用户名: 密码: 验证码:
南大洋与南海颗粒物运移与输出的同位素示踪研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋颗粒物的运移与输出过程是目前海洋碳循环研究的关键环节,其中颗粒有机碳(POC)的输出通量更是衡量海洋生物泵运转效率的重要指标,并且决定着海洋颗粒活性元素和化学组分的生物地球化学循环速率。对此领域的深入研究,对了解海洋生态系统功能和预测全球气候变化趋势均有重要意义。
     本文利用Fe(OH)3共沉淀-α能谱-β计数方法测定上层海洋~(234)Th的放射性比活度。将~(234)Th-~(238)U不平衡方法应用于南大洋普里兹湾和南海真光层中颗粒物运移、输出过程以及世界大洋表层水中的~(234)Th清除、迁出情况的研究,加深了对南海碳循环过程的认识,推进了我国在南大洋普里兹湾海域颗粒物与生源要素循环与输出方面的研究,描绘了世界大洋表层水中的颗粒物清除、迁出图像。主要结果如下:
     普里兹湾陆架区和陆坡区各站位真光层POC输出通量分别为169.31和55.42 mmol C m-2 d-1,ThE比值为分别为0.61和0.25,表明陆架区颗粒物的清除、迁出过程要比陆坡区活跃,普里兹湾海域夏季具有较高的生物泵运转效率,可能是潜在的CO2汇区。
     南海西北部海域真光层的POC输出通量平均为15.98 mmol C m-2 d-1,ThE比值平均为0.18;南沙群岛海域上层水体POC输出通量平均为10.40 mmol C m-2 d-1之间,ThE比值平均为0.27,表明寡营养的南海海域真光层POC输出通量和ThE比值均低于夏季高生产力的普里兹湾陆架海域。
     南海西北部、南沙群岛以及普里兹湾陆坡海域各站位均具有明显的真光层双层层化结构,~(234)Th清除、迁出速率和POC输出通量的层化结构时、空变异明显。
     西太平洋表层水中总~(234)Th与~(238)U的活度比小于南大洋,~(234)Th清除、迁出速率以及POC输出通量均高于南大洋和溶解态~(234)Th停留时间短于南大洋,这可能是由于南大洋高营养低叶绿素的特征,生源颗粒物比较贫乏,而导致表层水中的~(234)Th无法快速清除、迁出造成的。
The transport and export process of marine particles now plays a key part in the study on marine carbon cycle, of which particulate carbon (POC) export flux, as a critical index to evaluate the efficiency of the biological pump, determines the biogeochemical cycle rate of marine particle-reactive elements and chemical constituents. Intensive research in the field is significant for understanding functions of marine ecosystem and predicting trends of global climate change.
     ~(234)Th specific activities were determined by Fe(OH)3 co-precipitation method with anαspectrum-βcounter device. Applying ~(234)Th-~(238)U disequilibrium to investigate the transport and export process of particles in the euphotic zone in the Prydz Bay of the Southern Ocean and South China Sea as well as ~(234)Th scavenging and removal process in the surface water of the world ocean promoted the understanding of the carbon cycle process in the South China sea, advanced our research on cycle and export process of the particles and biogenic elements in the Prydz Bay of the Southern Ocean and descriped an image of ~(234)Th scanveging and removal process The results are as follows:
     The average value of POC export flux from the euphotic zone were 169.31 and 55.42 mmol C m-2 d-1 for the continental shelf and slope of the Prydz Bay in the Southern Ocean respectively. Moreover, the ThE ratio of the two regions were 0.61 and 0.25 on average, indicating that scavenging and removal process of particles in the shelf were more active than in the slope region. The biological pump ran actively in summer in the Prydz Bay, which may be a potential CO2 sink.
     The average value of POC export flux from the euphotic zone were 15.98 and 10.40 mmol C m-2 d-1 for the northwest South China Sea and Nansha Islands sea area respectively. Moreover, the ThE ratio were 0.18 and 0.27 on average for the above-mentioned sea areas respectively. Obviously, POC export flux and the ThE ratio in the South China Sea which was a typical oligoltrophic region were lower than those in the continental shelf of the Prydz Bay with high productivity in summer.
     There were stratified euphotic zone with temporal and spatial variations in the northwest South China Sea, Nansha Islands and continental slope of the Prydz Bay, accompanied by stratified scavenging and removal rates of ~(234)Th as well as POC export fluxes.
     ~(234)Th scavenging and removal rates as well as POC export fluxes in the surface water of the Southern Ocean were lower than those of the western Pacific Ocean, which might be due to lack of biogenic particles in the water of the Southern Ocean characterized by high nutrients and low chlorophyll resulting that ~(234)Th could not be scavenged and removed quickly from the surface water.
引文
[1] IPCC. Climate Change 2007: The Physical Scientific Basis. // Working Group I Contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge, UK: Cambridge University Press, 2007.
    [2] Buesseler K O, Bowles M, Joyce K. Changes in the ocean carbon cycle: the value of long-term records. // Buesseler K O, Bowles M, Joyce K. A new wave of ocean science. Woods Hole, Massachusetts, USA: U.S.JGOFS Planning and Data Management Office, 2001: 4.
    [3] Arrigo K R, van Dijken G, Long M. Coastal Southern Ocean: a strong anthropogenic CO2 sink. Geophysical Research Letters, 2008, 35: L21602.
    [4] Bali?o B M, Fasham M J R, Bowles M C. Ocean Biogeochemistry and Global Change: JGOFS Research Highlights 1988-2000. IGBP Science series, 2001, 2: 8-9.
    [5]张正斌.海洋化学.青岛:中国海洋大学出版社, 2004: 386-390.
    [6] Keeling C D. Carbon dioxide in surface ocean water. J. Geophys. Res., 1968, 73: 4543-4553.
    [7] Takahashi T, Goddard S, Sutherland D W, et al. Seasonal and geographic variability of carbon dioxide sink/source in the oceanic areas. J. Geophys. Res., 1986, 91: 10517-10527.
    [8] Tans P P, Fung I Y, Takahashi T. Observational constraints on the global atmospheric CO2 budget. Science, 1990, 247: 1431-1438.
    [9]殷建平,王友绍,徐继荣,等.海洋碳循环研究进展.生态学报, 2006, 26(2): 566-575.
    [10] Emerson S, Fischer K, Reimers C, et al. Organic carbon dynamic and preservation in deep-sea sediment. Deep-Sea Res., 1985, 32: 1-21.
    [11] Buesseler K O. Do upper-ocean sediment traps provide an accurate record of particle flux? Nature, 1991, 353: 420-423.
    [12] Valdes J R, Price J F. A neutrally buoyant, upper ocean sediment trap. Journal of Atmospheric and Oceanographic Technology, 2000, 17(1): 62-28.
    [13] Waples J T, Benitez-Nelson C R, Savoye N, et al. An Introduction to the application and future use of 234Th in aquatic systems. Marine Chemistry, 2006, 100:166-189.
    [14] Coale K H, Bruland K W. 234Th/238U disequilibria with in the California Current. Limnology and Oceanography, 1985, 30: 22-23.
    [15] Busseler, K O, Bacon M P, Cochran J K, et al. Carbon and nitrogen export during the JGOFS North Atlantic bloom experiment estimated from Th-234/U-238disequilibria. Deep-Sea Research II, 1992, 39:1115-1137.
    [16] Buesseler K O, Andrews J A, Hartman M C, et al. Regional estimates of the export flux of particulate organic carbon derived from thorium-234 during the JGOFS EqPac program. Deep-Sea Research, 1995, 42 (2/3): 777-804.
    [17] van der loeff R M M, Friedrich J, Bathmann U V. Carbon export during the Spring Bloom at the Antarctic Polar Front, determined with the natural tracer 234Th. Deep Sea Research Part II: Topical Studies in Oceanography ,1997, 44(1/2): 457-478.
    [18] Buesseler K., Ball L, John A, et al. Upper ocean export of particulate organic carbon in the Arabian Sea derived from thorium-234. Deep Sea Research Part II: Topical Studies in Oceanography, 1998a, 45(10-11): 2461-2487.
    [19] Cochran J K, Buesseler K O, Bacon, M P, et al. (2000). Short-lived thorium isotopes (234Th, 228Th) as indicators of POC export and particle cycling in the Ross Sea, Southern Ocean.Deep Sea Research Part II: Topical Studies in Oceanography, 2000, 47(15-16): 3451-3490.
    [20] Chen M, Huang Y P, Cai P H, et al. Particulate organic carbon export fluxes in the Canada Basin and Bering Sea as derived from 234Th/238U disequilibria. Arctic, 2003, 56(1): 32-44
    [21]杨永亮,韩旭,日下部正志. 234Th示踪法测定北太平洋西北海域冬季真光层中颗粒态有机碳输出通量.海洋学报, 2005, 27(1): 84-92.
    [22]黄奕普,陈敏,陈飞舟,等.真光层的颗粒动力学Ⅲ南沙海域冬季真光层层化结构及输出生产力的研究. //南沙群岛海域的同位素海洋化学.北京:海洋出版社, 1996, 134-144.
    [23]陈敏,黄奕普,陈飞舟,等.真光层的颗粒动力学Ⅱ南沙海域上层水体中234Th的清除. //南沙群岛海域的同位素海洋化学.北京:海洋出版社, 1996a, 163-172.
    [24]陈敏,黄奕普,陈飞舟,等.真光层的颗粒动力学Ⅳ:应用234Th/238U不平衡估算南沙海域的新生产力. //南沙群岛海域的同位素海洋化学.北京:海洋出版社, 1996b: 183-190.
    [25]蔡平河,黄奕普,陈敏,等.南沙海域基于234Th-238U不平衡的颗粒有机碳输出通量及其时间演化.科学通报, 2001, 46 (9):677-680.
    [26] Cai, P., W. Chen, M. Dai, et al. A high-resolution study of particle export in the southern South China Sea based on 234Th:238U disequilibrium, J. Geophys. Res., 2008,113: C04019, doi:10.1029/2007JC004268
    [27] Buesseler K O, Benitez-Nelson C R, Moran S B, et al. An assessment of particulate organic carbon tothorium-234 ratios in the ocean and their impact on the application of 234Th as a POC flux proxy. Marine Chemistry, 2006, 100: 213-233.
    [28] Mccarthy J L, Brewer P G, Feldman G. Global ocean flux. Oceanus,1986, 29(4): 16-26
    [29] Murphy P P, Feely R A, Gammon R, et al. Assessment of the air-sea exchange of CO2 in the south Pacific during austral autumn. J. Geophys. Res., 1991, 96: 20455-20465.
    [30] Takahashi T, Sutherland S C, Sweeney C, et al. Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects, Deep Sea Res., Part II, 2002, 49: 601-622.
    [31] Gloor M, Gruber N, Sarmiento J, et al. A first estimate of present and preindustrial air-seaCO2 flux patterns based on ocean interior carbon measurements and models. Geophys. Res. Lett., 2003, 30(1): 1010.
    [32] Roy T, Rayner P, Matear M, et al. Southern Hemisphere ocean CO2 uptake: Reconciling atmospheric and oceanic estimates, Tellus, Ser. B, 2003, 55: 701-710.
    [33] Baker D F, Law R M, Gurney K R, et al Transcom 3 inversion intercomparison: Model mean results for the estimation of seasonal carbon sources and sinks, Global Biogeochem. Cycles, 2004, 18: GB1010.
    [34] Sabine C L, Feely R A, Gruber N, et al. The oceanic sink for anthropogenic CO2. Science, 2004, 305: 367-371.
    [35] Wetzel P, Winguth A, Maier-Reimer E, Sea-to-air CO2 flux from 1948 to 2003: a model study. Global Biogeochem. Cycles, 2005, 19: GB2005.
    [36] Mikaloff Fletcher S E, et al. Inverse estimates of the oceanic sources and sinks of natural CO2 and the implied oceanic carbon transport. Global Biogeochem. Cycles, 21: GB1010.
    [37] McNeil B I, Metzl N, R. M. Key R M, et al. An empirical estimate of the Southern Ocean air-sea CO2 flux. Global Biogeochem. Cycles, 2007, 21: GB3011.
    [38] Takahashi T, Sutherland S C, Wanninkhof R, et al. Climatological mean and decadal changes in surface ocean pCO2, and net sea-air CO2 flux over the global oceans. Deep-Sea Res. II. (SOCOVV Symposium Volume), 2009, in press.
    [39] Lo Monaco C, Metzl N, A. Poisson A, et al. Anthropogenic CO2 in the Southern Ocean: Distribution and inventory at the Indian-Atlantic boundary (World Ocean Circulation Experiment line I6), J. Geophys. Res., 2005, 110: C06010.
    [40] Le QuéréC, R?denbeck C, Buitenhuis E T, et al. Saturation of the Southern Ocean CO2 Sink Due to Recent Climate Change. Science, 2007, 316:1735-1738.
    [41] B?ning C W, Dispert A, Visbeck M, et al. The response of the Antarctic Circumpolar Current to recent climate change. Nature Geoscience, 2008, 1: 864-869.
    [42] Gordon A L, Mensch M, Dong ZQ, et al. Deep and bottom water of the Bransfield Strait eastern and central basins. Journal of Geophysical Research, 2000, 105(C5):11337-11346.
    [43]蒲书箴,董兆乾,胡筱敏等.普里兹湾海域的夏季上层水及其北向运动.极地研究, 2000a, 12(3):157-167.
    [44]蒲书箴,董兆乾,胡筱敏等.普里兹湾陆缘水边界的变化.海洋通报, 2000b ,19(6) :1-9.
    [45]刘子琳,宁修仁,蔡昱明等. 1999/2000年夏季环南极表层海水叶绿素a和初级生产力.极地研究, 2000 , 12(4) :235-244.
    [46]陈志强,王玉衡,刘际弟.南极普里兹湾营养盐消耗及新生产力的估算.极地研究, 1998 , 10(3) :204-211.
    [47]扈传昱,张海生,潘建明等.夏季南极普里兹湾碳的生物地球化学循环II:POC的分布特征.极地研究, 2001, 13(3):195-204.
    [48]高众勇,陈立奇,王伟强.南大洋二氧化碳源汇分布及其海-气通量研究.极地研究, 2001, 13(3):175-186.
    [49] Shimmield G B, Ritchie G D, Fileman T W. The impact of marginal ice zone processes on the distribution of 210Pb, 210Po and 234Th and implications for new production in the Bellingshausen Sea, Antarctica. Deep Sea Research Part II: Topical Studies in Oceanography, 1995, 42(4/5): 1313-1335.
    [50] van der Loeff R M M., Buesseler K, Bathmann U, et al. Comparison of carbon and opal export rates between summer and spring bloom periods in the region of the Antarctic Polar Front, SE Atlantic. Deep-Sea Research Part Ii-Topical Studies in Oceanography, 2002, 49(18): 3849-3869.
    [51] Buesseler K O, Ball L, Andrews J, et al., Upper ocean export of particulate organic carbon and biogenic silica in the Southern Ocean along 170°W. Deep-Sea Research II, 2001, 48: 4275-4297.
    [52] Friedrich J, van der Loeff R M M. A two-tracer (210Po-234Th) approach to distinguish organic carbon and biogenic silica export flux in the Antarctic Circumpolar Current. Deep Sea Research Part I: Oceanographic Research Papers, 2002, 49(1): 101-120.
    [53] Trull T W, Bray S G, Manganini S J, et al. Moored sediment trap measurements of carbon export in the Subantarctic and Polar Frontal Zones of the Southern Ocean, south of Australia.Journal of Geophysical Research-Oceans, 2001, 106(C12): 31489-31509.
    [54] Coppola L, Roy-Barman M, Mulsow S, et al.Low particulate organic carbon export in the frontal zone of the Southern Ocean (Indian sector) revealed by 234Th. Deep Sea Research Part I: Oceanographic Research Papers, 2005, 52(1): 51-68.
    [55] Buesseler K O, Andrews J E, Pike S M, et al. Particle export during the southern ocean iron experiment (SOFeX). Limnology and Oceanography, 2005, 50(1): 311-327.
    [56] Morris P J, Sanders R, Turnewitsch R, et al. 234Th-derived particulate organic carbon export from an island-induced phytoplankton bloom in the Southern Ocean. Deep Sea Research Part II: Topical Studies in Oceanography, 2007, 54(18/19/20): 2208-2232.
    [57] Blain S, Quéguiner B, Trull T. The natural iron fertilization experiment KEOPS (Kerguelen Ocean and Plateau compared Study): An overview.Deep Sea Research Part II: Topical Studies in Oceanography, 2008, 55(5/6/7): 559-565.
    [58]扈传昱,潘建明,张海生,等.夏季南极普里兹湾碳的生物地球化学循环Ⅳ:有机碳的垂直迁移与转化.极地研究, 2003, 15(2): 115-120.
    [59] He J H, Ma H, Chen LQ, et al. The investigation on particulate organic carbon fluxes with disequilibria between thorium-234 and uranium-238 in the Prydz Bay, the Southern Ocean. Acta Oceanologica Sinica, 2008, 27(2): 21-29.
    [60] Frankignoulle M, Borges A V. European continental shelf as a significant sink for atmospheric carbon dioxide, Global Biogeochem. Cycles, 2001, 15: 569-576.
    [61] Liu K K, Atkinson L, Chen C T A, et al. Exploring continental margin carbon fluxes on a global scale, EOS Trans. Am. Geophys. Union, 2000, 81:641–644.
    [62] Tsunogai S, Watanabe S. Role of the continental margins in the absorption of the atmospheric CO2: Continental Shelf Pump. // Norjiri Y (ed.), Proceedings of the 2nd International Symposium on CO2 in the Oceans, Center for Global Environmental Research, National Institute for Environmental Studies, Tsukuba, Japan, 1999: 299-308.
    [63] Gattuso J P, Frankignoulle M, Wollast R. Carbon and carbonate metabolism in coastal aquatic ecosystems. Annual Review of Ecology and Systematics, 1998, 29: 405-34.
    [64] Longhurst A, Sathyendranath S, Platt T, et al. An Estimate of Global Primary Production in the Ocean from Satellite Radiometer Data.Journal of Plankton Research, 1995, 17(6): 1245-1271.
    [65] Rabouille C, Mackenzie F T, Ver L M. Influence of the human perturbation on carbon, nitrogen, and oxygen biogeochemical cycles in the global coastal ocean. Geochimica Et Cosmochimica Acta, 2001, 65(21): 3615-3641.
    [66] Bauer J E, Druffel E R M. Ocean margins as a significant source of organic matter to the deep open ocean. Nature, 1998, 392(6675): 482-485.
    [67] Fasham M J R, Balino B M, Bowles M C, 2001. A new vision of ocean biogeochemistry after a decade of the Joint Global Ocean Flux Study (JGOFS). Ambio Special Report. Stockholm, Sweden: Royal Swedish Academy of Sciences, 2001: 31.
    [68] Thomas H, Bozec Y, Elkalay K. Enhanced open ocean storage of CO2 from shelf area pumping Science, 2004, 304: 1005.
    [69] Cai W J, Dai M H, Comment on“Enhanced open ocean storage of CO2 from shelf sea pumping”. Science, 2004, 306: 1477c.
    [70] Shiah U K, Liu K K, Tang Y T. South East Asia time-series station established in South China Sea. U.S. JGOFS Newsletter, 1999: 8-9.
    [71] Chen J, Zheng L, Wiesner M, Chen R, et al. Estimations of primary production and export production in the South China Sea based on sediment trap experiments, Chinese Sci. Bull., 1998, 43: 583-586.
    [72] Rehder G, Suess E. Methane and pCO2 in the Kuroshio and the South China Sea during maximum summer surface temperatures. Marine Chemistry, 2001, 75(1): 89-109.
    [73] Cai P H, Huang Y P, Chen M, et al. New production based on 228Ra-derived nutrient budgets and thorium estimated POC export at the intercalibration station in the South China Sea, Deep Sea Res. Part I, 2002a, 49:53-66.
    [74] Cai P H, Huang Y P, Chen M, et al. New production in the South China Sea: A coupled 228Ra-nitrate approach, Sci. China Ser. D, 2002b, 45: 103-109.
    [75] Zhai W D, Dai M H, Cai W J, et al. The partial pressure of carbon dioxide and air-sea fluxes in the northern South China Sea in spring, summer and autumn, Marine Chemistry, 2005, 93: 21-32.
    [76] Chen Y L. Spatial and seasonal variations of nitrate-based new production and primary production in the South China Sea, Deep Sea Res. Part I, 2005, 52: 319-340.
    [77] Benitez-Nelson C R, Buesseler, K O , Rutgers van der Loeff M M, et al. Testing a new small-volume technique for determining 234Th in seawater. J. Radioanal. Nucl., 2001, 248: 795-799.
    [78] Pike S M, Buesseler K O, Andrews J A, et al. Quantification of 234Th recovery in small volume sea water samples by inductively coupled plasma mass spectrometry. Journal of Rationalistically and Nuclear Chemistry, 2005, 263: 355-360.
    [79] Cai P H, Dai M H, Lv D W, et al. An improvement in the small-volume technique for determining thorium-234 in seawater. Marine Chemistry, 2005, 100:282-288.
    [80]陈敏,黄奕普. 234Th/238U不平衡法在真光层颗粒动力学研究中的应用.地球科学进展, 1999, 14(4): 365-370.
    [81] Savoye N, Benitez-Nelson C, Burd A B, et al. 234Th sorption and export models in the water column: A review. Marine Chemistry, 2006, 100:234-249.
    [82]陈立奇.南极和北极地区在全球变化中的作用研究.地学前缘, 2002, 9(2): 245-253.
    [83]陈立奇.南极地区与全球变化集成研究展望.地球科学进展, 2003, 18(1): 133-137.
    [84]高众勇,陈立奇,王伟强.南北极海区碳循环与全球变化研究.地学前缘, 2002, 9(2):263-269.
    [85]高众勇,陈立奇.南大洋碳循环研究进展.世界科技研究与发展, 2002, 24(4): 41-48.
    [86]陆龙骅,卞林根.极地大气科学考察与全球变化.自然杂志, 2009, 30(5): 262-266.
    [87] Baines P G, Cai W. The Antarctic circumpolar wave. International WOCE newsletter, 1998, 33: 35-36.
    [88] Pu S Z, Dong ZQ, Hu X M, et al. Variability of the continental water boundary near the Prydz Bay. Marine science Bulletin, 2002, 4(1):1-10.
    [89]董兆乾,内维尔·史密斯,诺尔斯·克里,等.南极普里兹湾海域夏季的水团和环流. //董兆乾主编,南极科学考察论文集第二集,北京:海洋出版社, 1984: 1-24.
    [90]高众勇.南北极海区夏季海-气二氧化碳交换特征及其所揭示的海洋学问题研究[博士学位论文].厦门:厦门大学海洋系, 2002: 77.
    [91] Chen J H, Edwards R L, Wasserburg G L. 238U, 234U and 232Th in seawater. Earth and Planetary Science Letters, 1986, 80: 241-251.
    [92]陈敏.真光层的颗粒动力学-234Th/238U不平衡的应用[博士学位论文].厦门:厦门大学海洋系, 1996: 97-98.
    [93] Eppley RW, Peterson B J, Particulate organic matter flux and planktonic new production in the deep ocean. Nature, 1979, 282: 677-680.
    [94] Eppley, R W. New production: history, methods and problems. // Berger W H, Smetacek V S, Wefer G, Productivity of the Ocean: Present and Past. New York: John Wiley & Sons Limited, 1989: 85-97.
    [95] Murray J W, Downs J N, Stram S. Nutrient assimilation, export production and 234Th scavenging in the eastern equatorial Pacific. Deep-Sea Research, 1989, 36: 1471-1489.
    [96]扈传昱. 2005/2006年中国第22次南极考察普里兹湾营养盐和溶解氧观测数据报告,中国南北极数据中心, 2006. http://www.chinare.org.cn.
    [97]蔡昱明,宁修仁,朱根海,等.南极普里兹湾浮游植物现存量与初级生产力粒级结构和新生产力研究.海洋学报, 2005, 27(4):135-147.
    [98]朱根海,宁修仁,刘子琳,等. 2000年夏季南极普里兹湾及邻近海域浮游植物研究.海洋学报, 2006, 28(1): 118-126.
    [99] Buesseler K O. The decoupling of production and particulate export in the surface ocean. Global Biogeochemical Cycles, 1998b, 12: 297-310.
    [100]刘子琳,蔡昱明,宁修仁,等. 1999/2000年夏季南极普里兹湾及湾口区叶绿素a和初级生产力.极地研究, 2001, 13(1): 2-12.
    [101] Cochran J K, Barnes C, Achman D, et al. Thorium-234/Uranium-238 disequilibrium as an indicator of scavenging rates and particulate organic carbon fluxes in the Northeast Water Polynya Greenland. Journal of Geophysical Research, 1995, 100(C3): 4399-4410.
    [102] Moran S B, Ellis K M, Smith J N. 234Th/238U disequilibrium in the central Arctic Ocean: implications for particulate organic carbon export. Deep-Sea ResearchⅡ, 1997, 44(8): 1593-1606.
    [103] Ma Q, Chen M, Qiu Y S, et al.Regional estimates of POC export flux derived from thorium-234 in the western Arctic Ocean.Acta Oceanologica Sinica, 2005, 24(6): 97-108.
    [104]孙湘平.中国近海区域海洋.北京:海洋出版社, 2006: 1-9.
    [105] Dugdale R C. Nutrient limitation in the sea: Dynamics, identification and significance. Limnology and Oceanography, 1967, 12: 685-695.
    [106] Coale K H, Bruland KW. Oceanic stratified euphotic zone as elucidated by 234Th:238U disequilibria. Limnology and Oceanography, 1987, 32(1): 189-200.
    [107] Small L F, Knauer G A, Tuel M D. The role of sinking fecal pellets in stratified euphotic zones. Deep-Sea Research, 1987, 34: 1705-1712.
    [108] Hung C C , Wei C L. Th-234 Scavenging in the Water Column off Southwestern Taiwan. Terrestrial Atmospheric and Oceanic Sciences, 1992, 3(2): 183-197.
    [109] Yang W, Huang Y, Chen M, et al. Disequilibria between 210Po and 210Pb in surface waters of the southern South China Sea and their implications. Science in China, Series D, 2005, 49(1): 103-112.
    [110]陈敏,黄奕普,陈飞舟,等.真光层的颗粒动力学VI南海东北部海域上层水体颗粒动力学的示踪研究.热带海洋, 1997, 16(2): 91-103.
    [111] Cai P H, Huang Y P, Chen M, et al. Export of particulate organic carbon estimated from 234Th-238 U disequilibria and its temporal variation in the South China Sea. Chinese Science Bulletin, 2001, 46(20): 1722-1726.
    [112]乐凤凤,宁修仁,刘诚刚,等. 2006年冬季南海北部浮游植物生物量和初级生产力及其环境调控.生态学报, 2008, 28(11): 5775-5784.
    [113] Diego-McGlone M L S, Jacinto G S, Dupra V C, et al. A comparison of nutrient characteristic and primary productivity in the Sulu Sea and South China Sea. Acta Oceanographica Taiwanica, 1999, 37(3): 219-229.
    [114]马嫱,陈敏,邱雨生,等. MnO2共沉淀-直接β计数测定小体积海水中的234Th.海洋学报, 2005, 27(4): 68-75.
    [115] Charette M A. Thorium-234 as a t racer of t he oceanic export of particulate organic carbon [D]. Narragansett: University of Rhode Island, 1998: 267.
    [116] Moran S B, Smith J N. 234Th as a t racer of scavenging and particle export in the Beaufort Sea. Continental Shelf Research, 2000, 20: 153-167.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700