用户名: 密码: 验证码:
延胡索酸二钠对山羊瘤胃甲烷生成的调控研究及相关瘤胃微生物菌群分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
反刍动物瘤胃甲烷的排放,既意味着可被动物消化能量的损失,又导致了大气中温室气体的增加,因此减缓瘤胃甲烷生成已经越来越引起人们的重视。延胡索酸是瘤胃中的重要中间代谢产物,可作为电子受体用于抑制甲烷生成。本论文系统研究了延胡索酸二钠调控瘤胃甲烷生成的微生物学机理及延胡索酸还原菌的多样性。首先建立了检测瘤胃微生物代谢产物中的有机酸含量的高效液相色谱分析方法,为分析瘤胃微生物的代谢状况提供了可靠的分析手段;其次研究了在不同精粗比条件下添加延胡索酸二钠对山羊血清生化指标、甲烷生成、瘤胃发酵、瘤胃微生物区系组成及重要微生物数量的影响,从多个角度揭示了延胡索酸二钠调控瘤胃甲烷生成的机理:再就是利用编码延胡索酸还原酶的功能基因frdA基因研究了瘤胃延胡索酸还原菌的多样性;利用体外继代培养结合16S rRNA克隆库的方式研究了可培养延胡索酸利用菌在体外继代培养过程中的变化规律;最后通过厌氧滚管技术分离到两株延胡索酸还原菌并对其进行了形态学、生理生化特性以及16S rRNA序列鉴定。本研究试验共分为五个部分:
     1、建立高效液相色谱法检测瘤胃微生物代谢产物中的有机酸
     建立了一种同时快速分析瘤胃微生物发酵液中7种有机酸的高效液相色谱法。该方法采用色谱级甲醇和20mM磷酸氢二钠缓冲液(用磷酸调pH至2.7,v:v=1:99)作为流动相,流速采用二元泵梯度程序洗脱方法控制,紫外检测波长为215nm,柱温为30℃,能够快速、准确地分离和测定瘤胃微生物发酵液中的甲酸、乙酸、丙酸、延胡索酸、琥珀酸、苹果酸、乳酸。方法的回收率为96.40%~99.60%,相对标准偏差为1.50%~4.40%,各种有机酸的线性相关系数均大于0.9993,具有较高的精密度和准确度,可以用于瘤胃微生物发酵液中的有机酸分析。
     2、不同精粗比条件下添加延胡索酸二钠对山羊血清生化指标、甲烷生成、瘤胃发酵、微生物区系组成及重要微生物数量的影响
     选用4只体重约为24±1.43kg、装有永久瘘管的本地杂交阉公羊,采用2×2两因子析因设计,按一个4×4拉丁方排序,以日粮精粗比(粗料:精料分别为4]:59或57.6:42.4)和延胡索酸二钠添加量(0g/天或10g/天)作为主要影响因子,研究不同精粗比条件下添加延胡索酸二钠对山羊血清生化指标、瘤胃发酵、甲烷生成、微生物区系组成及重要菌群数量变化的影响。结果显示,日粮精粗比和延胡索酸二钠对血糖、甘油三酯、胆固醇、尿素氮、乳酸的浓度以及谷草转氨酶、谷丙转氨酶、乳酸脱氢酶的酶活无显著影响,说明添加延胡索酸对山羊健康没有明显影响。与未添加延胡索酸二钠的对照组相比,添加延胡索酸二钠显著降低了甲烷产量(P<0.05),饲喂高精料和高粗料日粮的山羊甲烷产量分别降低了8.10%、15.76%。与未添加延胡索酸二钠的对照组相比,饲喂延胡索酸二钠组的山羊瘤胃内总挥发性脂肪酸、乙酸、丙酸浓度显著增加(P<0.05)。DGGE分析结果表明,不同日粮精粗比条件下添加延胡索酸二钠对瘤胃细菌及甲烷菌区系组成没有显著影响;饲喂延胡索酸二钠的山羊瘤胃内的产甲烷菌数量要低于未添加延胡索酸二钠组(P<0.05)。添加延胡索酸二钠组中的反刍兽新月形单胞菌(一种延胡索酸还原菌)的数量要显著高于未添加延胡索酸二钠的对照组,但仅限于高粗料条件下(P<0.05)。日粮精粗比与延胡索酸二钠之间对于反刍兽新月形单胞菌的影响存在显著交互作用(P<0.05)。真菌、原虫、黄色瘤胃球菌和产琥珀酸丝状杆菌的数量不受延胡索酸二钠添加剂量的影响。日粮的精粗比的变化对于产甲烷菌、真菌和黄化瘤胃球菌影响显著(P<0.05),但是对甲烷产量(g/天)无显著影响。这结果提示延胡索酸二钠对山羊瘤胃发酵具有有益作用,结果也进一步提示延胡索酸二钠的效果不是直接作用于真菌、原虫和主要的纤维降解菌,而是由于它促进了延胡索酸还原菌的生长,抑制了产甲烷菌的生长。其中一些指标的变化,如反刍兽新月型单胞菌的数量等,与日粮精粗比的变化相关,这说明了延胡索酸二钠对甲烷的抑制效果可能与日粮的精粗比相关。
     3、利用frdA基因研究延胡索酸还原菌的多样性
     虽然瘤胃延胡索酸还原菌对于降低甲烷生成可能具有重要作用,但是目前关于在山羊瘤胃内的延胡索酸还原菌的多样性的研究却仍不清楚。本研究利用构建延胡索酸还原酶frdA基因克隆库的方式来分析多种日粮条件下(高精料或高粗料,精粗比分别为41:59或57.6:42.4,两种日粮均添加0或10g/天延胡索酸二钠)山羊瘤胃内Proteobacteria门延胡索酸还原菌的多样性。RFLP分析结果表明206个阳性克隆可分为24个分类操作单元(OTU),表明延胡索酸还原菌的多样性非常高;frdA扩增序列所推导的氨基酸与已知氨基酸序列的相似性范围为75%-93%,这意味着瘤胃内存在许多未知的延胡索酸还原菌。它们均属于Proteobacteria;系统进化树分析表明,这些序列在遗传距离上相距较远。
     4、体外继代培养研究山羊瘤胃延胡索酸利用菌的变化规律
     采用PCR-DGGE结合16S rRNA克隆库技术,研究了山羊瘤胃内容物中延胡索酸利用菌菌群在体外传代过程中的变化规律。PCR-DGGE的分析结果表明,随继代培养次数的增加,细菌DGGE图谱上的条带数逐渐变少,一些条带(A、B、C、E、F、G.H)消失,一部分一直存在(D、O、P、Q、R、S),而部分条带明显得到富集(I、J、K、L、M、N)。继代培养5次后细菌条带数趋于稳定。16Sr RNA基因测序比对结果表明,所获得的88个克隆中,6个克隆属于Fusobacterium varium(相似性>97%),占克隆的6.82%;42个克隆属于Wolinella succinogenes(相似性>97%),占克隆的47.73%;4个克隆属于Clostridium cochlearium(相似性>97%),占克隆的4.55%;10个克隆属于Bacteroides pyogenes(相似性>97%),占克隆的11.36%;8个克隆属于Agrobacterium tumefaciens(相似性>97%),占克隆的9.09%;2个克隆属于Oribacterium sinus(相似性<97%),占克隆的2.27%;3个克隆属于Clostridium subterminale(相似性>97%),占克隆的3.41%;3个克隆属于Fusobacterium naviforme(相似性<97%),占克隆的3.41%;10个克隆属于Clostridium hastiforme(相似性>97%),占克隆的11.36%。系统进化树分析表明,它们分别属于Clostridiales、 Fusobacteriales、Rhizobiales、Campylobacterales、Bacteroidales。以上结果说明,混合瘤胃内容物中存在大量的延胡索酸利用菌,它们可能会参与瘤胃延胡索酸还原过程,添加延胡索酸可起到体外富集延胡索酸还原菌的作用。
     5、山羊瘤胃延胡索酸利用菌的分离、鉴定
     通过厌氧滚管法从健康山羊瘤胃内容物中分离得到了两株瘤胃厌氧细菌,分别命名为Y1和Y10。经HPLC法检测它们对延胡索酸二钠的代谢情况可知,它们都能够利用延胡索酸生成琥珀酸并进一步形成丙酸。经形态学和生理生化特性分析,初步鉴定Y1属于埃希氏菌属,Y10属于变形杆菌属。将两株菌的16S rRNA序列与GenBank中的已知序列相比较,其与Escherichia coli、Proteus mirabilis的相似性高达99%,进一步确定所分离到的菌株Y1为埃希氏菌属弗氏埃希氏菌(Escherichia,ergusonii),Y10为奇异变形杆菌(Proteus mirabilis).经RDP数据库分类比较,它们均属于变形杆菌(Proteobacteria)。
Methane eructated from ruminants represents an energy loss of ingested by the animal and contributes to global warming. Mitigation of rumen methane emission has received increasing attention. Fumarate is a key intermediate metabolite in the rumen and an alternative electron acceptor to methanogenesis.The microbial mechanism of ruminal methane reduction by disodium fumarate and the diversity of fumarate reducing bacteria were investigated in this study. Firstly, a garadient elution high performance liquid chromatography method was established for the determination of organic acid in ruminal fluid; Secondly, the effect of disodium fumarate on blood parameters, methane emission, ruminal fermentation, microbiota composition and key microbial population abundance from goats under different forage:concentrate ratios were assessed;Then, the diversity of fumarate reducing bacteria in the rumen fluid from goats under different diet conditions was assessed; The variation of fumarate utilizing bacteria in rumen of goats after being cultured seven times in vitro was assessed. Lastly, two single fumarate reducing bacteria from rumen contents of goats were isolated and identified. The main results are shown as follows:
     1. Development of gradient elution high performance liquid chromatography for detection of organic acid in ruminal contents
     A high performance liquid chromatography method was developed for simultaneous determining formate, malate, lactate. acetate, succinate, propionate and fumarate in ruminal contents. ZORBAX SB-Aq column (4.6×150mm×5um) was used at30℃.Mobile phase was methanol and20mM Na2HPO4(pH2.7, v:v=1:99) with variable flow rate which controlled by program.Detection UV wavelength was at215nm.The method could fast and effectively separate and detect the organic acids in ruminal fluid. The recoveries were96.40%~99.60%and the relative standard deviations were1.50%~4.40%.All the correlation coefficients were no less than0.9993.The results indicated that the method was precise and accurate which could be applied to the determination of organic acids in ruminal fluids.
     2. Effect of disodium fumarate on blood parameters, methane emission, ruminal fermentation, microbiota composition and key microbial population abundance of goats under different forage:concentrate ratios.
     The study was carried out to investigate the effect of disodium fumarate on blood parameters, ruminal fermentation, methane emission, microbiota composition and key microbial population abundance of goats under different forage:concentrate ratios. Four ruminally fistulated, castrated male goats were used in a4×4Latin square design with a2x2factorial arrangement of treatments, and the main factors being the forage:concentrate ratios (forage:concentrate=41:59or57.6:42.4) and disodium fumarate supplementation (0g/day or10g/day). Results showed that there were no significant effect of disodium fumarate on blood parameters, such as concentration of blood glucose, triglyceride, cholesterol, urea nitrogen, lactate and activities of glutamic pyruvic transaminase, glutamate oxaloacetate transaminase, lactate dehydrogenase. Disodium fumarate significantly reduced methane production (P<0.05), with the methane production in high-concentrate diet and high-forage diet reduced by8.10%and15.76%, respectively, as compared with controls. The concentrations of total VFA, acetate and propionate were greater in the rumen of goats fed with disodium fumarate as compared with controls (P<0.05).DGGE profiles analysis showed that there were no special bands appeared for the composition of total bacteria and methanogens after supplementation of disodium fumarate under different forage:concentrate ratios.The population abundance of methanogens was lower in the rumen of goats fed with disodium fumarate as compared with those without disodium fumarate (P<0.05). The population abundance of Selenomonas ruminantium, a fumarate reducing bacteria, was greater in the rumen of goats fed with disodium fumarate as compared with control, but this response was present only within the high-forage diet (P <0.05). The population abundance of fungi, protozoa, Ruminococus flavefaciens and Fibrobacter succinogenes were not affected by the addition of disodium fumarate. Variable forage:concentrate ratios affected the population abundance of methanogens, fungi and R.flavefaciens (P<0.05), but did not significantly affect methane emission (g/day). The result implied that disodium fumarate had a beneficial effect on the in vivo rumen fermentation of the goats fed diets with different forage:concentrate ratios and that this effect was not a direct action on anaerobic fungi, protozoa and fibrolytic bacteria, the generally recognized fibre-degrading and hydrogen-producing microorganisms, but due to the stimulation of fumarate-reducing bacteria and the depression of methanogens. The reduction of population abundance of methanogens and the increase of population abundance of S. ruminantium was related to the forage:concentrate ratios, suggesting that disodium fumarate reduction in vivo could depend on the forage:concentrate ratios of diet.
     3. Diversity analysis of fumarate reducing bacteria in the rumen contents of goats fed with different diets
     Although fumarate-reducing bacteria may play an important role for methane reduction, the diversity of fumarate-reducing bacteria in the rumen of goats is still unclear. In this study, the diversity of fumarate-reducing bacteria in the mixed rumen contents of four goats fed with different diets (high-concentrate diet or high-forage diet, both diets either were supplemented with disodium fumarate at10g/day or received no supplement) was analyzed using frdA gene clone library analysis. The results indicated that the fumarate reducing bacteria diversity in the rumen contents was very high, where206positive clones belong to24different OTU by RFLP analysis. Identities of deduced amino acid sequences of cloned frdA amplicons against known sequences ranged from75-93%suggesting the presence of unknown fumarate reducing bacteria in rumen of goats. All of them were belonged to Proteobacteria phylum and the phylogenetic analysis results also demonstrated high bacteria diversity in the rumen contents of goats with distant phylogenetic position.
     4. The variation of fumarate utilizing bacteria in rumen of goats after being cultured seven times in vitro
     Fumarate utilizing bacteria community changes in the ruminal contents during subcultures was investigated by PCR-DGGE and16S rRNA clone library analysis. PCR-DGGE analysis showed that the number of DGGE bands decreased with the culture times increasing. Some DGGE bands in the culture disappeared (labelled as A、B、C、E、 F、G、H),and other bands (labeled as I、J、K、L、M、N) enriched after7subcultures.After five subcultures,the bands tend to keep stable. The results of16S rRNA clone library analysis showed that the dominant bands remained in the culture after7subculturing had their16S rRNA sequences most close to species of Fusobacterium varium (6of88clones, similarity>97%),Wolinella succinogenes (42of88clones,similarity>97%),Clostridium cochlearium (4of88clones, similarity>97%), Bacteroides pyogenes (10of88clones, similarity>97%), Agrobacterium tumefaciens (8of88clones, similarity>97%), Oribacterium sinus (2of88clones, similarity<97%), Clostridium subterminale (3of88clones, similarity>97%), Fusobacterium naviforme (3of88clones, similarity<97%), respectively. These clones belonged to Clostridiales, Fusobacteriales, Rhizobiales, Campy lobacterales, Bacteroidales five orders, respectively. The results indicated that there plenty of fumarate utilizing bacteria survivie in the subcultures and they may be involed to fumarate reduction and they could be enriched in vitro by fumarate supplementation.
     5. Isolation and identification of fumarate reducing bacteria from rumen contents of goats
     Two single bacterial strains (named Y1and Y10, respectively) were isolated by Hungate method from rumen contents of goats. Both of them could transform disodium fumarate into succinic acid and further transform to propionic acid which have validated by HPLC methods. Based on morphological, physiological characteristics identification and16S rRNA gene sequence analysis, Y1was identified as Escherichia fergusonii, while Y10was Proteus mirabilis. RDP database classifier analysis showed that both of them were belonged to Proteobacteria phylum.
引文
1. Anderson R, Carstens G, Miller R, et al. Effect of oral nitroethane and 2-nitropropanol administration on methane-producing activity and volatile fatty acid production in the ovine rumen[J]. Bioresource Technology,2006,97 (18):2421-2426
    2. Anderson R C, Krueger N A, Stanton T B, et al. Effects of select nitrocompounds on in vitro ruminal fermentation during conditions of limiting or excess added reductant[J]. Bioresource Technology,2008,99(18):8655-8661
    3. Anderson R C, Rasmussen M A, Jensen N S, et al. Denitrobacterium detoxificans gen. nov., sp nov., a ruminal bacterium that respires on nitrocompounds[J]. International Journal of Systematic and Evolutionary Microbiology,2000,50:633-638
    4. AOAC. Official Methods of Analyses[M],15th ed, Association of Official Analytical Chemists, Arlington, VA.1990
    5. Argyle J L, Baldwin R L. Modeling of rumen water kinetics and effects of rumen pH changes[J]. Journal of Dairy Science,1988,71 (5):1178-1188
    6. Asanuma N, Hino T. Activity and properties of fumarate reductase in ruminal bacteria[J]. Journal of General and Applied Microbiology,2000,46 (3):119-125
    7. Asanuma N, Iwamoto M, Hino T. Effect of the addition of fumarate on methane production by ruminal microorganisms in vitro[J]. Journal of Dairy Science,1999,82 (4):780-787
    8. Asanuma N, Iwamoto M, Hino T. Formate metabolism by ruminal microorganisms in relation to methanogenesis[J]. Animal Science and Technology,1998,69 (6):576-584
    9. Baah J, Ivan M, Hristov A, et al. Effects of potential dietary antiprotozoal supplements on rumen fermentation and digestibility in heifers[J]. Animal Feed Science and Technology,2007,137 (1-2): 126-137
    10. Baker S K. Rumen methanogens, and inhibition of methanogenesis[J]. Australian Journal of Agricultural Research,1999,50 (8):1293-1298
    11. Baldwin R L. Modeling Ruminant Digestion and Metabolism[M]. Chapman & Hall Ltd, London, UK.1995.
    12. Bannink A, Dijkstra J, Mills J A N, et al. A dynamic approach for evaluating farm-specific as well as general policies to mitigate methane emissions by dairy cows[C].//Amstel A V. Proc.4th Int. Symp. non-CO2 Greenhouse Gases (NCGG-4). Utrecht, Netherlands:Millpress Science Publishers,2005:75-82
    13. Bannink A, Kogut J, Dijkstra J, et al. Estimation of the stoichiometry of volatile fatty acid production in the rumen of lactating cows[J]. Journal of Theoretical Biology,2006,238 (1):36-51
    14. Bayaru E, Kanda S, Kamada T, et al. Effect of fumaric acid on methane production, rumen fermentation and digestibility of cattle fed roughage alone[J]. Animal Science Journal,2001,72 (2): 139-146
    15. Caldwell D R, Bryant M P. Medium without rumen fluid for nonselective enumeration and isolation of rumen bacteria[J]. Applied Microbiology,1966,14:794-801
    16. Callaway T R, Martin S A. Effects of organic acid and monensin treatment on in vitro mixed ruminal microorganism fermentation of cracked corn[J]. Journal of Animal Science,1996,74 (8): 1982-1989
    17. Cantalapiedra-Hijar G, Yanez-Ruiz DR, Martin-Garcia AI,et al.Effects of forage:concentrate ratio and forage type on apparent digestibility, ruminal fermentation, and microbial growth in goats[J]. Journal of Animal Science,2009,87,622-631
    18. Carro M D, Ranilla M J. Influence of different concentrations of disodium fumarate on methane production and fermentation of concentrate feeds by rumen micro-organisms in vitro[J]. The British Journal of Nutrition,2003,90 (3):617-23
    19. Collier C T, Smiricky-Tjardes M R, Albin D M, et al. Molecular ecological analysis of porcine ileal microbiota responses to antimicrobial growth promoters[J].Journal of Animal Science,2003,81 (12):3035-45
    20. Dar S A, Yao L, van Dongen U, et al. Analysis of diversity and activity of sulfate-reducing bacterial communities in sulfidogenic bioreactors using 16S rRNA and dsrB genes as molecular markers[J]. Applied and Environmental Microbiology,2007,73 (2):594-604
    21.De Oliveira S G, Berchielli T T, Pedreira M D, et al. Effect of tannin levels in sorghum silage and concentrate supplementation on apparent digestibility and methane emission in beef cattle[J]. Animal Feed Science and Technology,2007,135 (3-4):236-248
    22. Demeye D I. Quantitative Aspects of Microbial Metabolism in the Rumen and Hindgut. In rumen microbial metabolism and ruminant digestion[M], INRA Editions,Versailles, France.1991:217-237
    23. Denman K L, Brasseur G, Chidthaisong A, et al. Couplings between changes in the climate system and biogeochemistry[C]//Solomon S,Qin D, Maning M, et al. Climate Change 2007:the physical science basis. Cambridge, United Kingdom and New York, NY, USA:Cambridge University Press,2007:499-587.
    24. Denman S E, McSweeney C S. Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen[J]. FEMS Microbiology Ecology, 2006,58 (3):572-82
    25. Denman S E, Tomkins N W, McSweeney C S. Quantitation and diversity analysis of ruminal methanogenic populations in response to the antimethanogenic compound bromochloromethane[J]. FEMS Microbiology Ecology,2007,62 (3):313-322
    26. Deppenmeier U. The Unique Biochemistry of Methanogenesis[J].Progress in Nucleic Acid Research and Molecular Biology,2002,Vol 7171:223-283
    27. Dijkstra J. Production and absorption of volatile fatty acids in the rumen[J]. Livestock Production Science,1994,39,:61-69
    28. Dijkstra J, France J, Davies D R. Different mathematical approaches to estimating microbial protein supply in ruminants[J]. Journal of Dairy Science,1998,81 (12):3370-3384
    29. Dijkstra J, Kebreab E, Bannink A, et al. Application of the gas production technique to feed evaluation systems for ruminants[J]. Animal Feed Science and Technology,2005,123:561-578
    30. Dijkstra J, Neal H, Beever DE, et al. Simulation of nutrient digestion, abosorption and outflow in the rumen-model description[J]. Journal of Nutrition.1992,122(11):2239-2256
    31. Edwards J E, McEwan N R, Travis A J,.et al.16S rDNA library-based analysis of ruminal bacterial diversity[J]. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology,2004,86 (3):263-281
    32. Engel C A R, Straathof A J J, Zijlmans T W, et al. Fumaric acid production by fermentation[J]. Applied Microbiology and Biotechnology,2008,78(3):379-389
    33.Eugene M, Archimede H, Sauvant D. Quantitative meta-analysis on the effects of defaunation of the rumen on growth, intake and digestion in ruminants[J]. Livestock Production Science,2004,85 (1): 81-97
    34. Fievez V, Dohme F, Danneels M, et al. Fish oils as potent rumen methane inhibitors and associated effects on rumen fermentation in vitro and in vivo[J]. Animal Feed Science and Technology,2003, 104 (1-4):41-58
    35. Finlay B J, Esteban G, Clarke K J, et al. Some rumen ciliates have endosymbiotic methanogens[J]. FEMS Microbiology Letters,1994,117 (2):157-162
    36. Fonty G, Joblin K, Chavarot M, et al. Establishment and development of ruminal hydrogenotrophs in methanogen-free lambs[J]. Applied and Environmental Microbiology,2007,73:6391-6403
    37. Francis G, Kerem Z, Makkar H P S, et al. The biological action of saponins in animal systems:a review[J]. British Journal of Nutrition,2002,88(6):587-605
    38. Friggens N C, Oldham J D, Dewhurst R J, et al. Proportions of volatile fatty acids in relation to the chemical composition of feeds based on grass silage[J]. Journal of Dairy Science,1998,81 (5): 1331-1344
    39. Galyean M L. Laboratory Procedure in Animal Nutrition Research[M]. Department of Animal and Range Sciences. New Mexico State University,U.S.A.1989:162-168
    40. Garcia-Martinez R, Ranilla M J, Tejido M L, et al. Effects of disodium fumarate on in vitro rumen microbial growth, methane production and fermentation of diets differing in their forage: concentrate ratio[J]. British Journal of Nutrition,2005,94 (1):71-7
    41. Giraldo L A, Ranilla M J, Tejido M L, et al. Influence of exogenous fibrolytic enzymes and fumarate on methane production, microbial growth and fermentation in Rusitec fermenters[J]. British Journal of Nutrition,2007,98:753-761
    42. Gould D H, Cummings B, Hamar DW. In vivo indicators of pathologic ruminal sulfide production in steers with diet-induced polioencephalomaIacia[J]. Journal of Veterinary Diagnostic Investigation, 1997,9(1):72-76
    43. Hane B G, Jager K, Drexler H G. The pearson product-moment correlation-coefficient is better suited for identification of DNA fingerprint profiles than band matching algorithms[J]. Electrophoresis,1993,14 (10):967-972
    44. Hattori K, Matsui H. Diversity of fumarate reducing bacteria in the bovine rumen revealed by culture dependent and independent approaches[J]. Anaerobe,2008,14 (2):87-93
    45. Hillman K, Lloyd D, Williams A G. Interaction between the methaneogen Methanosarcina-barkeri and rumen holotrich ciliate protozoa[J]. Letters in Applied Microbiology,1988,7 (3):49-53
    46. Hillman K, Williams A G, Lloyd D. Postprandial variations in endogenous metabolic activities of ovine rumen ciliate protozoa[J]. Animal Feed Science and Technology,1995,52 (3-4):237-247
    47. Hobson P N, Stewart C S. Rumen Microbial Ecosystem[M]. Second Edition. New York:Blackie Academic and Professional,1997:10-72,467-488.
    48. Hong S H, Kim J S, Lee S Y, et al. The genome sequence of the capnophilic rumen bacterium Mannheimia succiniciproducens[J]. Nature Biotechnology.2004,22 (10):1275-81
    49. Hristov A N, Ivan M, Neill L, et al. Evaluation of several potential bioactive agents for reducing protozoal activity in vitro[J]. Animal Feed Science and Technology,2003,105 (1-4):163-184
    50. Hungate R E. A Roll Tube Method for Cultivation of Strict Anaerobes[J]. Methods in Microbiology, 1969,3:117-132
    51. Hungate R E. The Rumen and its Microbes[M]. New York, NY,USA:Academic Press,1966
    52. Hungate R E. hydrogen as an intermediate in rumen fermentation[J]. Archives of Microbiology, 1967,59(1-3):158-164
    53. IPCC. Climate Change 2007:Synthesis Report[C].2007:37.
    54. Isobe Y, Shibata F. Rumen fermentation in goats administered fumaric acid[J]. Animal Feed Science and Technology,1993,64:1024-1030
    55. Iverson T M, Luna-Chavez C, Cecchini G, et al. Structure of the Escherichia coli fumarate reductase respiratory complex[J]. Science,1999,284 (5422):1961-6
    56. Jalc D, Certik M. Effect of microbial oil, monensin and fumarate on rumen fermentation in artificial rumen[J]. Czech Journal of Animal Science,2005,50 (10):467-472
    57. Janssen P H, Frenzel P. Inhibition of methanogenesis by methyl fluoride:Studies of pure and defined mixed cultures of anaerobic bacteria and archaea[J]. Applied and Environmental Microbiology,1997,63 (11):4552-4557
    58. Janssen P H, Kirs M. Structure of the archaeal community of the rumen[J]. Applied and Environmental Microbiology,2008,74 (12):3619-3625
    59. Joblin K N. Ruminal acetogens and their potential to lower ruminant methane emissions[J]. Australian Journal of Agricultural Research,1999,50 (8):1307-1313
    60. Jones E C, Barnes R J. Non-volatile organic acids of grasses[J]. Journal of the Science of Food and Agriculture,1967,18 (7):321-324
    61. Jones H M, Gunsalus R P. Regulation of Escherichia coli fumarate reductase (frdABCD) operon expression by respiratory electron acceptors and the fnr gene product[J]. The Journal of Bacteriology.1987,169(7):3340-9
    62. Kajikawa H, Valdes C, Hillman K, et al. Methane oxidation and its coupled electron-sink reactions in ruminal fluid[J]. Letters in Applied Microbiology,2003,36 (6):354-357
    63. Kebreab E, Clark K, Wagner-Riddle C, et al. Methane and nitrous oxide emissions from Canadian animal agriculture:A review[J]. Canadian Journal of Animal Science,2006,86 (2):135-158
    64. Khafipour E, Li S, Plaizier J C, et al. Rumen microbiome composition determined using two nurtritional models of sucacute ruminal acidosis[J]. Applied and Environmental Microbiology 2009, 22:7115-7124
    65. Kolver E S, Aspin P W. Supplemental fumarate did not influence milk solids or methane production from dairy cows fed high quality pasture[J]. Proceedings of the New Zealand Society of Animal Production,2006,66:409-415
    66. Kortner C, Lauterbach F, Tripier D, et al. Wolinella succinogenes fumarate reductase contains a dihaem cytochrome b[J]. Molecular Microbiology,1990.4(5):855-860
    67. Lancaster C R, Kroger A, Auer M, et al. Structure of fumarate reductase from Wolinella succinogenes at 2.2 A resolution[J]. Nature,1999,402(6760):377-385
    68. Lancaster C R, Simon J. Succinate:quinone oxidoreductases from epsilon-proteobacteria[J]. Biochimica et Biophysica Acta,2002,1553(1-2):84-101
    69. Lancaster C R D. Wolinella succinogenes quinol:fumarate reductase and its comparison to E. coli succinate:quinone reductase[J]. FEBS Letters,2003,555(1):21
    70. Lane D J.16S/23S rRNA sequencing. In:Nucleic Acid Techniques in Bacterial Systematics[M]. Chichester:J.Wiley and Sons,1991.115-175
    71. Lambden P R, Guest J R. Mutants of Escherichia coli K12 unable to use fumarate as an anaerobic electron acceptor[J]. Journal of General Microbiology,1976,97(DEC):145-160
    72. Larsen N, Olsen G J, Maidak B L, et al. The ribosomal database project [J].Nucleic Acids Research. 1993,21 (13):3021-3
    73. Larue R, Yu Z T, Parisi V A, et al. Novel microbial diversity adherent to plant biomass in the herbivore gastrointestinal tract, as revealed by ribosomal intergenic spacer analysis and rrs gene sequencing[J]. Environmental Microbiology,2005,7 (4):530-543
    74. Lassey K R. Livestock methane emission:From the individual grazing animal through national inventories to the global methane cycle[J]. Agricultural and Forest Meteorology,2007,142 (2-4): 120-132
    75. Lassey K R. Livestock methane emission and its perspective in the global methane cyclet[J]. Australian Journal of Experimental Agriculture,2008,48 (1-2):114-118
    76. Le Van T D, Robinson J A, Ralph J, et al. Assessment of reductive acetogenesis with indigenous ruminal bacterium populations and Acetitomaculum ruminis[J]. Applied and Environmental Microbiology,1998,64 (9):3429-3436
    77. Leaphart A B, Lovell C R. Recovery and analysis of formyltetrahydrofolate synthetase gene sequences from natural populations of acetogenic bacteria[J].Applied and Environmental Microbiology,2001,67 (3):1392-1395
    78. Lee S S, Hsu J T, Mantovani H C, et al. The effect of bovicin, HC5, a bacteriocin from Streptococcus bovis HC5, on ruminal methane production in vitro[J]. FEMS Microbiology Letters, 2002,217(1):51-55
    79. Lemire B D, Robinson J J, Bradley R D, et al. Structure of fumarate reductase on the cytoplasmic membrane of Escherichia coli[J]. The Journal of Bacteriology,1983,155 (1):391-7
    80. Liu Y, Whitman W B. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea[J]. Annals of the New York Academy of Sciences,2008,1125:171-89
    81. Lockyer D R, Jarvis S C. The measurement of methane losses from grazing animals[J]. Environmental Pollution,1995,90 (3):383-390
    82. Lopez S, McIntosh E, Wallace R J, et al. Effect of adding acetogenic bacteria on methane production by mixed rumen microorganisms[J]. Animal Feed Science and Technology,1999,78 (1-2):1-9
    83. Lopez S V C, Newbold C J, Wallace R J. Influence of sodium fumarate addition on rumen fermentation in vitro[J]. British Journal of Nutrition,1999,81 (1):59-64
    84. Lovett D K, Shalloo L, Dillon P, O'Mara F P. A systems approach to quantify greenhouse gas fluxes from pastoral dairy production as affected by management regime[J]. Agricultural Systems,2006, 88 (2):156-179
    85. Machmuller A. Medium-chain fatty acids and their potential to reduce methanogenesis in domestic ruminants[J]. Agriculture Ecosystems & Environment,2006,112 (2-3):107-114
    86. Machmuller A, Kreuzer M. Methane suppression by coconut oil and associated effects on nutrient and energy balance in sheep[J]. Canadian Journal of Animal Science,1999,79 (1):65-72
    87. Makkar H P S, Sharma O P, Dawra R K, et al. Simple Determination of Microbial Protein in Rumen Liquor[J]. Journal of Dairy Science,1982,65 (11):2170-2173
    88. Mao SY, Zhang G, Zhu WY. Effect of disodium fumarate on in vitro rumen fermentation of different substrates and rumen bacterial communities as revealed by denaturing gradient gel electrophoresis analysis of 16S ribosomal DNA[J]. Asian-Australasian Journal of Animal Sciences, 2007,20 (4):543-549
    89. Mao SY, Zhang G, Zhu WY. Effect of disodium fumarate on ruminal metabolism and rumen bacterial communities as revealed by denaturing gradient gel electrophoresis analysis of 16S ribosomal DNA[J]. Animal Feed Science and Technology,2008,140 (3-4):293-306
    90. McGinn S M, Beauchemin K A, Coates T, et al. Methane emissions from beef cattle:Effects of monensin, sunflower oil, enzymes, yeast, and fumaric acid[J]. Journal of Animal Science,2004,82 (11):3346-3356
    91. Miller T L, Wolin M J. Inhibition of growth of methane-producing bacteria of the ruminant forestomach by hydroxymethylglutaryl similar to SCoA reductase inhibitors[J]. Journal of Dairy Science,2001,84 (6):1445-1448
    92. Mills J A N, Dijkstra J, Bannink A, et al. A mechanistic model of whole-tract digestion and methanogenesis in the lactating dairy cow:Model development, evaluation, and application[J]. Journal of Animal Science,2001,79(6):1584-1597
    93. Mitsumori M, Ajisaka N, Tajima K, et al. Detection of Proteobacteria from the rumen by PCR using methanotroph-specific primers[J]. Letters in Applied Microbiology,2002,35 (3):251-255
    94. Molano G K T, Clark H. Fumaric acid supplements have no effect on methane emissions per unit of feed intake in wether lambs[J]. Australian Journal of Experimental Agriculture,2008,48 (1-2): 165-168
    95. Moss A R. Methane, global warming and production by animals[M]. Canterbury, Kent. England: Chalcombe Publications,1993:105
    96. Moss A R, Jouany J P, Newbold J. Methane production by ruminants:its contribution to global warming[J]. Annales De Zootechnie,2000,49 (3):231-253
    97. Muyzer G, Dewaal E C, Uitterlinden A G. Profiling of complex microbial-populations by denaturing gradient gel-electrophoresis analysis of polymerase chain reaction-amplified genes-coding for 16S ribosomal-RNA[J]. Applied and Environmental Microbiology,1993,59 (3):695-700
    98. Newbold C J, Lopez S, Nelson N, et al. Propionate precursors and other metabolic intermediates as possible alternative electron acceptors to methanogenesis in ruminal fermentation in vitro[J]. British Journal of Nutrition,2005,94 (1):27-35
    99. Nisbet D J, Martin S A. Effects of fumarate,L-malate, and an Aspergillus oryzae fermentation extract ond-lactate Utilization by the ruminal bacteriumSelenomonas ruminantium[J]. Current Microbiology,1993,26 (3):133-136
    100. Nubel U, Engelen B, Felske A, et al. Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis[J]. The Journal of Bacteriology,1996,178 (19):5636-43
    101. Pitt R E, VanKessel J S, Fox D G, et al. Prediction of ruminal volatile fatty acids and pH within the net carbohydrate and protein system[J]. Journal of Animal Science,1996,74(1):226-244
    102. Puchala R, Min B R, Goetsch A L, et al. The effect of a condensed tannin-containing forage on methane emission by goats[J]. Journal of Animal Science,2005,83 (1):182-186
    103. Russell J B, Strobel H J. Effect of ionophores on ruminal fermentation[J]. Applied and Environmental Microbiology,1989,55 (1):1-6
    104. Simon J. Enzymology and bioenergetics of respiratory nitrite ammonification[J]. FEMS Microbiology Reviews,2002,26 (3):285-309
    105. Steinberg L M, Regan J M. mcrA-Targeted Real-Time Quantitative PCR Method To Examine Methanogen Communities[J]. Applied and Environmental Microbiology,2009,75 (13):4435-4442
    106. Stumm C K, Gijzen H, Vogels G D. Association of methanogenic bacteria with ovine rumen ciliates[J]. British Journal of Nutrition,1982,47(1):95-98
    107. Taweel H Z, Tas B M, Smit H J, et al. Improving the quality of perennial ryegrass (Lolium perenne L.) for dairy cows by selecting for fast clearing and/or degradable neutral detergent fiber[J]. Livestock Production Science,2005,96 (2-3):239-248
    108. Unden G, Hackenberg H, Kroger A. Isolation and functional aspects of the fumarate reductase involved in the phosphorylative electron transport of Vibrio succinogenes[J]. Biochimica et Biophysica Acta,1980,591 (2):275-88
    109. Ungerfeld E M and Kohn R A.The role of thermodynamics in the control of ruminal fermentation. In 'Ruminant physiology; digestionmetabolism and impact of nutrition on gene expression, immunology and stress'[M].Wageningen, The Netherlands:Wageningen Academic Publishers, 2006, pp.55-86
    110. Ungerfeld E M, Kohn R A, Wallace R J, et al. A meta-analysis of fumarate effects on methane production in ruminal batch cultures[J]. Journal of Animal Science,2007,85:2556-2563
    111. Ushida K, Newbold C J, Jouany J P. Interspecies hydrogen transfer between the rumen ciliate Polyplastron multivesiculatum and Methanosarcina barkeri[J]. Journal of Genenal and Applied Microbiology,1997,43 (2):129-131
    112. VanderBeek E G, Oltmann L F, Stouthamer A H. Fumarate reduction in Proteus mirabilis[J]. Archives of Microbiology,1976,110(23):195-206
    113. VanKessel J A S and Russell J B. The effect of pH on ruminal methanogenesis[J]. FEMS Microbiology Ecology,1996,20(4):205-210
    114. Van Soest P J, Robertson J B, Lewis B A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition[J].Journal of Dairy Science,1991,74 (10):3583-3597
    115. VanNevel C J, Demeyer D I. Control of rumen methanogenesis[J]. Environmental Monitoring and Assessment,1996,42 (1-2):73-97
    116. Wallace R J. Antimicrobial properties of plant secondary metabolites[J]. Proceedings of the Nutrition Society,2004,63 (4):621-629
    117. Weatherburn M W. Phenol-hypochlorite reaction for determination of ammonia[J]. Analytical chemistry,1967,39:971-974
    118. Weimer P J. Manipulating ruminal fermentation:A microbial ecological perspective[J]. Journal of Animal Science,1998,76 (12):3114-3122
    119. Weiner J H, Cammack R, Cole S T, et al. A mutant of Escherichia coli reductase decoupled from electron transport[J]. Proceedings of the National Academy of Sciences of the United States of America,1986,83(7):2056-2060
    120. Wheeler W E. Gastrointestinal tract pH environment and the influence of buffering materials on the performance of ruminants[J]. Journal of Animal Science,1980,51:224-235
    121. Williams A G, Coleman G S. The rumen protozoa[M]. New York:Springer-Verlag.1992
    122. Wilson R F, Tyburski J G. Metabolic responses and nutritional therapy in patients with severe head injuries [J]. The Journal of Head Trauma Rehabilitation,1998,13 (1):11-27
    123. Wright A D G, Kennedy P O, Neill C J, et al. Reducing methane emissions in sheep by immunization against rumen methanogens[J]. Vaccine,2004,22 (29-30):3976-3985
    124. Yu Z T, Yu M, Morrison M. Improved serial analysis of V1 ribosomal sequence tags (SARST-V1) provides a rapid, comprehensive, sequence-based characterization of bacterial diversity and community composition[J]. Environmental Microbiology,2006,8 (4):603-611
    125. Yu Z T, Garcia-Gonzalez R, Schanbacher F L. Evaluations of different hypervariable regions of archaeal 16S rRNA genes in profiling of methanogens denaturing by Archaea-specific PCR and gradient gel electrophoresis[J]. Applied and Environmental Microbiology,2008,74 (3):889-893
    126. Zhongming Ge. Potential of fumarate reductase as a novel therapeutic target in Helicobacter pylori infection [J]. Expert Opinion on Therapeutic Targets,2002,6:135-146
    127.布坎南R E,吉本斯N E,等.伯杰细菌鉴定手册[M].第八版,中国科学院微生物研究所《伯杰细菌鉴定手册》翻译组,译.北京:科学出版社,1984:382-458
    128.东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京:科学出版社,2001:66-88
    129.冯仰廉.反刍动物营养学[M].北京:科学出版社,2004:331-340
    130.黄桂颖,白卫东,杨幼慧,等.反相高效液相色谱法测定荔枝肉中10种有机酸[J].现代食品科技,2009,25(5):568-570
    131.刘晨明,曹宏斌,曹俊雅,等.梯度洗脱高效液相色谱法快速检测厌氧菌代谢物中的有机酸[J].分析化学,2006,34(9):1231-1234
    132.卢德勋.系统动物营养学导论[J].中国农业出版,2004:129
    133.李霞,金海,薛树媛,等.内蒙古双峰驼甲烷产生量的体外估测[J].饲料工业,2007,28(9):38-40
    134.毛胜勇,孙云章,姚文,等.延胡索酸对瘤胃微生物发酵活力及乳酸浓度的影响[J].福建农业大学学报,2006,02:195-198
    135.毛胜勇,王新峰,朱伟云.体外法研究延胡索酸二钠对瘤胃微生物发酵活力及甲烷产量的影响[J].草业学报,2010,02:69-75
    136.秦为琳.应用气相色谱法测定挥发性脂肪酸的改进[J].南京农学院学报,1982,5:110-116
    137.沈萍.微生物学[M].北京:高等教育出版社,2001:314-321
    138.王忠永,郑佳音,周铁丽,等.反相高效液相色谱法测定厌氧菌有机酸代谢产物[J].中国微生态学杂志2007,19(6):527-528
    139.张耿,毛胜勇,朱伟云.高精料条件下延胡索酸对山羊瘤胃微生物体外发酵的影响[J].南京农业大学学报,2006,01:63-66
    140.张耿,朱伟云,刘相玉,等.延胡索酸二钠对瘤胃微生物体外发酵不同饲料成分的影响[J].草业学报,2007,01:112-117
    141.朱伟云,姚文,毛胜勇.变性梯度凝胶电泳法研究断奶仔猪粪样细菌区系变化[J].微生物学报,2003,04:503-508
    142.中华人民共和国农业部.NY/T 816-2004[S].北京:中国农业出版社,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700