用户名: 密码: 验证码:
长白山岳桦(Betula ermanii)叶性状和生长对海拔梯度响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长白山森林生态系统是中国东北样带(Northeast China Transect,NECT)上最典型的植被垂直梯度分布,是植被水平分布典型的缩影,但目前还没有对整个海拔梯度植被分布特征的内在研究。而亚高山岳桦林带是从森林过渡到苔原的一个过渡带,具有较高的研究价值,但对其进行的研究较少,在全球大气变化的影响下,过渡带的森林是如何响应和适应异质环境,是如何在生理和叶特征上调整应对高海拔环境驱动,这些均具有非常重要的生态学意义,也有利于我们在个体层次上,从生理生态的角度深入认识和理解岳桦林的群落动态与演替的内在驱动机制,为长白山整个生态系统的研究提供依据。
     本试验以长白山亚高山岳桦林带建群树种岳桦为主要研究对象,研究岳桦林的叶特征和光合生理特征,测定了岳桦海拔分布的气候情况,岳桦幼树的叶形态特征、光响应、CO2响应,以及成年树的形态特征、土壤理化性质和养分随海拔梯度的变化规律,结果表明:
     1、随海拔梯度增加,气温、降雨量、风速及紫外线辐射强度逐渐增强,湿度在林内逐渐下降,但苔原带的湿度较岳桦纯林高,较混交林低,这可能与苔原带降水量与风速都较大的原因。8月上旬是岳桦林的生长旺季,此月份内,气温、湿度、风速及降雨量均明显增加,且7月多以西北偏北和东北偏北为主,8月以西北风为主。岳桦生长的土壤条件为酸性土壤,pH值呈先下降后升高变化,在海拔1800m左右达到极小值,土壤含水量随海拔梯度增加而增加,土壤容重与pH值变化一致,而土壤空隙度却相反;有机质含量及全氮含量也呈下降后升高变化,均在海拔1800m附近出现极小值。正是气候与土壤的综合作用,以致形成岳桦目前的这种分布格局。
     2、随海拔梯度升高,岳桦叶面积逐渐下降,但在海拔1700m~1900m内叶片最薄,叶绿素Chl与叶氮含量Narea变化相反,后者在海拔1700m~1900m范围内最小,植物将更多的氮分配到了光合器官(叶绿素)中;类胡罗卜素Car与抗氧化物质脯氨酸Pro、抗坏血酸过氧化物酶活性APX及可溶性糖含量DS变化一致,但与过氧化产物丙二醛MDA恰好相对应,表明随海拔升高,环境胁迫越来越严重,过氧化作用越来越明显,但同时岳桦的抗胁迫机制也得到了有效进化,较高的生化、生理可塑性表明岳桦依赖生理作用比依赖叶形态来调节适应机制更重要。
     3、岳桦幼树的最大净光合速率Pmax、表观量子产量AQY、羧化效率CE、光能转化效率δ、最大羧化速率Vcmax及最大电子传递速率Jmax均呈现增加后降低变化,在海拔1700~1900m达到最大值,而光补偿点LCP和CO2补偿点CCP则相反,在上述海拔范围内具有最小值,表明岳桦的起源可能从海拔1700m~1900m开始,光合活性最强,然后向下或向上发展;同时,暗呼吸速率Rd与光呼吸速率Rday光能利用效率SUE变化一致,均呈一次正相关,叶绿素荧光Fv/Fm值均在0.8以上,表明在岳桦的分布范围内,光合作用并未受阻,但胁迫越来越强烈,以致形成目前的这种分布格局,并随着气候变化这种格局将会继续变化。
     4、随海拔梯度增加,岳桦的密度总体呈增加趋势,树高和胸径呈总体下降趋势变化,但在海拔1800m附近均表现出一个较大的起伏,密度在此海拔骤然增高,随后下降又呈逐渐增加变化,而树高则没有变化,胸径在此海拔以后,下降幅度较大,所以,海拔1800m可作为岳桦分布的一个分水岭,这恰好在光合生理活性最高的海拔范围(1700m—1900m)内,因此,海拔1800m可确定为岳桦起源的起点。与低海拔岳桦相比较,虽然云杉林通过较低的枝下高和较大的冠幅来获得较多的光能,但其较低的树高和胸径可以说明,相对较高的海拔环境已不适应其生存发展,同时低海拔更体现出了岳桦较高的对光强的依赖性;与高海拔落叶松相比,其较高的胸径和树高表明了其适应性较强,但存活率较低,这说明落叶松是以高的死亡率来换取生存,同时在整个岳桦分布范围内,草本植物牛皮杜鹃一直伴生,且生长高度变化相一致,可以很好地作为岳桦的指示植物。
Forest ecology system of Changbai Mountain, belonging Northeast China Transect (NECT), is most typical vegetation with vertical distribution and images a vegetation distribution along level, but there is black in systematical research from whole altitude so far. Although B. ermanii is a sub-alpine transition belt from forest to alpine tundra and has higher study value ecologically, little work has been done. Especially under the effect of global climate change, plants in above line of forest are how to respond and acclimate to heterogeneous environments, and how to adjust to challenge climatic changes physiologically and morphologically, which ecologically offers to a very important significance, and moreover, make for us understanding deeply in the terms of the regeneration of forest, the dynamic of community and the intrinsic drive-mechanism of succession on the individual level. Thus, these are able to base for study systematical for Changbai Mountain. In this dissertation, sub-alpine building population B. ermanii was selected as experimental material and studied in characteristics of morphological and physiological changes along altitude of, including climatic condition, leaf morphological traits and light response and CO2 response of saplings, and quantitative traits of mature, and soil physical-chemic properties and nutrient. The following results could be achieved:
     1.Climatic index including air temperature, precipitation, wind speed and ultraviolet radiation intensity enhanced gradually along altitude. Although humidity declined within forest, however, it was higher in tundra than that in pure forest of B. ermanii, and it was lower in tundra than that in mixed forest, which was likely to due to greater precipitation and wind speed in tundra. The first ten days of August was the growth season, because in this period the temperature, humidity, wind speed precipitation increased markedly. And wind direction generally was northwest leaning north and northeast leaning north in July, and northwest in August. The soil condition of distribution of B. ermanii generally was acidic. The pH was less than 7.0 and reached minimum at 1800m. Soil water content being related with more precipitation was linear along altitude. Soil density varied congruously with pH, but the pertinence was reverse. Soil organic material content and entire nitrogen content had minimum at 1800m. It was just climatic and soil difference that resulted in a recent distribution partern.
     2 . With the altitude, Leaf area decreased and became most thin between altitude 1700m—1900m; Chlorophyll was opposite to the changes of leaf nitrogen with a minimum between altitude 1700m~1900m, which suggested B. ermanii invested more nitrogen to chlorophyll in this altitude (NChl); The variation of carotenoid accorded with antioxidant material Pro, APX, DS whereas, countered oppositely with MDA, one of main products resulted from activated oxygen, which illustrated that B. ermanii evolved effectively antioxidant system when inhibition became bad and bad with increased altitude. Higher antioxidant and physiological plasticity value showed B. ermanii depended on more physiological than morphological to adjust to acclimation.
     3.Maximum net photosynthetic rate Pmax, apparent quanta yield AQY, carboxylation efficiency CE, photosynthetic energy transformation efficiencyδ, maximum carboxylation rate Vcmax and maximum electronic transfer Jmax of saplings of B. ermanii increased and then decreased with altitude, exhibiting maximum in 1700m~1900m, but light compensation point LCP and CO2 compensation point CCP were reverse, and obtained minimum in the same altitude range. It could be concluded that origin of B. ermanii was from1700m—1900m altitude with most active photosynthesis, and developed adown or upwards. Dark respiration rate Rd, light respiration rate Rday and solar energy use efficiency SUE were positively linear with increased altitude, and maximum photochemistry efficiency Fv/Fm was higher than 0.8, which suggested photosynthesis of B. ermanii was not suffered from stress among its distribution range, however, the stress was stronger and stronger with increased altitude and thus led to current distribution pattern which will continue varying under the effect of global change.
     4.With the altitudinal gradient increasing, while density of B. ermanii generally increased and height and breast diameter decreased, they all showed a fluctuation in 1800m around that the density increased abruptly and then declined and increased again, height was no change, and the breast diameter fell in a great degree from 1800m. This altitude thus could be regarded as a watershed of distribution which even belonged to distribution range of highest activity of photo-physiology of B. ermanii, so the altitude 1800m could be cognized as its original point. Compared with B. ermanii in low altitude, although Picea jezoensis could obtain more light through lower branch height and greater crown, less height and breast diameter showed hard to acclimate the high latitude environment. At the same time, low altitude reflected higher dependent on light for B. ermanii. Compared with B. ermanii in high altitude, the greater breast diameter and height of Larix olgensis showed its stronger flexibility, but its survival exchanged with high death rate. Among distribution range of B. ermanii, the herbage Rhododendron aureum accompanied all along and the change of growth height was consistent with B. ermanii, which could better served as indication plant for B. ermanii.
引文
[1] 方精云、沈泽昊、唐志尧 等. 探索中国山地植物多样性的分布规律[J]. 生物多样性, 2004,12(1): 1~4
    [2] 贺金生、陈伟烈. 陆地植物群落物种多样性的梯度变化特征[J].生态学报,1997,17(1): 91~99
    [3] 白永飞、许志信、段淳清等. 典型草原主要牧草植物贮藏碳水化合物分别部位的研究[J].中国草地,1996,(1):7~9
    [4] 陈拓、任红旭、王勋陵. 增强UV-B辐射对小麦叶抗氧化系统的影响[J]. 环境科学学报,1999,19(4):453~455
    [5] 邓坤枚、石培礼、杨振林. 2006.长白山树线交错带的生物量分配和净生产力[J].自然资源学报,2006,21(6):942~948
    [6] 邓敏、周浙昆. 滇西北高山流石滩植物多样性[J].云南植物研究,2004, 26(1):23~34
    [7] 段喜华、孙立夫、马书荣、等.不同海拔高度泡沙参叶片形态研究.植物研究,2003,23(3):334~337
    [8] 郭志华, 张宏达, 李志安,胡宏伟. 鹅掌楸(Liriodendron chinense)苗期光合特性的研究[J]. 生态学报, 1999,19(2):164~169
    [9] 韩发,贲桂英,师生波.青藏高原不同海拔矮蒿草抗逆性的比较研究[J].生态学报,1998, 18(6):654~659
    [10] 贺金生、陈伟烈、王勋陵. 高山栎叶的形态结构及其与生态环境的关系[J]. 植物生态学报, 1994,18(3):219~227
    [11] 黄锡畴、朱颜明、富德义等. 长白山北坡植被生态环境的化学结构[J]. 森林生态系统,1980,(Ⅰ):181~192
    [12] 李芳兰、包维楷、刘俊华. 岷江上游干旱河谷海拔梯度上四川黄栌叶片特征及其与环境因子的关系[J].西北植物学报,2005, 25(11):2277~2284
    [13] 李合生. 植物生理生化实验原理和技术[M]. 北京:高等教育出版社, 2000: 1~30
    [14] 李合生. 现代植物生理学[M].北京:高等教育出版社, 2002:4l5~419
    [15] 李锡文、李捷. 横断山脉地区种子植物区系的初步研究[J].云南植物研究,1993,15 (3):217~231
    [16] 刘棋璟. 岳桦老茎内生根的研究[J]. 林业科学,1992,28(4):382~383
    [17] 卢存福、简令成、匡廷云. 高山植物抗寒性研究 [J]. 植物学通报, 1998,l5 (3):l7~22
    [18] 马书荣、阎秀峰、陈柏林 等. 不同海拔裂叶沙参和泡沙参气孔形态的对比研究[J].东北林业大学学报,1999,27(6):94~97
    [19] 孟婷婷、倪健、王国宏. 植物功能性状与环境和生态系统功能[J]. 植物生态学报,2007,31(1):150~165
    [20] 聂泽龙、孙航、顾志建. 横断山区被子植物染色体研究概况[J]. 云南植物研究,2004,26(1):35~57
    [21] 祁建、马克明、张育新. 辽东栎(Quercus liaotungensis)叶特性沿海拔梯度的变化及其环境解释[J]. 生态学报, 2007,27(3): 930~937
    [22] 钱家驹、张文仲. 长白山高山冻原植物的调查研究[J]. 森林生态系统研究,1980, (Ⅰ):51~64
    [23] 孙谷畴、赵平、曾小平、彭少麟. 补增 UV—B 辐射对焕镛木(Woonyoungia septentrionalis) 叶片光合参数的影响[J]. 应用与环境生物学报, 2002,(8):335~340
    [24] 王晓春、韩士杰、邹春静等.长白山岳桦种群格局的地统计学分析[J]. 应用生态学报,2002,13(7):781~784
    [25] 王晓春、周晓峰、孙志虎.高山林线与气候变化关系研究进展[J].生态学杂志,2005, 24(3):301~305
    [26] 王战、徐振邦、李昕等. 长白山北坡主要森林类型及其群落结构特点(之一)[J]. 森林生态系统,1980,(Ⅰ):25~39
    [27] 韦福民、张晓燕、刘鹏、等.不同海拔对七子花叶片色素含量、含水量及比叶面积的影响[J]. 亚热带植物学报,2007,36(1):1~4
    [28] 徐凯、郭延平、张上隆等. 不同氮营养水平下草莓叶片光合作用对高CO2浓度的适应[J], 植物生理与分子生物学学报,2006,32(4):473~480
    [29] 许大全. 光合作用效率[M]. 上海:上海科学技术出版社,2002: 29~37
    [30] 许广山、丁桂芳、张玉华、等. 长白山北坡主要森林土壤有机质及其特性的初步研究[J]. 森林生态系统研究, 1980,(Ⅰ):215~220
    [31] 杨景宏、陈 拓、王勋陵. 增强UV-B辐射对小麦叶片内源ABA和游离脯氨酸的影响[J],值物生态学报,2000,24(1):102~105
    [32] 于大炮、周 莉、董百丽等.长白山北坡岳桦种群结构及动态分析[J]. 生态学杂志,2004, 23(5):30~34
    [33] 张凤山、迟振文、李晓晏. 长白山地区气候分析及其初步评价[J]. 森林生态系统研究, 1980,(Ⅰ):193~213
    [34] 张林、罗天祥. 植物叶寿命及其相关叶性状的生态学研究进展[J].植物生态学报,2004,28(6):844~852
    [35] 张亚杰和冯玉龙.不同光强下生长的两种榕树叶片官和能力与比叶重、氮含量及分配的关系. 植物生理与分子生物学报, 2004, 30(3):269~276
    [36] 赵大昌. 长白山的植被垂直分布带. 森林生态系统研究,1980,(Ⅰ):65~70
    [37] 周党卫,朱文琰,滕中华,等.不同海拔珠芽蓼抗氧化系统的研究[J].应用与环境生物学报,2003,9(5):489~492
    [38] 周晓峰 、王晓春 、韩士杰. 长白山岳桦苔原过渡带动态与气候变化[J].地学前缘,2001,9(1):227~231
    [39] 邹春静、韩士杰、周玉梅等.过渡带中岳桦种群生态特征的研究[J].应用与环境生物学报,2001, 7 (1):1~6
    [40] 邹春静、王晓春、韩士杰等.长白山岳桦种群过渡带位置的研究[J]. 应用生态学报,2004, 15(12):2217~2220
    [41] 邹琦. 植物生理学与生物化学实验指导[M]. 北京: 中国农业出版社,1995: 30~35
    [42] Ackerly DD, Knight CA, Weiss SB, et al. Leaf size, specific leaf area and microhabitat distribution of chaparral woody plants: contrasting patterns in species level and community level analyses[J]. Oecologia, 2002,130(1): 449~457
    [43] Amen RO. The extent and role of seed dormancy in alpine plants. Quarterly Review of Biology[J], 1966,41(8): 271~281
    [44] Angert AL. Growth and leaf physiology of monkeyflowers with different altitude ranges[J].Oecologia, 2006,148(4): 183~194
    [45] Anten NPR, Hirose T. Limitations on photosynthesis of competing individuals in stands and the consequences for canopy structure[J]. Oecologia, 2001,129(7): 186~196
    [46] Arnold, SM. Relationship between temperature and seedling growth of two species which occur in Upper Teasdale[J]. New Phytologist, 1974,73(12): 333~340
    [47] Asner GP, Scurlock JH & Hicke JA. Global synthesis of leaf area index observations: implications for ecological and remote sensing studies[J]. Global Ecology and Biogeography, 2003,(12): 191~205
    [48] Ballare CL, Scopel AL, Jordan ET, et al.1994. Signaling among neighboring plants and the development of size inequalities in plant populations. Proceedings of the National Academy of Sciences, USA, 1994,91(18): 10 094~10 098
    [49] Bassman J, Zwier JC. Gas exchange characteristics of Populus trichocarpa,Populus deltoids and Populus trichocarpa × P. Deltoids clone[J]. Tree Physiology, 1991,(8): 145~149
    [50] Bazzaz FA. Allocation of resources in plants: state of the science and critical questions. In: Bazzaz FA. & Grace J eds. Plant resource allocation[M]. New York: Academic Press, 1997:1~37
    [51] Bernacchi CJ, Pimentel C, Long SP. In vitro temperature response functions of parameters required to model RuBP limited photosynthesis[J]. Plant Cell Environ, 2003, 26(11): 1419~ 1430
    [52] Berry L, Bjǒrkman O. Photosynthetic response and adaptation to temperature in higher plants[J]. Annual Review of Plant Physiology, 1980,31(2): 491~543
    [53] Billings WD, Godfrey PJ, Chabot BF, et al. Metabolic acclimation to temperature in arctic and alpine ecotypes of Oxyria digyna[J]. Arctic and Alpine Research, 1971,3(4): 277~280
    [54] Billings WD, Mooney HA. The ecology of arctic and alpine plants[J]. Biological Reviews, 1968,43(5): 481~495
    [55] Billings WD. Arctic and alpine vegetation: Plant adaptation to cold summer climates. In: Arctic and Alpine Environments[M], Methuen, London,1974:403~443
    [56] Billings WD.Mooney HA. Comparative physiological ecology of artic and alpine population of Oxyria digyna[J]. Ecol Monogr, 1961,31 (1):l~29
    [57] Blanckenhorn WU. Altitudinal life history variation in the dung flies Scathophaga stercoraria and Sepsis cynipsea[J]. Oecologia, 1997,109(1): 342~352.
    [58] Bondeau A, Kicklighter DW & Kaduk J. Comparing global models of terrestrial net primary productivity (NPP): importance of vegetation structure on seasonal NPP estimates[J].Global Change Biology, 1999,(5): 35~45
    [59] Bradshaw AD. Unravelling phenotypic plasticity –why should we bother[J]? New Phytologist, 2006,170(16): 644~648
    [60] Caldwell MM, Robberecht R, Nowak RS. Differential photosynthetic inhibition by ultraviolet radiation in species from the arctic-alpine life zone[J]. Arct Alp Res,1982,14(1):l95~202
    [61] Caldwell MM. 1968. Solar ultraviolet radiation as an ecological factor for alpine plants[J]. Ecol Monogr, 1982,38(10): 243~268
    [62] Chabot BF, Hicks DJ. The ecology of leaf life spans[J]. Annual Review of Ecology and Systematics, 1982, (13): 229~259
    [63] Colwell RK, Hurtt GC. Non biological gradients in species richness and a spuriousRapopport effect[J]. Am Nat, 1994, 144(5): 570~595
    [64] Cooper, JP. Climatic variation in forest grasses. I. Leaf development in climatic races of Lolium and Dactylis[J]. Journal of Applied Ecology, 1964,(1): 45~61
    [65] Cordell S,.Goldstein G, Meinzer FC, et al. Regulation of leaf life~span and nutrient use efficiency of Metrosidero polymorpha trees at two extremes of a long chronosequence in Hawaii[J].Oecologia,2001,127(13):198~206
    [66] Corder S,Goldstein G,Meinzer F C,et a1. Allocation of nitrogen and carbon in leaves of Metrosideros polymorpha regulates carboxylation capacity and 13C along an altitudinal gradient[J]. Functional Ecology, 1991,(13):81l~818
    [67] Crain JM, Lee WG. Covariation in leaf and root traits for native and non~native grasses along an altitudinal gradient in New Zealand[J]. Oecologia, 2003, 134(7): 471~478
    [68] Dhindsa RS, Dhindsa PP, Reid DM. Leaf senescence and lipid peroxidation:Effects of some phytohormono and scavengers of free racdicals and singlet oxygen[J].Physiol Plant,1982,1(1):456~457
    [69] Earnshaw, MJ. Arrhenius plots of root respiration in some arctic plants[J]. Arctic and Alpine Research, 1981,13(4): 425~430
    [70] Evans JR. Photosynthesis and nitrogen relationships in leaves of C3 plants[J]. Oecologia, 1989a,78(9): 9~19
    [71] Evans, JR. Partitioning of nitrogen between and within leaves grown under different irradiation[J]. Australian Journal of Plant Physiology, 1989b, 16(3): 533~548.
    [72] Ewers FW & Schmid R. Longevity of needle fascicles of Pinus longaeva (Bristlecone pine) and other North American pines[J]. Oecologia,1981,51(19):107~115
    [73] Foster SA & Janson CH. The relationship between seed size and establishment conditions in tropical woody plants[J]. Ecology, 1985,66(4): 773~780
    [74] Gower ST, Reich PB & Son Y. Canopy dynamics and aboveground production of five tree species with different leaf longevities[J].Tree Physiology, 1993,(12):327~345
    [75] Granbher G. Cernusca A. Influence of radiation,wind,and temperature on the CO2 gas exchange of the Alpine dwarf shrub community Loiseleurietum cetroriosum[J]. Photsynthetica,1977,(11):22~28
    [76] Graves JD &Taylor K..A comparative study of Geum rivale L. and G. urbanum L. to determine those factors controlling their altitudinal distribution. I. Growth in controlled and natural environments[J]. New Phytologist, 1986,104(4):681~691
    [77] Graves JD &Taylor K. A comparative study of Geum rivale L. and G. urbanum L. to determine those factors controlling their altitudinal distribution. Ⅱ. Photosynthesis and respiration[J]. New Phytologist, 1988a, 108(3): 297~304
    [78] Graves JD, Taylor K. A comparative study of Geum rivale L. and G. urbanum L. to determine those factors controlling their altitudinal distribution. III. The response of germination to temperature[J]. New Phytologist, 1988b,110(6): 391~397
    [79] Grime JP & Jeffrey DW. Seedling establishment in vertical gradients of sunlight[J]. Journal of Ecology, 1965,53(1):621~642
    [80] Grime JP, Mason G, Curtis AV, et al. A comparative study of germination characteristics in a local flora[J]. Journal of Ecology, 1980,69(2): 1017~1059
    [81] Hadley KS. Vascular alpine plant distributions within the central and southern RockyMountains,USA [J].Arct Alp Res,1987,19(1):242~251
    [82] Han WX, Fang JY, Guo DL, Zhang Y. Leaf nitrogen and phosphorus stoichmetry across 753 terrestrial plant species in China[J]. New Phytologist,2005,168(1):377~385
    [83] Hedberg O. Adaptive evolution in a tropical alpine environment [A].In:Heywood VH(ed).Taxonomy and Ecology[M].NewYork.London:Academic Press,1975:7I~93
    [84] Hendrick RL, Aber JD, Nadelhoffer KJ, and Hallett RD. Nitrogen controls on fine root substrate quality in temperate forest ecosystems[J]. Ecosystems, 2000,(3): 57~69.
    [85] Herbert TJ. 2003. A latitudinal cline in leaf inclination of Dryas octopetala and implications for maximization of whole plant photosynthesis[J]. Photosynthetica, 2003,41 (4): 631~633
    [86] Hikesaka K,Nag amatsu D,Ishii H S,et a1. Photosynthesis—nitrogen relationships in species at diferent altitudes on Mount Kinabalu[J], Malaysia. Ecological Research, 2002,17(1):305~313
    [87] Hǒlscher D, Schmitt S, Kupfer K. Growth and leaf traits of four broad~leafed tree species along a hillside gradient[J]. Forstwissenschaftliches Centralblatt, 2002,121(1): 229~239
    [88] Hultine K R,Marshall J D. Altitude trends in conifer leaf morphology and stable carbon isotope composition[J]. Oecologia, 2000,123(1):32~40
    [89] Hunter, RF & Grant, SA. The effect of altitude on grass growth in east Scotland[J]. Journal of Applied Ecology, 1971, (8):1~20
    [90] Iǒve á, Iǒve D. Origin and evolution of the arctic and alpine floras [A]. In:Ives JD,Barry RC (eds). Arctic and Alpine Environment [M]. London:Methuen Co Ltd,1974:57l~604
    [91] Itow S. Species turnover and diversity patterns along an elevation broadleaved forest coenocline[J]. J Veg Sci, 1991,(2): 477~484
    [92] Jordan DN,Smith WK. Radiation frost susceptibility and association between sky exposure and leaf size[J]. Oecologia, 1995,103(1):43~48
    [93] Kao WY,Chang KW. Altitudinal trends in photosynthetic rate and leaf characteristics of Miscanthus populations from central Taiwan[J]. Australian Journal of Botany, 2001, 49(2):509~514
    [94] Kelllomaki S, Wang KY. Effects of elevated O3and CO2 concentrations on photosynthesis and stomatal conductance in Scots Pine[J]. Plant Cell Environ, 1997,20(3): 995~1006
    [95] Kikuzawa K & Ackerly D. Significance of leaf longevity in plants[J].Plant Species Biology,1999,14(4):39~45
    [96] Kikuzawa K. A cost-benefit analysis of leaf habit and leaf longevity of trees and their geographical pattern[J].The American Naturalist,1991,138(1):1250~1263
    [97] Kikuzawa K. Leaf phenology as an optimal strategy for carbon gain in plants[J].Canadian Journal of Botany,1995,73(1):158~163
    [98] Kitao M, Lei TT, Koike T, et al. Susceptibility to photoinhabition of three deciduous broadleaf tree species with different successional traits raised under various light regimes Plant[J]. Cell and Environment, 2000, 23(3): 81~89
    [99] Klikoff, LG. Temperature dependence of oxidative rates of mitochondria in Danthonia intermedia, Penstemon davidsonii and Sitanion hystrix[J]. Nature, 1966, 212(2): 529~530
    [100] Kobayashi T, Shimano K, Muraoka H. Effect of light availability on the carbon gain of beech seedlings with reference to the density of dwarf bamboo in an understory of Japan seatype beech forest[J]. Plant Species Biology, 2004,19(2): 33~46
    [101] Kogami H,Han ba Y T,Kibe T,et a1. CO2 transfer conductance, leaf structure and carbon isotope composition of Polygonum cuspidatum leaves from low and high altiutudes[J]. Plant,Cell and Environment, 2001,24(2):529~538
    [102] Kǒrner C, Larcher W. Plant life in cold climates. Symp Soc[J]. Exp Biol, 1988,42(3): 25~57
    [103] Kǒrner C. The nutritional status of plants from high altitudes[J]. Oecologia, 1989,81(2):379~391
    [104] Larcher W. StreB bei pflanzen[J]. Naturwiss,1987,74(1):l58~l67
    [105] Larcher W. Temperature stress and survival ability of Mediterranean sclerophyllous plants[J]. Plant Biosystems, 2000,134(1): 279~295
    [106] Leishman MR & Westoby M. The role of large seed size in shaded conditions — experimental evidence[J]. Functional Ecology, 1994,(8): 205~214
    [107] Levin SA, Mooney HA, Field C. The dependence of plant root~shoot ratios on internal nitrogen concentration[J]. Annals of Botany, 1989,64(2): 71~75.
    [108] Li CY, Zhang XJ, Liu XL, et a1. Leaf morphological and physiological responses of Quercus aquifolioides along an altitudinal gradient[J]. Silva Fennica, 2006, 40 (1):5~13
    [109] Llorens L, Peňuelas J, Beier C, Emmett B, Estiarte M, et a1. Effects of an experimental increase of temperature and drought on the photosynthetic performance of two ericaceous shrub species along a North–South European gradient[J]. Ecosystems, 2004,(7): 613~624
    [110] Lomolino MV. Elevation gradients of species density: historical and prospective views[J]. Global Ecol Biogeogr, 2001,10(7): 3~13
    [111] Long SP, Bernacchi CJ. Gas exchange measurement, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error[J]. J Exp Bot, 2003,54(5): 2393~240l
    [112] Louda SM, Dixon PM, Huntly NJ. Herbivory in sun versus shade at a natural meadow—woodland ecotone in the Rocky Mountains[J]. Vegetatio, 1987,72(3):141~149
    [113] Louda SM, Rodman JE. Insect herbivory as a major factor in the shade distribution of a native crucifer (Cardamine cordifolia A. Gray, bittercress) [J]. J Ecol, 1996,84(2):229~237
    [114] Louda SM. Seed predation and seedling mortality in the recruitment of a shrub, Haplopappus venetus Blake (Asteraceae),along a climatic gradient[J]. Ecology, 1983,64(8):511~521
    [115] Luo JX,Zang RG.Li CY. Physiological and morphological variations of Picea asperata populations originating from different altitudes in the mountains of Southwestern China[J].Forest Ecology and Management,2006,221(4):285~290
    [116] Luo TX, Luo J, Pan YD. Leaf traits and associated ecosystem characteristics across subtropical and timberline forests in the Gongga Mountain, Eastern Tibetan Plateau[J]. Oecologia, 2005, 142(3): 261~273
    [117] MacGarvin M, Lawton JH, Heads PA. The herbivorous insect communities of open and woodland bracken observations, experiments and habitat manipulations[J]. Oikos,986, 47(8):135~148
    [118] Machler, F. Effect of light intensity and temperature on photosynthesis of altitudinal ecotypes of Trifolium repens[J]. Oecologia, 1977,31(4): 73~78
    [119] Mani MS. The vegetation of highland [A]. In:Mani MS,Giddings LE(eds). Ecology of Highlands (Monographiae Biologieae Volume 40)[M]. The Netherlands:Dr W Junk by Publishers The HagueBoston-London, 1980:127~137
    [120] Mark AF, Dickinson KJM, Allen J, Smith R, West CJ. Vegetation patterns, plant distribution and life forms across the alpine zone in southern Tierra del Fuego, Argentina[J. Austral Ecology, 2001,(1):423~440
    [121] Mazer SJ. Ecological, taxonomic, and life history correlates of seed mass among Indiana Dune angiosperms[J]. Ecological Monographs, 1989,59(14): 153~175
    [122] Michelsen A, Jonasson S, Sleep D, et al. Shoot biomass, nitrogen and chlorophyll responses of two arctic dwarf shrubs to in situ shading, nutrient application and warming simulating climatic change[J]. Oecologia, 1996,105(1):1~12.
    [123] Moles AT & Westoby M. Latitude, seed predation and seed mass[J]. Journal of Biogeography, 2003,30(1): 105~128
    [124] Moles AT, Ackerly DD, Tweddle JC, et al. Global patterns in seed size[J]. Global Ecology and Biogeography, 2007,16(1): 109~116
    [125] Moles AT, Falster DS, Leishman MR, et al. Small-seeded species produce more seeds per square metre of canopy per year, but not per individual per lifetime[J]. Journal of Ecology, 2004,92(1): 384~396
    [126] Mooney HA,Wright RD,Strain BR. The gax exchange capacity of plants in relation to vegetation zonation in the White Mountains of California[J]. Am Mid Nat, 1964,72(1):362~372
    [127] Myers D, Mittenneier RA, Mittenneier CG, et al. Biodiversity hotspots for conservation priorities [J]. Nature, 2000, 403(10): 853~858
    [128] Naumburg E, Ellsworth DS. Photosynthetic sunfleck utilization potential of understory saplings growing under elevated CO2 in FACE[J]. Oecologia, 2000,122(1): 163~174
    [129] Nie ZL. Low frequency of polyploidy in flora of the Hengduau Mountains hotspol,southwest China,and its evolutionary implications[J]. Ann Mossouri Bot Card, 2005,92(2):275~306
    [130] Ohba H. The alpine flora of the Nepal Himalayas: An introductory note[A]. In: Ohba H,Malla B(eds). The Himalayan plants vol [M ]. Tokyo: Universily of Tokyo Press, 1988:l9~46
    [131] Palmisano S, Fox LR. Effects of mammal and insect herbivoryon population dynamics of a native Californian thistle, Cirsium occidentale[J]. Oecologia, 1997,111(1):413~421
    [132] Pavón NP, Hernández-Trejo H, Rico-Gray V. Distribution of plant life forms along an altitudinal gradient in the semiarid valley of Zapotitlán, Mexico[J]. Journal of Vegetation Science, 2000,(11):39~42
    [133] Peet RK. Forest vegetation of the Colorado, Front Range: Pattern of species diversity[J]. Vegetatio, 1978,37(4): 65~78
    [134] Pigott,CD. Experimental studies on the influence of climate on the geographical distribution of plants[J]. Weather, 1975,30(15): 82~90
    [135] Pisek A, Larcher W, Unterholzner R. Kardinale Temperatrubereiche der photosynthese nnd Grenztemperaturen des Lebens der Blǎtter verschiedenser Spermatophyten.I.Temperaturminimum der Nettoassimilation, CefrierundFrostschadensbereiche der Blǎtter [J]. Flora Abt B,1967,157(1):239~264
    [136] Pons, TL. An ecophysiological study in the field layer of ash coppice. I. Field measurements[J]. Acta Botanica Neerlandica, 1976,25(6):401~416
    [137] Poorter L and Bongers F. Leaf traits are good predictors of plant performance across 53 rain forest species[J]. Ecology, 2006, 87(7): 1733~1743
    [138] Reich PB Grigal DF, Aber JD et al. Nitrogen mineralization and productivity in 50 hardwood and conifer stands on diverse soils[J]. Ecology, 1997,78(1): 335~347
    [139] Reich PB, Ellsworth DS, Walters MB, et al. Generality of leaf trait relationships: a test across six biomes[J]. Ecology, 1999,80(1) :1955~1969
    [140] Reich PB, Oleksyn J, Modrzynski J, et al. Evidence that longer needce retention of sprule and pine populations at high elevations and high latitudes in langely a phenotypic response[J]. Tree Physiology, 1996,16(1):643~64
    [141] Reich PB, Walters MB & Ellsworth DS. Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems[J]. Ecological Monographs,1992,62(1):365~392
    [142] Robberecht R, Caldwell MM, Billings WD. Leaf ultraviolet optical properties along a latitudinal gradient in the Arctic-Alpine life zone [J]. Ecology, 1980,61(3): 6l2~619
    [143] Rook, DA. The influence of growing temperature on photosynthesis and respiration of Pinus radiate seedlings[J]. New Zealand Jo urnal of Botany, 1969,(7): 43~55
    [144] Schreiber U, Schliwa U, Bilger W. Continuous recording of photochemical and nonphotochemical chlorophyll fluorescence quenching with a new type of modulation fluoremeter[J]. Photosynth Res, 1986,10(1): 51~62
    [145] Slatyer, RO. Altitudinal variation in the photosynthetic characteristics of snow gum, Eucalyptus pauciflora Sieb. Ex Spreng.Ⅵ . Temperature responses of four populations grown at different temperatures[J]. Australian Journal of Plant Physiology, 1977,4(1): 583~594
    [146] Sparks JP, Ehleringer JR. Leaf carbon isotope discrimination and nitrogen content for riparian trees along elevational transects[J]. Oecologia, 1997,109(1):362~367
    [147] Streb P, Shang W, Feicrabend J, et al. Divergent strategies of photoprotection in high mountain plants [J]. Planta, 1998,207(1): 3l3~324
    [148] Sultan SE. An emerging focus on plant ecological development[J]. New Phytologist, 2005,166(1): 1~5
    [149] Taylor G, McDonald AJS, Stadenberg I, and Freersmith PH. Nitrate supply and the biophysics of leaf increment in Salix viminalis[J]. Journal of Experimental Botany, 1993,44(1): 155~164
    [150] Thompson PA. Germination of species of the Caryophyllnceae in relation to their geographical distribution in Europe[J]. Annals of Botany, 1970,34(1): 427~449
    [151] Thompson WA, Stocker GC, Kriedemann PE. Increment and photosynthetic response to light and nutrients of Flindersia brayleyana F. Muell., a rainforest tree with broad tolerance to sun and shade[J]. Australian Journal of Plant Physiology, 1988,15(1): 299~315
    [152] Thornley JHM. Mathematical models in plant physiology. London: Academic press, 1976:85~106
    [153] Tranquillini W. Die Stoffproduktion der Zirdse(Pinus Cembra L.) an der Waldgrenzoe wahrend eines Jahres[J].Planta,1959,54(1):107~151
    [154] Trewavas A. A pivotal role for nitrate and leaf growth in plant development. In: Baker NR, Davies WJ &Ong CK eds. Control of leaf growth[M]. New York: Cambridge University Press, 1985:77~91
    [155] Tsukaya H, Fujikawa K, Wu SG. Thermal insulation and accumulation of heat in the downy inflorescences of Saussurea medusa (Asteraceae) at high elevation in Yunnan, China [J].J Plant Res, 2002,115(1): 263~268
    [156] Valladares F, Wright SJ, Lasso E et al. Plastic phenotypic response to light of 16 congeneric shrubs from a Panamanian rainforest[J]. Ecology, 2000,81(1): 1925~1936
    [157] von Caemmerer S,Farquhar GD. Effects of partial defoliation,changes of irradiation during growth.Short-term water stress and growth at enhanced P(CO2) on the photosynthetic capacity of leaves of Phasedis vulgeris L[J].Planta, 1984,160(1):320~329
    [158] Walters MB & Reich PB. Seed size, nitrogen supply, and growth rate affect tree seedling survival in deep shade[J]. Ecology, 2000,81(1): 1887~1901
    [159] Warren-Wilson, J. An analysis of plant growth and its control in arctic environments[J]. Annals of Botany,1966a,30(1): 383~402
    [160] Warren-Wilson, WJ. Effect of temperature on net assimilation rate[J]. Annals Botany, 1966b,30(1):753~761
    [161] Whale, DM. Seasonal variation in the gas exchange characteristics of Primula species[J]. Oecologia, 1983,59(1):377~383
    [162] Whittaker RH. Vegetation of the Siskiyou Mountains, Oregon and California[J]. Ecol Monogr, 1960,30(1): 279~338
    [163] Whittaker RH. Evolution of species diversity in land communities[J]. Evol Biol, 1977,10(1): 1~67
    [164] Wilson JB, Lee WG, Mark AF. Species diversity in relation to ultramafic substrate and to altitude in southwestern New Zealand[J]. Vegetatio, 1990,86(1): 15~20
    [165] Wilson JB, Sydes MT. Some tests for niche limitation by examination of species diversity in the Dunedin area[J]. New Zealand. NZ J Bot, 1988,26(1): 237~244
    [166] Woodward FI. Eco-physiological studies on the shrub Vaccinium myrtillus L. taken from a wide altitudinal range[J]. Oecologia, 1986,70(1) : 580~586
    [167] Woodward, FI. & Jones, N. Growth studies of selected plant species with well defined European distributions. I. Field observations and computer simulations on plant cycles at two altitudes[J]. Journal of Ecology, 1984,72(1):1019~1030
    [168] Woodward, FI. & Pigott, CD. The climatic control of the altitudinal distribution of Sedum rosea L. Scop. and Sedum telepheum L. I. Field observation[J]. New Phytologist, 1975,74(1):323~334
    [169] Woodward, FI. The differential temperature responses of the growth of certain plant species from different altitudes. I. Growth analysis of phleum alpinium L., P. bertolonii D.C., Sesleria albicans Kit. and Dactylis glomerata L[J]. New Phytologist, 1979a,82(1): 385~395
    [170] Woodward, FI. The differential temperature responses of the growth of certain plant species from different altitudes. Ⅱ . Analyses of the control and morphology of leaf extension and specific leaf area of P. bertolonii DC. and phleum alpinium L[J]. New Phytologist, 1979b,82(1): 297~405
    [171] Woodward, FI. The significance of interspecific differences in specific leaf area to the growth of selected herbaceous species from different altitudes[J]. New Phytologist, 1983,95(1): 313~323
    [172] Woodwartion, FI. The climatic control of the altitudinal distribution of Sedum rosea L.Scop. and S. telephium L.Ⅱ . The analysis of plant growth in controlled environments[J]. New Phytologist, 1975,74(1): 335~348
    [173] Wright IJ, Reich PB, Comelissen JHC, et a1. Assessing the generality of global leaf trait relationship[J]. New Phytolagist, 2005, 166(1):485~496
    [174] Wright IJ, Reich PB, Westoby M, et al. The worldwide leaf economics spectrum[J].Nature,2004, 428(1):821~827
    [175] Wu CY. Hengduan mountain flora and her significance[J].Journ Jap Bot,1988, 63(9):29~3l1
    [176] Xie, JY, Chen LZ. Biodiversity characteristics of deciduous broadleaved forest in warm temperate zone[J]. Acta Ecol Sin, 1994,14(1): 337~344
    [177] Zhang SB,Zhou ZK,Hu H,et a1. Photosynthetic performances of Quercus pannosa vary with altitude in the Hengduan Mountains,southwestChina[J]. Forest Ecology and Management, 2005,212(1):291~301
    [178] Zhao CM, Chen WL, Tian ZQ, et al. Altitudinal Pattern of Plant Species Diversity in Shennongjia Mountains, Central China[J], Journal of Integrative Plant Biology, 2005,47 (12): 1431~1449

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700