用户名: 密码: 验证码:
加工工艺对5052合金板材组织与性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以热粗轧工艺制度的Gleeble-1500D试验机模拟、不同热精轧终轧温度的轧制工艺实验和冷轧与退火工艺实验为基础,采用相同部位取样的方法进行拉伸力学性能测试与维氏硬度的测定,同时通过析出相的光学显微组织观察并结合偏光组织与扫描电镜、透射电镜观察以及差热分析、电导率测试等综合分析手段,研究了不同加工工艺对5052铝合金板材组织与性能的影响。结果表明,合金热粗轧工艺模拟过程中的基本动态软化机制为动态回复型软化,变形温度足够高时可以诱发几何型动态再结晶软化过程,而其道次间隙时间内的主要软化机制则为静态再结晶软化;提高热终轧温度将显著促进合金热连轧板材的再结晶过程,从而可以取消冷轧过程的中间退火工艺;不同加工状态下合金板材的应变硬化指数随着应变量的增大呈先增加后减小的变化趋势。
In order to investigate the effect of processing technics on microstructure and properties for 5052 aluminum alloy, technology schedule experiments including Gleeble-1500D thermal- mechanical simulation for breakdown hot rolling (rough rolling) process, multistand hot rolling (finish rolling) processing at different finishing temperature as well as cold rolling and annealing experiments have been carried out. Furthermore, mechanical properties and electrical conductivity were investigated by means of Vickers hardness, tensile test and conductivity measurement. The effects of processing technology on microstructure and precipitation behavior were studied by optical microscopy (OM), polarized optical microscopy (POM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). The results show that dynamic recovery is the basic softening mechanism during isothermal compression and geometric dynamic recrystallization (GDRX) is induced at elevated temperature condition. The softening in delay time is due to static recrystallization (SRX).The recrystallization progress is accelerated obviously when the finishing temperature is increased and intermediate annealing can be cancelled. Strain hardening exponent is increasing first and then decreasing with the increasing of strain under different processing states.
引文
[1]肖亚庆主编.铝加工技术实用手册[M].北京:冶金工业出版社, 2005.1,第1版.
    [2]林钢,林慧国,赵玉涛主编.铝合金应用手册[M].北京:机械工业出版社, 2006.1,第1版.
    [3]田荣璋,王祝堂主编.铝合金及其加工手册[M].长沙:中南大学出版社, 2000.10,第2版.
    [4]张士林,任颂赞主编.简明铝合金手册[M].上海:上海科学技术文献出版社, 2006.9,第2版.
    [5]高淑明,苏学常. 5052合金H32板材稳定化处理[J].轻合金加工技术, 1995, 23 (4): 24-27.
    [6]胡常云. 5052H19合金薄板中间退火工艺研究[J].铝加工, 2003, (148): 12-14, 18.
    [7]马运安,孙恒杰.改善5052合金软状态板材深冲性能的工艺革新[J].轻合金加工技术, 2005, 33 (7): 25-26.
    [8]王祝堂主编.铝材及其表面处理手册[M].南京:江苏科学技术出版社, 1992.3,第1版.
    [9]潘复生,张丁非等编著.铝合金及应用[M].北京:化学工业出版社, 2006.1,第1版.
    [10]上海交通大学金相分析编写组编.金相分析[M].北京:国防工业出版社, 1982.4,第1版.
    [11]吕新宇. 5083铝合金热轧板研究[J].轻合金加工技术, 2002, 30 (3): 15-19, 31.
    [12] A.N.Shuaib. Mechanical Properties of Al-2.5Mg-0.1Mn-Si-Cr-Fe Alloys[J]. Materials and Design, 2002, (23): 181-187.
    [13]柏振海,罗兵辉,范云强等.微量Sc和Zr对Al-Mg合金组织和性能影响的研究[J].材料科学与工艺, 2002, 10 (3): 306-309.
    [14]魏华凯,胡芳友,管仁国. Al-Mg-Sc合金的组织和性能[J].特种铸造及有色合金, 2006, 26 (11): 739-742.
    [15]潘青林,尹志民,邹景霞等.微量Sc在Al-Mg合金中的应用[J].金属学报, 2001, 37 (7): 749-753.
    [16]季小兰,聂祚仁,邢泽炳.稀土元素Er对Al-5Mg合金铸态组织的影响[J].轻合金加工技术, 2005, 33 (10): 19-21, 28.
    [17] K.L.Kendig, D.B.Miracle. Strengthening Mechanisms of an Al-Mg-Sc-Zr Alloy[J]. Acta Materialia, 2002, (50): 4165-4175.
    [18]毛卫民编著.金属材料的晶体学织构与各向异性[M].北京:科学出版社, 2002.8,第1版.
    [19]刘涛,毛卫民,冯惠平等.用X射线透射法测量热轧铝板整体织构[J].物理测试, 2005, 23 (4): 11-14.
    [20]叶文海, H.G.Brokmeier, W.Singer et al.挤压铜/铌复合管室温下的体织构[J].材料导报, 2007, 21 (5A): 253-254.
    [21]杨平编著.电子背散射衍射技术及其应用[M].北京:冶金工业出版社, 2007.7,第1版.
    [22]刘庆.电子背散射衍射技术及其在材料科学中的应用[J].中国体视学与图像分析, 2005,10 (4): 205-210.
    [23]陈绍楷,李晴宇,苗壮等.电子背散射衍射(EBSD)及其在材料研究中的应用[J].稀有金属材料与工程, 2006, 35 (3): 500-504.
    [24]毛卫民,张新明著.晶体材料织构定量分析[M].北京:冶金工业出版社, 1993.3,第1版.
    [25] M.J.Starink, A.M.Zahra.β' andβPrecipitation in an Al-Mg Alloy Studied by DSC and TEM. Acta Mater[J], 1998, 46 (10): 3381-3397.
    [26] M.Bournane, M.Nedjar and A.F.Sirenko. Precipitation in Solid Solutions of Al-Mg. Scripta Materialia[J], 1999, 40 (3): 375-382.
    [27] X.T.Liu, J.Z.Cui, Y.H.Guo et al. Phase Formation and Growth in Al-Mg Couple with an Electromagnetic Field. Materials Letters[J], 2004, (58): 1520-1523.
    [28] M.C.Carroll, P.I.Gouma, M.J.Mills et al. Effects of Zn Additions on the Grain Boundary Precipitation and Corrosion of Al-5083. Scripta Materialia[J], 2000, (42): 335-340.
    [29]陈显明,潘青林,罗承萍等.复合微合金化对Al-Mg合金组织与性能的影响.材料研究学报[J], 2005, 19 (4): 419-425.
    [30] Zaki Ahmad, Anwar Ul-Hamid and B.J.Abdul-Aleem. The Corrosion Behavior of Scandium Alloyed Al 5052 in Neutral Sodium Chloride Solution. Corrosion Science[J], 2001, (43): 1227-1243.
    [31] K.P.Rao, Y.V.R.K.Prasad. High Temperature Deformation Kinetics of Al-4Mg Alloy[J]. Journal of Mechanical Working Technology, 1986, 13 (1): 83-95.
    [32] M.E.Kassner, M.M.Myshlyaev, H.J.McQueen. Large-strain Torsional Deformation in Aluminum at Elevated Temperatures. Material Science and Engineering, 1989, 108 (2): 45-61.
    [33] C.M.Sellars, W.J.McTegart. On the Mechanism of Hot Deformation[J]. Acta Metallurgica, 1966, 14 (9): 1136-1138.
    [34] A.Galiyev, R.Kaibyshev, G.Gottstein. Correlation of Plastic Deformation and Dynamic Recrystallization in Magnesium Alloy ZK60[J]. Acta Materialia, 2001, 49 (7): 1199-1207.
    [35] M.R.Barnett. Influence of Deformation Conditions and Texture on the High Temperature Flow Stress of Magnesium AZ31[J]. Journal of Light Metals, 2001, 1 (3): 167-177.
    [36] A.Mwembela, E.B.Konopleva, H.J.McQueen. Microstructural Development in Mg Alloys AZ31 during Hot Working[J]. Scripta Materialia, 1997, 37 (11): 1789-1795.
    [37] H.J.McQueen, N.D.Ryan. Constitutive Analysis in Hot Working[J]. Materials Science and Engineering A, 2002, 322 (1-2): 43-63.
    [38] H.J.McQueen, J.Belling. Constitutive Constants for Hot Working of Al-4.5Mg-0.35Mn (AA5182)[J]. Canadian Metallurgical Quarterly, 2000, 39 (4): 483-492.
    [39]郑玉林,陈文敬,任文达等. 5052铝合金热压缩变形流变应力[J].铝加工, 2007, (174):17-20, 24.
    [40] M.A.Wells, D.J.Lioyd, I.V.Samarasekera et al. Modeling the Microstructure Change during Hot Tandem Rolling of Aluminum Alloys: Part 3. Overall Model Development and Validation[J]. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 1998, 29B: 611-620, 621-630, 709-719.
    [41]李慧中,张新明,陈明安等. 2519铝合金热变形流变行为[J].中国有色金属学报, 2005, 15 (4): 621-625.
    [42] B.X.Wang, X.H.Liu, G.D.Wang. Dynamic Recrystallization Behavior and Microstructural Evolution in a Mn-Cr Gear Steel[J]. Materials Science and Engineering A, 2005, 393 (1-2): 102-108.
    [43]王瑜,林栋樑, L.Chic. TiAl合金高温拉伸流变应力与Zener-Hollomon因子的关系函数[J].上海交通大学学报, 2000, 34 (3): 338-341, 346.
    [44] T.Sheppard, X.Duan. Influence of Forming Parameters on Final Subgrain Size during Hot Rolling of Aluminum Alloys[J]. Journal of Materials Processing Technology, 2002, 130-131: 579-589.
    [45]林启权,张辉,彭大暑等. 5182铝合金热压缩变形流变应力[J].湘潭大学自然科学学报, 2002, 24 (3): 84-88.
    [46] H.J.McQueen, E.Fry, J.Belling. Comparative Constitutive Constants for Hot Working of Al-4.4Mg-0.17Mn (AA5083)[J]. Materials Engineering and Performance, 2001, 10 (2): 164-172.
    [47]翁宇庆等著.超细晶钢-钢的组织细化理论与控制技术[M].北京:冶金工业出版社, 2003.9,第1版.
    [48] G.R.Johnson, W.H.Cook. A Constitutive Model and Data for Metals Subjected to Large Strain, High Strain Rate and High Temperature[A]. Proceedings of the 7th International Symposium on Ballistics[C]. The Hague, Netherland: International Ballistics Committee, 1983, 541-547.
    [49] W.I.Zuzin, M.Y.Browman, A.F.Melikov. Flow Resistance of Steel at Hot Forming[M]. Moscow: Metallurgy, 1964.
    [50] K.George. Deformation, Processing and Structure[M]. American Society for Metals, Metals Park, Ohio, 1984.
    [51] B.Verlinden, P.Wouters, H.J.McQueen et al. Effect of Different Homogenization Treatments on the Hot Workability of Aluminium Alloy AA2024[J]. Materials Science and Engineering A, 1990, 123 (2): 229-237.
    [52] S.Gourdet, F.Montheillet. An Experimental Study of the Recrystallization Mechanism during Hot Deformation of Aluminium[J]. Materials Science and Engineering A, 2000, 283 (1-2): 274-288.
    [53] K.P.Rao, Y.K.D.V.Prasad, E.B.Hawbolt. Study of Fractional Softening in Multi-stage Hot Deformation[J]. Journal of Materials Processing Technology, 1998, 77 (1-3): 166-174.
    [54] H.Zhang, G.Y.Lin, D.S.Peng et al. Dynamic and Static Softening Behaviors of Aluminum Alloys during Multistage Hot Deformation[J]. Journal of Materials Processing Technology, 2004, 148 (2): 245-249.
    [55]王占学主编.塑性加工金属学[M].北京:冶金工业出版社, 1991.11,第1版.
    [56]郭强,严红革,陈振华等. ZK60镁合金高温压缩道次间软化规律的研究[J].材料工程, 2006, (8): 8-11.
    [57] P.Uranga, A.I.Fernández, B.López et al. Transition between Static and Metadynamic Recrystallization Kinetics in Coarse Nb Microalloyed Austenite[J]. Materials Science and Engineering A, 2003, 345 (1-2): 319-327.
    [58] A.A.Elmustafa, D.S.Stone. Stacking Fault Energy and Dynamic Recovery: Do They Impact the Indentation Size Effect? [J]. Materials Science and Engineering A, 2003, 358 (1-2): 1-8.
    [59]毛卫民,赵新兵著.金属的再结晶与晶粒长大[M].北京:冶金工业出版社, 1994.
    [60]黄光杰. 3104合金铝材高温塑性变形行为的研究[D].重庆大学博士学位论文,重庆, 2000.3.
    [61] R.D.Doherty, D.A.Hughes, F.J.Humphreys et al. Current Issues in Recrystallization: A Review[J]. Materials Science and Engineering A, 1997, 238 (2): 219-274.
    [62] F.J.Humphreys, M.Hatherly. Recrystallization and Related Annealing Phenomena[M]. Great Yarmouth: Great Britain by Galliard Ltd., 1995, 1st Edition.
    [63]蒋树农,刘楚明,李慧中等.高纯多晶铝的动态再结晶[J].中南大学学报(自然科学版), 2004, 35 (6): 935-940.
    [64]刘友良,张新明,李慧中等.工业纯铝的动态再结晶行为[J].湖南有色金属, 2006, 22 (3): 33-36.
    [65]周建,张廷杰,张小明等.锻造方式对7075铝合金锻件动态再结晶的影响[J].稀有金属材料与工程, 2004, 33 (8): 827-830.
    [66]刘志义,崔建忠,白光润. 8090 Al-Li合金亚晶倾转的动态再结晶机制[J].材料科学进展, 1992, 6 (6): 472-475.
    [67] W.Blum, Q.Zhu, R.Merkel et al. Geometric Dynamic Recrystallization in Hot Torsion of Al-5Mg-0.6Mn (AA5083)[J]. Materials Science and Engineering A, 1996, 205 (1-2): 23-30.
    [68] H.J.McQueen. Development of Dynamic Recrystallization Theory[J]. Materials Science and Engineering A, 2004, 387-389: 203-208.
    [69] E.I.Poliak, J.J.Jonas. Initiation of Dynamic Recrystallization in Constant Strain Rate Hot Deformation[J]. ISIJ Int., 2003, 43 (5): 684-691.
    [70] H.Yamagata, Y.Ohuchida, N.Saito et al. Nucleation of New Grains during Discontinuous Dynamic Recrystallization of 99.998 mass% Aluminum at 453K[J]. Scripta Materialia, 2001, 45 (9): 1055-1061.
    [71]万菊林,孙新军,顾家琳等. Al-Cu-Mg-Zn-Cr合金热扭转变形中连续动态再结晶机理[J].金属学报, 1999, 35 (10): 1031-1035.
    [72] T.Furu, H.R.Shercliff, G.J.Baxter et al. The Influence of Transient Deformation Conditions on Recrystallization during Thermomechanical Processing of an Al-1%Mg Alloy[J]. Acta Materialia, 1999, 47 (8): 2377-2389.
    [73]沈健,张新明,章四琪等.工业纯Al高温扭转时的动态回复和动态再结晶[J].金属学报, 1995, 31 (9): A411-416.
    [74]林均品,程荆卫. Al-2Mg合金的动态再结晶[J].中国有色金属学报, 1999, 9 (3): 510-514.
    [75]黄明志,骆竞晞,贺保平.金属硬化曲线的阶段性和最大均匀应变[J].金属学报, 1983, 19 (4): A291-A299.
    [76]张旺峰,陈瑜眉,朱金华.亚稳态材料的应变硬化曲线与硬化参量[J].中国有色金属学报, 2000, 10 (Suppl.1): 236-238.
    [77] S.M.Zhu, J.F.Nie. Serrated Flow and Tensile Properties of a Mg-Y-Nd Alloy[J]. Scripta Materialia, 2004, 50 (1): 51-55.
    [78] C.Gupta, J.K.Chakravartty, S.L.Wadekar et al. Effect of Serrated Flow on Deformation Behaviour of AISI 403 Stainless Steel[J]. Materials Science and Engineering A, 2000, 292 (1): 49-55.
    [79] E.Pink, S.Kumar, B.Tian. Serrated Flow of Aluminium Alloys Influenced by Precipitates[J]. Materials Science and Engineering A, 2000, 280 (1): 17-24.
    [80] B.Tian. Ageing Effect on Serrated Flow in Al-Mg Alloys[J]. Materials Science and Engineering A, 2003, 349 (1-2): 272-278.
    [81] M.Wagenhofer, M.A.Erickson-Natishan, R.W.Armstrong et al. Influences of Strain Rate and Grain Size on Yield and Serrated Flow in Commercial Al-Mg Alloy 5086[J]. Scripta Materialia, 1999, 41 (11): 1177-1184.
    [82]张德芬,黄涛,胡卓超等. 3104铝合金再结晶织构的研究[J].材料工程, 2004, (11): 28-31, 36.
    [83] O.Engler. An EBSD Local Texture Study on the Nucleation of Recrystallization at Shear Bands in the Alloy Al-3%Mg[J]. Scripta Materialia, 2001, 44 (2): 229-236.
    [84] W.C.Liu, Z.Li, C.-S.Man et al. Effect of Precipitation on Rolling Texture Evolution in Continuous Cast AA 3105 Aluminum Alloy[J]. Materials Science and Engineering A, 2006, 434 (1-2): 105-113.
    [85]张德芬,胡卓超,王福.冷轧3004铝合金再结晶织构的研究[J].轻合金, 2004, (1): 53-57.
    [86] A.F.Oliveira, Jr., M.C.de Barros et al. The Effect of RRA on the Strength and SCC Resistance on AA7050 and AA7150 Aluminum Alloys[J]. Materials Science and Engineering A, 2004, 379 (1-2): 321-326.
    [87]冯春,刘志义,宁爱林等. RRA处理对超高强铝合金抗应力腐蚀性能的影响[J].中南大学学报(自然科学版), 2006, 37 (6): 1054-1059.
    [88] W.Kranendonk, M.Maier.热轧过程含铌HSLA钢的软化模型[A].汽车用铌微合金化钢板[C].北京:冶金工业出版社, 2006.10,第1版: 274-278.
    [89]阎大京.超硬铝合金"强度-硬度"关系的分析[J].材料工程, 1993, (7): 3-7.
    [90]林光磊. 6063铝合金型材维氏硬度与强度的线性关系[J].轻合金加工技术, 2002, 30 (1): 29-31.
    [91]李锁才. 35CrMoV钢抗拉强度与硬度关系的探讨[J].理化检验-物理分册, 2001, 37 (12): 514-516, 530.
    [92]钟永红. 6XXX系铝合金挤压型材抗拉强度与硬度关系探讨[J].有色金属加工, 2001, 30 (6): 39-41, 28.
    [93]俞汉清,陈金德编.金属塑性成形原理[M].北京:机械工业出版社, 2005.1,第1版.
    [94]周维贤.描述钢板硬化曲线的一个新数模[J].材料科学进展, 1989, 3 (4): 325-330.
    [95]魏云华. 3004合金热连轧坯料不经退火轧制罐料的工艺探讨[J].铝加工, 2002, 25 (4): 14-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700