18-36.
    [84]Domingo-Roura X, Marmi J, Ferrando A, et al.. Badger hair in shaving brushes comes from protected Eurasian badgers. Biol. Co. Jansman nserv, 2006,128:425-430.
    [85]Teletchea F, Bernillon J, Duffraisse M, et al.. Molecular identification of vertebrate species by oligonucleotide microarray in food and forensic samples. J Appl Ecol,2008,45:967-975.
    [86]Sugimoto T, Nagata J, Aramilev V V, et al.. Species and sex identification from faecal samples of sympatric carnivores, Amur leopard and Siberian tiger, in the Russian Far East. Conserv. Genet,2006, 7:799-802.
    [87]Brown J K S, Freitas A V L,1999. Lepidoptera, p.225-243. In Brandao C R F, Cancello EM(eds) Invertebrados terrestres, v.5, xvii+279p. In Joly CA, Bicudo C E deM(orgs) Biodiversidade do estado de Sao Paulo, Brasil:sintese do conhecimento ao final do seculo XX. Sao Paulo, Fundacao de Amparo a Pesquisa do Estado de Sao Paulo-FAPESP.
    [88]Heppner J B. Classification of Lepidoptera:Part Ⅰ. Introduction. Trop Lepid 5 (suppl.1):1-148.1998.
    [89]Kristensen N P, Scoble M J, Karsholt 0. Lepidoptera phylogeny and systematics:the state of inventorying moth and butterfly diversity. Zootaxa,2007,1668:699-747.
    [90]濮佳明,武松,霍锡敏等.珍稀绢丝昆虫柳蚕的DNA条形编码与系统进化初步分析.蚕业科学,2009,35:154-9.
    [91]武松,李玉萍,夏润玺等.樗蚕和蓖麻蚕的DNA条形编码与系统进化分析.蚕业科学,2009,35:533-538.
    [92]DeSalle R, Egan M G, Siddall M E. The unholy trinity:taxonomy, species delimitation, and DNA barcoding. Philisophical Transactions of the Royal Society,2005,360:1905-1916.
    [93]Rach J, Desalle R, Sarkar I N, et al.. Character-based DNA barcoding allows discrimination of genera, species and populations in Odonata. Proc R Soc B,2008,275:237-247.
    [94]Kelly R P, Sarkar I N, Eernisse D J, et al.. DNA barcoding using chitons (genus Mopalia). Molecular Ecology,2007,7:177-183.
    [95]Vogler A P, Monaghan M T. Rencent advances in DNA taxonomy. J Zool Syst Evol Res,2007,45(1):1-10.
    [96]DeWaard J R, Landry J F, Schmidt B C, et al.. In the dark in a large urban park:DNA barcodes illuminate cryptic and introduced moth species. Biodivers Conserv,2009,18(14):3825-3839.
    [97]Lahaye R, van der Bank M, Bogarin D, et al.. DNA barcoding the floras of biodiversity hotspots. Proc Natl Acad Sci USA,2008,105(8):2923-2928.
    [98]Edgar R C. MUSCLE:Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research,2004,32(5):1792-1797.
    [99]Swofford D L. PAUP*:Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4.0b 10. Sinauer Associates, Sunderland, MA. 2002.
    [100]Tamura K, Peterson D, Peterson N, et al.. MEGA5:Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Molecular Biology and Evolution, 2011,28:2731-2739.
    [101]Casiraghi M, Labra M, Ferri E, et al.. DNA barcoding:a six-question tour to improve users awareness about the method, Brief Bioinform,2010, 11(4):440-453.
    [102]Erpenbeck D, Hooper J N A, Worheide G. COI phylogenies in dipl oblasts and the'barcoding of Life'-are we sequencing a suboptima 1 partition? Mol Ecol Notes,2006,6:550-553.
    [103]Shearer T L, Van Oppen M J H, Romano S L, et al.. Slow mitochondrial DNA sequence evolution in the Anthozoa (Cnidaria). Molecular Ecology, 2002,11:2475-2487.
    [104]Kress W J, Wurdack K J, Zimmer E A, et al.. Use of DNA barcodes to identify flowering plants. Proceedings of the National Academy of Sciences,2005,102:8369-8374.
    [105]Chase M W, Salamin N, Wilkinson M, et al.. Land plants and DNA barcodes:short-term and longterm goals. Philos Trans R Soc Lond B Biol Sci,2005,360:1889-1895.
    [106]Pennisi E. Wanted:a barcode for plants. Science,2007,318: 190-191.
    [107]Funk D J, Helbling L, Wernegreen JJ, et al.. Intraspecific phylogenetic congruence among multiple symbiont genomes. Proc R Soc Biol Sci Ser B,2000,267:2517-2521.
    [108]Whitworth T L, Dawson R D, Magalon H, et al.. DNA barcoding cannot reliably identify species of the blowfly genus Protocalliphora (Diptera:Calliphoridae). Proc R Soc Biol Sci Ser B,2007,274:1731-1739.
    [109]Funk D J, Omland K E. Species-level paraphyly and polyphyly: frequency, causes, and consequences, with insights from animal mitochondrial DNA. Ann Rev Ecol Evol Syst,2003,34:397-423.
    [110]Hulcr J, Miller S E, Setliff G P, et al.. DNAbarcoding confirm s polyphagy in a generalist moth, Homona mermerodes (Lepidoptera:Tort ri-cidae). Mol Ecol Notes,2007,7:549-557.
    [111]Meyer C P, Paulay G. DNA barcoding:error rates based on comprehensive sampling. PLoS Biol,2005,3:2229-2238.
    [112]Meier R, Shiyang K, Vaidya G, et al.. DNA Barcoding and taxonomy in Diptera:a tale of high intraspecific variability and low identification sucess. Syst Biol,2006,55:715-728.
    [113]Folmer 0, Black M, Hoeh W, et al.. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol,1994,3:294-299.
    [114]Roe A D, Sperling F A. Patterns of evolution of mitochondrial cytochrome coxidase I and II DNA and implications for DNA barcoding. Mol Phylogenet Evol,2007,44:325-345.
    [115]Xiao J, Wang N, Li Y, et al.. Molecular Approaches to Identify Cryptic Species and Polymorphic Species within a Complex Community of Fig Wasps. PlosOne,2010,5(11):e15067.
    [116]Matz M, Nielsen R. A likelihood ratio test for species membership based on DNA sequence data. Phil Trans R Soc B,2005,360:1969-1974.
    [117]Sevilla R G, Diez A, Noren M, et al.. Primers and polymerase chain reaction conditions for DNA barcoding teleost fish based on the mitochondrial cytochrome b and nuclear rhodopsin genes. Mol Ecol Notes, 2007,7(5):730-734.
    [118]Smith M A, Wood D M, Janzen D H, et al.. DNA barcodes affirm that 16 species of apparently generalist tropical parasitoid flies (Diptera:Tachinidae) are not all generalists. Proc Natl Acad Sci USA,2007, 104 (12):4967-4972.
    [119]Mann T L, Krull U J. The application of ultrasound as a rapid method to provide DNA fragments suitable for detection by DNA biosensors. Biosensors and Bioelectronics,2009,20 (5):945-955.
    [120]Mayr E. Animal Species and Evolution. The Belknap Press, Cambridge, MA.1963.
    [121]Hennig W. Phylogenetic Systematics. University of Illinois Press, Urbana.1966.
    [122]Wu C I. The genie view of the process of speciation. J Evol Biol, 2001,14:851-865.
    [123]Hickerson M J, Meyer C P, Moritz C. DNA barcoding will often fail to discover new animal species over broad parameter space. Syst Biol,2006, 55:729-739.
    [124]Wiemers M, Fiedler K. Does the DNA barcoding gap exist?-a case study in blue butterflies (Lepidoptera:Lycaenidae). Front Zool,2007, 4:8-23.
    [125]Townzen J S, Brower A V Z, Judd D D. Identification of mosquito bloodmeals using mitochondrial cytochrome oxidase subunit I and cytochrome b gene sequences. Med Vet Entomol,2008,22:386-393.
    [126]Rubinoff D, Cameron S, Will K. Are plant DNA barcodes a search for the Holy Grail? Trends Ecol Evol,2006,21(1):1-2.
    [127]Sheppord S, Henneman M, Memmott J. Infiltration by alien predators into invertebrate food webs in Hawaii:a molecular approach. Mol Ecol,2004, 13(7):2077-2088.
    [128]Arunkumar K, Metta M, Nagaraju J. Molecular phylogeny of silkmoths reveals the origin of domesticated silkmoth, Bombyx mori from Chinese Bombyx mandarina and paternal inheritance of Anthernea proflei mitochondrial DNA. Mol Phylogen Evol,2006,40(2):419-427.
    [129]Hundsoerfer A, Kitehing I, Wink M. A molecular phylogeny of the hawkmoth genus Hyles. Mol Phylogen Evol,2005,35(2):442-458.
    [130]Lange C, Scott K, Graham G. Sugarcane mothborers:phylogenetics constructed using CO Ⅱ and 16S mitochondrial partial gene sequences. Bull Entomol Res,2004,94(5):457-464.
    [131]Kouai A. Mitochondrial DNA restriction map and cytochrome coxidase subunitsⅠ and Ⅱ sequence divergence of corn stalk borer Sesamia nonagrioides. Biochem Genet,2006,4 (7/8):321-332.
    [132]Behere G, Tay W, Russell D. Mitochondrial DNA analysis of field populations of Helicoverpa armigera and of its relationship to H. zea. BMC Evol Biol,2007,7(1):117.
    [133]Nagoshi R, Silvie P, Meagher R. Comparison of haplotype frequencies diferentiate fall armyworm corn-strain populations from Florida and Brazil. J Eeon Entomol,2007,100(3):954-961.
    [134]Kawakita A, Takimura A, Terachi T. Cospeciation analysis of an obligate pollination mutualism:have Glochidion trees and pollinating Epicephala moths diversified in parallel? Evol Ira J Org Evol,2004, 58(10):2201-2214.
    [135]0hshima I, Yoshizawa K. Multiple host shifts between distantly related plants, Juglandaceae and Ericaceae, in the leaf-mining moth Acrocercops leucophaea complex. Mol Phylogen Evol,2006,38(1):231-240.
    [136]Roe A, Sperling F. Population structure and species boundary delimitation of cryptic Dioryctria moths:all integrative approach. Mol Ecol,2007,16(17):3617-3633.
    [137]Agusti N, Bourguet D, Spataro T. Detection, identification and geographical distribution of European corn borer larval parasitoids using molecular markers. Mol Ecol,2005,14(10):3267-3274.
    [138]0hno S, Ishikawa Y, Tatsuki S. Variation in mitochondrial COⅡ gene sequences among two species of Japanese knotweed-boring moths, Ostrinia latipennis and 0. ovalipennis. BulZ Entomol Res,2006,96(3): 243-249.
    [139]杨瑞生,王振营,何康来.秆野螟属部分种的线粒体CO Ⅱ基因序列分析及其分子系统学.昆虫学报,2008,51(2):182-189.
    [140]Bucheli S, Wenzel J. Gelechioidea systematics:a reexamination using combined morphology and mitochondrial DNA data. Mol Phylogen Evol, 2005,35(2):380-394.
    [141]Santos H, Rousselet J, Magnoux E. Genetic isolation through time: allochronic differentiation of a phenologically atypical population of the pine processionary moth. Proc Biol Sci,2007,274(1612):935-941.
    [142]Simonato M, Mendel Z, Kerdelhue C. Phylogeography of the pine processionary moth Thaumetopoea wilkinsoni in the Near East. Mol Ecol, 2007,16(11):2273-2283.
    [143]Fanvelot C, Cleary D, Menken S. Short-term impact of disturbance on genetic diversity and structure of Indonesian populations of the butterfly Drupadia theda in East Kalimantan. Mol Ecol,2006,15(8): 2069-2081.
    [144]0moto K, Katoh T, Chichvarkhin A. Molecular systematics and evolution of the "Apollo" butterflies of the genus Parnassius based on mitochondrial DNA sequence data. Gene,2004,326(4):141-147.
    [145]诸立新,吴孝兵,晏鹏.基于COⅠ基因部分序列对尾凤蝶属四种蝴蝶分子系统关系及相关问题的探讨.动物分类学报,2006,31(1):25-30.
    [146]Zakharov E, Caterino M, Sperling F. Molecular phylogeny, historical biogeography, and divergence time estimates for swallowtail butterflies of the genus Papilio. Syst Biol,2004,53(2):193-215.
    [147]Zakharov E, Smith C, Lees D. Independent gene phylogenies and morphology demonstrate a Malagasy origin for a wide-ranging group of swallowtail butterflies. Evolution,2004,58(12):2763-2782.
    [148]DeChaine E, Martini A. Historic cycles of fragmentation and expansion in Parnassius smintheuz infered using mitochondrial DNA. Evol Int J Org Evol,2004,58(1):113-127.
    [149]Nazari V, Zakharov E, Sperling F. Phylogeny, historical biogeography, and taxonomic ran king of Parnassiinae based on morphology and seven genes. Mol Phylogen Evol,2007.42(1):131-156.
    [150]苏成勇,朱国萍,郝家胜.凤蝶亚科16S rRNA基因的分子系统发生分析.动物分类学报,2007,32(2):335-342.
    [151]诸立新,吴孝兵,晏鹏.从COI和COⅡ基因部分序列研究中国翠凤蝶亚属的分子系统关系.动物学报,2007,53(2):257-263.
    [152]Braby M, Vila R, Pierce N. Molecular phylogeny and systematics of the Pieridae:higher classification and biogeography. Zool J Linn Soc, 2006,147(2):239-275.
    [153]Vandewoestijne S, Baguette M, Brakefield P. Phylogeography of Aglais urticne based on DNA sequences of the mitochondrial CO I gene and control region. Mol phylogen Evol,2004,31(2):630-646.
    [154]Mallarino R, Bermingham E, Willmott K. Molecular systematics of the butterfly genus Ithomia:a composite phylogenetic hypothesis based on seven genes. Mol Phylogenet Evol,2005,34(3):625-644.
    [155]Oliver J, Shapiro A. Genetic isolation and cryptic variation within the Lycaena xanthoides species group. Mol Ecol,2007,16(20):4 308-4320.
    [156]Fauvelot C, Cleary D. Menken S. Short-term impact of 1997/1998 ENSO-induced disturbance on abundance and genetic variation in a tropical butterfly. J Hered,2006,97(4):367-380.
    [157]Sambrook J, Russell D W.分子克隆实验指南.科学出版社:北京.2002.
    [158]Zhao J L, Zhang Y Y, Luo A R, et al.. The complete mitochondrial genome of Spilonota lechriaspis Meyrick (Lepidoptera:Tortricidae). Mol Biol Rep,2010,38 (6):3757-3764.
    [159]Lowe T M, Eddy S R. tRNAscan-SE:a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res,1997, 25:955-964.
    [160]Hall T A. BioEdit:a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser, 1999,41:95-98.
    [161]Thompson J D, Gibson T J, Plewniak F. The CLUSTAL_X windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res,1997,25(24):4876-4882.
    [162]Yang Z. PAML 4:phylogenetic analysis by maximum likelihood. Mol Biol Evol,2007,24(8):1586-1591.
    [163]Rozas J, Sanchez-DelBarrio J C, Messeguer X. DnaSP, DNA polymo rphism analyses by the coalescent and other methods. Bioinformatics, 2003,19(18):2496-2497.
    [164]Beard C B, Mills D, Collins FH. The mitochondrial genome of the mosquito Anopheles gambiae:DNA sequence, genome organizationand comparisons with mitochondrial sequences of other insects. Insect Mol. Biol,1993,2:103-124.
    [165]Akaike H. A new look at the statistical model identification. IEEE Trans Autom Contr,1974,19:716-723.
    [166]Abascal F, Zardoya R, Posada D. ProTestselection of best-fit models of protein evolution. Bioinformatics,2005,21:2104-2105.
    [167]Adachi J, Hasegawa M. Model of amino acid substitution in proteins encoded by mitochondrial DNA. J Mol Evol,1996,42:459-468.
    [168]Posada D, Crandal K A. Modeltest:testing the model of DNA subs titution. Bioinformatics,1998,14:817-818.
    [169]Lanave C, Preparata G, Saccone G, et al.. A new method forcalc ulating evolutionary substitution rates. J Mol Evol,1984,20:86-93.
    [170]Huelsenbeck J P, Ronquist F. MrBayes:Bayesian inference of phylogeny. Bioinformatics,2001,17:754-755.
    [171]Stamatakis A. RAxML-Ⅵ-HPC:Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics,2006, 22:2688-2690.
    [172]Colwell R K. EstimateS:Statistical estimation of species richn ess and shared species from samples. Version8.2. http://purl.oclc.org /estimates.
    [173]李巧,陈又清,徐正会.蚂蚁群落研究方法.生态学杂志,2009, 28(9):1862-1870.
    [174]Chen Y Q, Li Q, Wang S M, et al.. A comparison of pitfall traps with different liquids for studying ground-dwelling ants Hymenoptera: Formicidae). Myrmecological News,2010,14:13-19.
    [175]Agosti D, Majer J, Alonso E, et al.. Ants:Standard methods for measuring and monitoring biodiversity. Biological Diversity Handbook Series. Smithsonian Institution Press,2000,186-203.
    [176]Kimura M A. simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution,1980,16:111-120.
    [177]Heppner J B. Faunal regions and the diversity of Lepidoptera. Tropical Lepidoptera,1991,2(1):1-85.
    [178]Turkera L. Theoretical study on the Sex-pheromones of the Rice Moth, Corcyra cephalonica Stainton. Turkish Journal of Biology,1998,22:229-232.
    [179]Allotey J, Azalekor W. Some aspects of the biology and control using botanicals of the rice moth, Corcyra cephalonica (Stainton), on some pulses. J Stored Prod Res,2000,36:235-243.
    [180]Coelho M B, Marangoni S, Maria, et al.. Insecticidal action of Annona coriacea lectin against the flour moth Anagasta kuehniella and the rice moth Corcyra cephalonica (Lepidoptera:Pyralidae). Comparative Biochemistry and Physiology,2007, Part C 146:406-414.
    [181]Muthukrishnan N, Porchezhian T, Venugopal M S, et al.. Recycling spent larval food of Corcyra cephalonica Stainton as a broiler feed ingredient. Bioresour Technol,2003,86:39-44.
    [182]Jalali S K, Venkatesana T, Murthya K S, et al.. Vacuum packaging of Corcyra cephalonica (Stainton) eggs to enhance shelf life for parasitization by the egg parasitoid Trichogramma chilonis. Biological Control,2007,41(1):64-67.
    [183]Nagama nju P, Hansen I A, Burmester T, et al.. Complete sequence, expression and evolution of two members of the hexamerin protein family during the larval development of the rice moth, Corcyra cephalonica. Insect Biochemistry and Molecular Biology,2003,33:73-80.
    [184]Chaitanya R K, Dutta-Gupta A. Light chain fibroin and P25 genes of Corcyra cephalonica:Molecular cloning, characterization, tissue-specific expression, synchronous developmental and 20-hydroxyecdysone regulation during the last instar larval development. General and Comparative Endocrinology,2010,167:113-121.
    [185]Damara M, Gullipalli D, Dutta-Gupta A. Cloning and expression of fat body hexamerin receptor and its identification in other hexamerin sequestering tissue of rice moth, Corcyra cephalonica. J Insect Physiol, 2010,56:1071-1077.
    [186]Gullipalli D, Arif A, Aparoy P, et al.. Identification of a developmentally and hormonally regulated Delta-Class glutathione S-transferase in rice moth Corcyra cephalonica. Comparative Biochemistry and Physiology,2010, Part B 156:33-39.
    [187]Li W, Zhang X, Fan Z, et al.. Structural Characteristics and Phylogenetic Analysis of the Mitochondrial Genome of the Sugarcane Borer, Diatraea saccharalis (Lepidoptera:Crambidae). DNA and Cell Biology,2010, Jan:30(1):3-8.
    [188]Coates B S, Sumerford D V, Hellmich R L, et al.. Partial mitoc hondrial genome sequence of Ostrinia nubilalis and Ostrinia furnicali s. Int J Biol Sci,2005,1:13-18.
    [189]Hong G Y, Jiang S T, Yu M, et al.. The complete nucleotide sequence of the mitochondrial genome of the cabbage butterfly, Artogeia melete (Lepidoptera:Pieridae). Acta Biochim Biophys Sin,2009,41:446-455.
    [190]Pan M H, Yu Q Y, Xia Y L, et al.. Characterization of mitochondrial genome of Chinese wild mulberry silkworm, Bomyx mandarina (Lepidoptera:Bombycidae). Sci China Ser C-Life Sci,2008,51 (8):693-701.
    [191]Salvato P, Simonato M, Battisti A, et al.. The complete mitochondrial genome of the bag-shelter moth Ochrogaster lunifer (Lepidoptera, Notodontidae). BMC Genomics,2008,9:331-345.
    [192]Kim I, Lee E M, Seol K Y, et al.. The mitochondrial genome of the Korean hairstreak, Coreana raphaelis (Lepidoptera:Lycaenidae). Insect Molecular Biology,2006,15(2):217-225.
    [193]Wei S J, Shi M, He J H, et al.. The complete mitochondrial genome of Diadegma semiclausum (Hymenoptera:Ichneumonidae) indicates extensive independent evolutionary events. Genome,2009,52:308-319.
    [194]Gong Y J, Shi B C, Kang Z J, et al.. The complete mitochondrial genome of the oriental fruit moth Grapholita molesta (Busck) (Lepidoptera:Tortricidae). Molecular Biology Reports,2011,39(3):2893-2900.
    [195]Schnare M N, Damberger S H, Gray M W, et al.. Comprehensive Comparison of structural characteristics in eukaryotic cytoplasmic large subunit (23S-like) ribosomal RNA. J Mol Biol,1996,256:701-719.
    [196]Gillespie J J, Johnston J S, Cannone J J, et al.. Characteristics of the nuclear (18S,5.8S,28S and 5S) and mitochondrial (12S and 16S) Rrna genes of Apis mellifera (Insecta:Hymenoptera):structure, organization and retrotransposable elements. Insect Mol Biol,2006,15, 657-686.
    [197]Niehuis 0, Yen S H, Naumann C M, et al.. Higher phylogeny of zygaenid moths (Insecta:Lepidoptera) inferred from nuclear and mitochondrial sequence data and the evolution of larval cuticular cavities for chemical defence. Mol Phylogenet Evol,2006,39,812-829.
    [198]Niehuis 0, Naumann C M, Misof B. Identification of evolutionary conserved structural elements in the mt SSU Rrna of Zygaenoidea (Lepidoptera):a comparative sequence analysis. Org Divers Evol,2006, 6:17-32.
    [199]Solignac M, Monnerot M, Mounolou J C. Mitochondrial DNA hetero plasamy in Drosophila mauritiana. Proc Natl Acad Sci USA,1983,80(2 2):6942-6946.
    [200]Zhang D X, Hewitt G M. Insect Mitochondrial Control region:A Review of structure, Evolution and Usefulness in Evolutionar ystudies. Bicohemiacl Syst enatics and Ecology,1997,25(2):99-120.
    [201]Taanman J W. The mitochondrial genome:structure, transcription, translation and replication. Biochim Biophys Acta,1999,1410:103-123
    [202]Mey W. Taxonomische Bearbeitung der westpalaearktischen Arten der Gattung Leucoptera Hubner, [1825], s.1. (Lep.:Lyonetiidae). Deutsche Entomologische Zeitschrift,1994, N.F.41 (1):173-234.
    [203]Francke W, Franke S, Toth M, et al.. Identification of 5,9-Dimethylheptadecane as a Sex Pheromone of the Moth Leucoptera scitella. Naturwissenschaften,1987,74(3):143-144.
    [204]Koutinkova H, Andreev R, Subchev M, et al.. Monitoring of the Leafminer Leucoptera scitella Zell (Lepidoptera:Lyonetidae) by Pheromene Traps in Bulgaria. Acta Phytopathologica et Entomologica Hungarica,1999, 34(4):327-331.
    [205]Clary D O, Wolstenholme D R. The mitochondrial DNA molecular of Drosophila yakuba:Nucleotide sequence, gene organization, and genetic code. J Mol Evol,1985,22:252-271.
    [206]Cameron S L, Whiting M F. The complete mitochondrial genome of the tobacco hornworm, Manduca sexta, (Insecta:Lepidoptera:Sphingidae), and an examination of mitochondrial gene variability within butterflies and moths. Gene,2008,408:112-123.
    [207]Ye W, Dang J P, Xie L D, et al.. Complete Mitochondrial Genome of Teleogryllus emma (Orthoptera:Gryllidae) with a New Gene Order in Orthoptera. Zoological Research,2008,29(3):236-244.
    [208]Wang J P, Nie X P, Cao T W, et al.. Analysis of complete mitochondrial genome of Sasakia charonda coreana (Lepidoptera, nymphalida)."Dong Wu Fen Lei Xue Bao,2012,37:1-9.
    [209]Kim M I, Baek J Y, Kim M J, et al.. Complete Nucleotide Sequence and Organization of the Mitogenome of the Red-Spotted Apollo Butterfly, Parnassius bremeri (Lepidoptera:Papilionidae) and Comparison with Other Lepidopteran Insects. Mol Cells,2009,28 (31):347-363.
    [210]Brehm A, Harris D J, Hernandez M, et al.. Structure and evolution of the mitochondrial DNA complete control region in the Drosophila subobscura subgroup. Insect Mol. Biol,2001,10:573-578.
    [211]Lee E S, Shin K S, Kim M S, et al.. The mitochondrial genome of the smaller tea tortrix Adoxophyes honmai (Lepidoptera:Tortricidae). Gene,2006,373:52-57.
    [212]Fenn J D, Cameron S L, Whiting M F. The complete mitochondrial genome of the Mormon cricket (Anabrus simplex:Tettigoniidae:Orthoptera) and an analysis of control region variability. Insect Mol Biol,2007, 16:239-252.
    [213]Jiang S, Hong G, Yu M, et al.. Characterization of the complete mitochondrial genome of the giant silkworm moth, Eriogyna pyretorum (Lepidoptera:Saturniidae). Int J Biol Sci,2009,5:351-365.
    [214]Yang L, Wei Z J, Hong G Y, et al.. The complete nucleotide sequence of the mitochondrial genome of Phthonandria atrilineata (Lepidoptera:Geometridae). Mol Biol Rep,2009,36:1441-1449.
    [215]Liao F, Wang L, Wu S, et al.. The complete mitochondrial genome of the fall webworm, Hyphantria cunea (Lepidoptera:Arctiidae). Int J Biol Sci,2010,6:172-186.
    [216]Kim S R, Kim M I, Hong M Y, et al.. The complete mitogenome se-quence of the Japanese oak silkmoth, Antheraea yamamai (Lepidoptera: Saturniidae). Mol Biol Rep,2009,36 (7):1871-1880.
    [217]Kim M J, Wan X L, Kim K G, et al.. Complete nucleotide sequence and organization of the mitogenome of endangered Eumenis autonoe (Lepidoptera:Nymphalidae). African J Biotech,2010,9(5):735-754.
    [218]Liu Y Q, Li Y P, Pan M H, et al.. The complete mitochondrial genome of the Chinese oak silkmoth, Antheraea pernyi (Lepidoptera:Sat urniidae).Acta Biochim Biophys Sin,2008,40(8):693-703.
    [219]Yukuhiro K, Sezutsu H, Itoh M, et al.. Significant levels of sequence divergence and gene rearrangements have occurred between the mitochondrial genomes of the wild mulberry silkmoth, Bombyx mandarina, and its close relative, the domesticated silkmoth, Bombyx mori. Mol Biol Evol,2002,19:1385-1389.
    [220]Feng X, Liu D F, Wang N X, et al.. The mitochondrial genome of the butterfly Papilio xuthus (Lepidoptera:Papilionidae) and related phylogenetic analyses. Mol Biol Rep,2010,37(8):3877-3888.
    [221]Margam V M, Coates B S, Hellmich R L, et al.. Mitochondrial Genome Sequence and Expression Profiling for the Legume Pod Borer Maruca vitrata (Lepidoptera:Crambidae). PLoS One,2011,6(2):e16444.
    [222]Abascal F, Posada D, Knight R D, et al.. Parallel Evolution of the Genetic Code in Arthropod Mitochondrial Genomes. PLoS Biol,2006, 4(5):e127.
    [223]Wei S J, Tang P, Zheng L H, et al.. The complete mitochondrial genome of Evania appendigaster (Hymenoptera:Evaniidae) has low A+T content and a long intergenic spacer between atp8 and atp6. Mol Biol Rep, 2010,37:1931-1942.
    [224]Regier J C, Zwick A, Cummings M P, et al.. Toward reconstructi-ng the evolution of advanced moths and butterflies (Lepidoptera:Ditr ysia):an initial molecular study. BMC Evol Biol,2009,9:280.
    [225]Solis M A. Michaelshaffera gen. n.-a pyraloid taxon lacking an abdominal tympanal organ (Lepidoptera:Pyralidae). Entomologica Scandi navica,1997,28(4):391-402.
    [226]Dowton M, Austin A D.The evolution of strand-specific composit-ional bias. A case study in the Hymenopteran mitochondrial 16S rRNA gene. Molecular Biology and Evolorion,1997,14(1):109.
    [227]Dowton M. Simultaneous molecular and morphological analysis of braconid relationships (Insecta:Hymenoptera:Braconidae) indicates independent mt-tRNA gene inversions within a single wasp family. Journal of Molecular Evolution,2002,54(2):210-226.
    [228]Minet J. Tentative reconstruction of the ditrysian phylogeny (Lepidoptera:Glossata). Entomol Scand,1991,22:69-95.
    [229]Minet J. The Bombycoidea:phygeny and higher classification (Lepidoptera:Glossata). Entomol Scand,1994,25:63-88.
    [230]Regier J C, Cook C, Mirrer C, et al.. A phylogenetic study of the 'bombycoid complex'(Lepidoptera) using five protein-coding nuclear genes, with comments on the problem of macrolepidopteran phylogeny. Syst Entomol,2008,33:175-189.
    [231]Weller S J, Pashely D P. In search of butterfly origins. Mol Phylogenet Evol,1995,4:235-246.
    [232]Longino J, Coddington J A, Colwell R K. The ant fauna of a tropical rainforest estimating species richness three different ways. Ecology, 2002,83:689-702.
    [233]Longino J T. What to do with the data//Agosti D, Majer JD, Alonso LE, Schultz TR (eds.). Ants:Standard Methods for Measuring and Monitoring Biodiversity. Washington and London:Smithsonian Institution Press,2000, 186-203.
    [234]Ugland K I, Gray J S, Ellingsen K E. The speciesaccumulation curve and estimation of species richness. J Anim Ecol,2003,72:888-897.
    [235]李巧,杨自忠,陈又清等.普洱市亚热带季风常绿阔叶林区蜘蛛多样性.福建林学院学报,2009,29(4):301-305.
    [236]Hundsdierfer A K. A molecular phylogeny of the hawkmoth genus Hyles (Lepidoptera:Sphingidae, Macroglossinae). Molecular Phylogenetics and Evolution,2005,35:442-458.
    [237]肖金花,肖晖,黄大卫.生物分类学的新动向——DNA条形码.动物学报,2004,50(5):852-855
    [238]Malausa T, Leniaud L, Martin J F, et al.. Molecular differentiation at nuclear loci in French host races of the European corn borer(Ostrinia nubilalis). Genetics,2007,176(4):2343-55.
    [239]Krumm J T, Hunt T E, Skoda S R, et al.. Genetic variability of the european corn borer, Ostrinia nubilalis, suggests gene flow between populations in the Midwestern United States. J Insect Sci,2008,8:1-12.
    [240]Miller W E. Diversity and evolution of tongue length in hawkmoths (Sphingidae). Jounal of the Lepidopterists'Society,1997,51(1):9-31.
    [241]Grimble D G, Beckwith R C, Hammond P C. A survey of the Lepidoptera fauna from the Blue Mountains of eastern Oregon. J Res Lepid,1992, 31:83-102.
    [242]DeWaard J R, Landry J, Schmidt B C, et al.. In the dark in a large urban park:DNA barcodes illuminate cryptic and introduced mothspecies. Biodivers Conserv,2009,18(4):3825-3839.
    [243]Ratnasingham S, Hebert P D. bold:The Barcode of Life Data System. Mol Ecol Notes,2007,7(3):355-364.
    [244]Hebert P D N, deWaard J R, Landry J F. DNA barcodes for 1/1000 of the Animal Kingdom. Biology Letters,2010,6:359-362.
    [245]武宇鹏,于芳,张彦周等.果园三种天蛾的DNA条形码鉴定.动物分类学报,2010,35(4):827-834
    [246]Barrett R D H, Hebert P D, Identifying spiders through DNA barcodes. Can J Zool,2005,83:481-491.
    [247]Sperling F. DNA Barcodig:Deus ex Machina. Newsletter of the Biological Survey of Canada (Terrestrial Arthropods),2003,22(2):50-53.
    [248]Dasmahapatra K K, Mallet J. DNA Barcodes:recent successes and future prospects. Heredity,2006,97:254-255.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700