用户名: 密码: 验证码:
脑胶质细胞瘤肿瘤干细胞的分离、鉴定以及生物学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
[研究背景]
     胶质瘤,尤其是胶质母细胞瘤,由于其恶性程度高,生长快,病程短,且对放化疗敏感性差,术后复发快,5年生存率仅为20%左右,因此一直被认为是神经外科治疗中最棘手的难治性肿瘤之一。由于肿瘤细胞具有的高度异质性,基因遗传学上的多样化,我们在认识胶质瘤的起源,细胞调节机制以及生长特性上遇到了很多困难。
     肿瘤干细胞假说认为在肿瘤细胞中仅有一小部分(1%)的细胞具有自我更新、无限增殖、多向分化潜能的干细胞样特性,它们是肿瘤发生,转移和复发的根源。而肿瘤中的绝大部分细胞不具有上述特性,无法独立在体内形成种植性肿瘤。Bonnet等最早在急性髓性白血病中分离出白血病干细胞,而脑肿瘤的干细胞研究始于Ignatova,紧接着Singh,Galli等先后通过体内外实验在人的髓母细胞瘤,不同级别的胶质瘤中发现了肿瘤干细胞,他们认为只有这些细胞具有导致肿瘤形成的能力。上述的研究为我们研究胶质瘤提供了一个新的思路,为今后的靶向治疗奠定了基础。
     常用的鉴定脑肿瘤干细胞的方法主要有三种,即悬浮克隆球形成法,CD133免疫磁珠分选法和SP流式细胞仪筛选法。由于标本来源不同,方法不同使得脑肿瘤干细胞在比例构成、生物学特性等方面还存在很大的争议。Kondo以及国内的学者通过SP细胞流式筛选法和悬浮克隆球法在大鼠胶质瘤C6细胞系中发现了小部分(0.4%、1%)具有肿瘤干细胞样特性的细胞,国内的黄强等利用CD133免疫磁珠分选法也在体外长期培养的SHG44胶质瘤细胞系中发现了肿瘤干细胞的存在。但是也有作者发现在体外长期培养的细胞系中不存在肿瘤干细胞,它们的基因与母代细胞发生了根本变化,因此不具有体内致瘤性。我们的初步观察发现大鼠胶质瘤C6细胞系生长极其旺盛与人原代胶质瘤细胞相比在克隆球形成能力以及致瘤能力等很多方面存在着差异,因此对两种细胞从脑肿瘤干细胞的概念和细胞生物学特性出发,作了进一步系统的肿瘤干细胞的研究。
     [目的]
     明确人胶质母细胞瘤以及体外长期培养的大鼠胶质瘤C6细胞系中的肿瘤干细胞及其特性;利用三种不同的分类方法获得肿瘤干细胞并比较它们在构成以及生物学特性上的差异,从而获得最理想的鉴定、分离方式;明确原代肿瘤干细胞和体外长期培养的细胞系中的肿瘤干细胞的异同,进一步阐明肿瘤干细胞在肿瘤发生,发展中的作用。
     [方法]
     第一部分:通过无血清培养基条件观察5例人原代胶质母细胞瘤细胞中悬浮克隆球的形成以及在含血清和无血清两种培养基中的生长转化情况;利用流式细胞仪比较原代肿瘤细胞与克隆球细胞中CD133阳性细胞的构成;利用单细胞克隆培养技术获得具有自我更新能力的细胞比例;利用细胞免疫荧光技术检测细胞的多向分化能力以及抗原的共表达情况;通过裸鼠致瘤实验验证人原代胶质母细胞瘤细胞中具有连续克隆形成能力的细胞的体内致瘤能力。
     第二部分:通过血清和无血清培养基的相互转化,观察大鼠胶质瘤C6细胞系在两种培养基中的生长特性变化;利用流式细胞仪比较在不同培养条件下CD133阳性细胞以及分化细胞的构成变化;利用无血清条件下连续单细胞克隆培养初步获得具有自我更新能力的细胞比例;利用细胞免疫荧光和免疫组织化学技术检测多向分化能力以及抗原的共表达情况;通过裸鼠致瘤实验验证C6单细胞以及种植瘤细胞的肿瘤发生能力。
     第三部分:通过CD133免疫磁珠分选技术将原代人胶质瘤细胞和大鼠C6细胞分为CD133阴性和阳性组;利用western blot技术和免疫荧光技术检测细胞纯度;利用Brdu染色检测细胞的增殖能力,利用克隆形成试验、免疫荧光技术、体内致瘤实验检测不同细胞组间肿瘤干细胞样细胞的构成以及生物学特性;利用western blot和细胞免疫组织化学技术监测分选细胞CD133表达变化情况;利用荧光显微镜观察Hoechst33342对细胞的毒性作用和ABCG2蛋白的表达。
     [结果]
     一、人脑胶质母细胞瘤肿瘤干细胞的分离、鉴定
     1.5例人胶质母细胞瘤中有5.8-13.9%的细胞具有克隆形成能力,悬浮克隆球细胞中有20—34.5%左右的细胞具有再次形成克隆球的能力,同时这些细胞具有多向分化为表达GFAP/NSE阳性细胞的能力和体内致瘤的能力。
     2.人胶质母细胞瘤克隆球细胞可以连续在血清和无血清条件下相互转化,同时发现有少量细胞会出现CD133与GFAP/NSE的共表达现象。
     3.流式细胞仪和免疫组织化学结果显示克隆球中CD133阳性细胞比例要明显高于原代人胶质母细胞瘤实体细胞中CD133阳性细胞比例。
     4.裸鼠致瘤实验发现人胶质母细胞瘤中只有克隆球形成能力的细胞具有致瘤能力;种植瘤中的子代细胞同样有母代肿瘤干细胞样细胞的存在。
     二、大鼠C6胶质瘤细胞系肿瘤干细胞的分离、鉴定
     5.C6细胞在血清和无血清条件下可以相互转化生长,血清培养条件不影响细胞在无血清培养基中的克隆球形成能力。
     6.C6胶质瘤细胞系中有>60%的细胞及其子代细胞可以在无血清培养基中形成克隆球,有>90%的细胞及其子代细胞可以在含血清培养基中无限扩增。同时这些细胞具有胶质瘤样细胞,神经元样细胞的多向分化能力以及体内致瘤能力。
     7.流式细胞仪和免疫组织化学结果显示长期血清培养基条件下C6细胞中约有30%的细胞为CD133阳性表达。在无血清培养条件下克隆球中的比例>85%。
     8.C6细胞在含血清培养基中有CD133与GFAP/NSE的共表达现象,而在克隆球中该现象明显减少。
     9.裸鼠致瘤实验发现所有参与种植的C6单细胞克隆株均可成瘤,且种植瘤子代细胞同样具有肿瘤干细胞样特性,与母代细胞一致。
     三、不同方法鉴定胶质瘤肿瘤干细胞的比较分析
     10.大鼠胶质瘤C6细胞系中CD133阴性和阳性细胞均有肿瘤干细胞样细胞存在,两者在细胞增殖、克隆形成方式,致瘤速度等方面存在一定差异。
     11.人胶质母细胞瘤细胞中CD133阴性细胞不具有肿瘤干细胞样特性,也并不是所有的CD133阳性细胞具有克隆形成能力。
     12.在长期血清培养条件下,C6细胞中CD133阴性的细胞可以产生阳性细胞,而人胶质母细胞瘤细胞中未发现该现象。
     13.Hoechst33342对大鼠C6细胞和人胶质母细胞瘤细胞均有毒性作用。
     14.C6细胞系和人胶质母细胞瘤细胞中均发现有1%左右的细胞ABCG2蛋白表达阳性。而且仅该部分细胞在与Hoechst33342共同孵育后仍保留有肿瘤干细胞样特性,而其它细胞均丧失了自我更新能力。
     [结论]
     1.人胶质母细胞瘤和体外长期血清培养的大鼠胶质瘤C6细胞系中均有肿瘤干细胞样细胞的存在。
     2.人胶质母细胞瘤和C6细胞系中的肿瘤干细胞样细胞在比例构成,自我更新能力、干细胞与分化抗原共表达、在血清与无血清两种条件下相互转化能力以及体内致瘤能力上均存在着较大的差异。
     3.C6细胞系中同时存在CD133阴性以及CD133阳性的肿瘤干细胞样细胞,同时CD133阴性和阳性细胞可以相互转化。而在人胶质母细胞瘤中仅有CD133阳性细胞表现有自我更新、多向分化和连续致瘤的能力。
     4.Hochest33342对人胶质母细胞瘤细胞和C6细胞均有毒性作用,会将那些缺乏ABC转运蛋白(如ABCG2蛋白)表达而没有能力把Hochest33342崩出体外但具有肿瘤干细胞特性的细胞排除在SP细胞范围之外。
     5.利用肿瘤干细胞生物学特性分离、鉴定法获得的悬浮克隆球数与CD133免疫磁珠分选以及SP细胞的比例存在一定差异,因此寻找一种新的更能全面反映脑肿瘤干细胞的分子标记是今后研究的重点。
[BACKGROUND]
     Gliomas, especially high grade glioblastomas (WHO grade IV), are characterized with highly malignancy, rapid growth, poor prognosis, resistance to radiotherapy and chemotherapy, and early relapse with a 5-year-survival rate of just 20%. Moreover, the tumor cells are highly heterogeneous and diversified in terms of their genetic backgrounds between individual cases. Therefore, the mechanism underlying glioma initiation, cellular regulation and growth characteristics are still remain poorly understood.
     The cancer stem cell hypothesis implies that only a relatively small fraction of cells (1%), termed cancer stem cell (CSC), possess the stem cell ability such as indefinite proliferation, extensive self-renewal, and multi-linkage differentiation, and they are the true sources of tumor initiation, metastasis and relapse. Bonnet et al are the first who have isolated the leukemia CSC from acute myeloid leukaemia and the researches on brain CSC are pioneered by Ignatova et al, Singh et al and Galli et al who have identified brain CSC from human medulloblastoma and gliomas of different grades. These studies have provide insights into our understanding of glioma cancer biology and paved the way for the future CSC-targeted therapy.
     The most widely adopted brain CSC identification methods are floating tumor spheres culture, CD133 magnetic activated cell sorting (MACS) and flow cytometry sorting (FCMS) for side population (SP). However, the differences in the specimens analyzed and specific identification methods applied usually lead to large controversy over the percentage and biological characteristics of the brain CSC isolated. Kondo et al and Li et al have identified a rare cell faction(0.4%, 1%) with CSC properties from long-term in vitro cultured rat C6 glioma cell line. Moreover, Huang et al also have proved the existence of cancer stem-like cells in SHG-44 glioma cell line. However, there are still some researches believe that there is no cancer stem cell in long-term in vitro cultured cell lines and they are dramatically different from their matched primary tumor in terms of genetic backgrounds. Our preliminary studies also showed that rat C6 cells are different from human primary glioblastoma cells in many respects, such as tumor sphere formation and tumorigenesis. Therefore, a systematic comparison was made between the identified CSCs from C6 glioma cell line and human glioblastomas.
     [OBJECTIVES]
     To identify the CSCs from primary human glioblastomas and rat C6 glioma cell line and explore their biological characteristics; Three different identification methods are used to identify the CSCs, comparing their composition and characteristics, and the optimal identification method is suggested; To determine the differences between the CSCs from primary human glioma and in vitro cultured glioma cell line and to further illuminate the role CSC plays in the initiation and development of glioma.
     [METHODS]
     Part 1: Both serum-containing and serum-free medium were used to culture the 5 human primary glioblastomas and the impact of alteration in culture medium on the growth pattern of glioblastoma cells was observed; FCMS was used to determine the percentage of CD133 positive cells in primary tumor cells and floating tumor spheres; Single-cell clonal culture was used to determine the percentage of cells with self-renewal capacity; Cytoimmunofluorescence and immunohistochemistry staining were used to analyze the multi-linkage differentiation capacity and co-expression of differentiations markers of the human glioblastoma cells. Xenograft tumor formation in nude mice was used to determine the in vivo tumorigenecity of the glioblastomacells.
     Part 2: Both serum-containing and serum-free medium were used to culture the rat C6 glioma cell line and the impact of alteration in culture medium on the growth pattern of C6 cells was observed; FCMS was used to determine the percentage of CD133 positive cells and differentiated progenies of the C6 cells in different culture medium; Consecutive single-cell clonal culture in serum-free medium was used to determine the percentage of cells with self-renewal capacity; Cytoimmunofluorescence and immunohistochemistry staining were used to analyze the multi-linkage differentiation capacity and co-expression of differentiations markers of the C6 cells. Xenograft tumor formation in nude mice was used to determine the in vivo tumorigenecity of the C6 cells.
     Part 3: CD133 MACS was used to isolate CD133 positive cell fractions from the CD133 negative cell fractions in both human primary glioblastoma and C6 line; Western Blot and immunofluorscence assay were used to determine the purity of the cell separated. Brdu staining was used to clear the proliferative capacity of the cells separated. Clonal analysis, immunofluorescence assay, and in vivo nude mice transplantation were used to determine the composition and biological characteristics of the CSCs in the separated cell fractions. Immunofluorescence assay was used to determine the toxicity of Hoechst 33342 to tumor cells and the expression of ABCG2.
     [RESULTS]
     一、Isolation and identification of cancer stem cells in human glioblastomas.
     1. About 5.8-13.9% human primary glioblastoma cells were capable of forming tumor spheres and 20-34.5% of the tumor sphere cells were endowed with self-renewal capacity, multi-linkage differentiation and in vivo tumorigenecity.
     2. Human primary glioblastoma cells could readily transform their growth pattern in serum-containing and serum-free medium and co-expression of CD133 and GFAP/NSE was found in few cells.
     3. FCMS and immunohistochemistry assay showed CD133 positive rate in primary glioblastoma cells were much lower than in the tumor spheres they formed in serum-free medium.
     4. Nude mice transplantation showed only human glioblastoma cells which could form tumor-spheres were tumorigenic and the xenograft tumor cells also contained CSCs.
     二、Isolation and identification of cancer stem cells in C6 glioma cell line
     5. C6 cells could transform its growth pattern in different culture medium and serum-containing medium did not alter its tumor-sphere formation capacity in serum-free medium.
     6. >60% C6 cells and their progenies were capable of forming tumor spheres in serum-free medium and >90% C6 cells and their progenies were capable of extensive self-renewal in serum-containing medium. All these cells had characteristics of neuronal and glial linkage differentiation and in vivo tumorigenecity.
     7. FCMS and immunohistochemistry assay showed a 30% CD133 positive rate in long-term serum-containing medium cultured C6 cells and >85% in serum-free meium.
     8. C6 cells co-expressed CD133 and NSE/GFAP in serum-containing medium, which is rarely seen in serum-free medium.
     9. Nude mice transplantation showed all C6 single cells were tumorigenic and the xenograft tumor cells had the similar CSC properties as their mother cells.
     三、Identification of cancer stem cells with different methods
     10. Both C6 CD133 positive and negative cell fractions contamed cancer stem-like cells with different proliferation, clone formation and tumorigenecity capacities.
     11. CD133 negative cell fraction in human glioblastomas contained no CSC and not all CD133 positive cells were capable of forming clones.
     12. CD133 negative cells in C6 cell line could generate CD133 positive cells in serum-containing medium but not the human glioblastoma cells.
     13. Hoechst 33342 was toxic to both C6 and human glioblastoma cells.
     14. C6 cell line and human glioblastoma cells contained 1% cells which were ABCG2 positive. Only this rare cell fraction still had CSC properties when they were incubated with Hoechst33342 for 2 hours.
     [CONCLUTIONS]
     1. Both human glioblastoma cells and C6 cells contained cancer stem-like cells.
     2. Human glioblastoma cells differed from C6 cells in terms of their CSC percentage, self-renewal capacity, differentiation marker expression, transformation in serum-containing/free medium and in vivo tumorigenecity.
     3. Both C6 CD133 positive and negative fractions contained cancer stem-like cells while only CD133 positive human glioblastoma cells had self-renewal capacity, multi-linkage differentiation and in vivo tumorigenecity.
     4. Hochest 33342 was toxic to both human glioblastoma cells and C6 cells and thus exclude those cells that could not pump out Hochest 33342, for example ABCG2 negative cells, from being potential CSCs.
     5. Identifying CSCs by their biological characteristics yield a much higher CSC percentage than by CD133 MACS or SP FCMS. Therefore finding a more reliable CSC marker should be the aim of future work.
引文
1.Reya T,Morrison S J,Clarke MF,Weissman IL.Stem cells,cancer,and cancer stem cells.Nature 2001;414:105-111.
    2.Pardal R,Clarke MF,Morrison SJ.Applying the principles of stem-cell biology to cancer.Nat Rev Cancer 2003;3:895-902.
    3.Huff CA,William H.Matsui,B et al.Strategies to eliminate cancer stem cells:Clinical implications.Eur J Can 2006;42:1293-1297.
    4.Al-Hajj M,Becker MW,Wicha M et al.Therapeutic implications of cancer stem cells.Current Opinion in Genetics & Development 2004;14:43-47.
    5.Ignatova TN,Kukekov VG,Laywell ED,et al.Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro.Glia 2002;39:193-206
    6.Galli,R.,Binda,E.,Orfanelli,U.,et al.Isolation and characterization of tumorigenic,stem-like neural precursors from human glioblastoma.Cancer Res 2004;64:7011-7021.
    7.Singh SK,Clarke ID,Terasaki M,et al.Identification stem cell in human brain tumors.Cancer Res 2003;63:5821-5828
    8.王金鹏,黄强,张全斌等.人脑胶质瘤干细胞SHG一44s的克隆及初步鉴定.中国肿瘤临床 2005;32:604-610.
    9. Hill, R.P. identifying cancer stem cells in solid tumors: case not proven. Cancer Res 2006; 66:1891-1895.
    
    10. Hamburger A W, Salmon S E. Primary bioassay of human tumor stem cells. Science 1977; 197: 461-463.
    
    11. Rosenblum M L, Gerosa M A, Wilson C B, et al. Stem cell studies of human malignant brain tumors. Part 1 :development of the stem cell assay and its potential. J Neurosurg, 1983; 58: 170-176.
    
    12. Bonnet D, Dick J E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997; 3:730-737.
    
    13. Dick JE. Breast cancer stem cells revealed. Proc Natl Acad Sci USA 2003, 100:3547-3549.
    
    14. Collins A, Berry P, Hyde C, et al. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 2005; 65:10946-10951.
    
    15. Wang J, Guo LP, Chen LZ,et al. Identification of cancer stem cell-like side population cells in human nasopharyngeal carcinoma cell line. Cancer Res 2007; 67:3716-24.
    
    16. Yuan, XP ,Curtin J ,Xiong Y ,et al. Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene 2004; 23:9392-9400.
    
    17. Hemmati HD, Nakanol, Lazaref JA, et al. Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci USA 2003; 100:15178-15183.
    
    18. Singh SK, Hawkins C, Clarke ID, et al .Identification of human brain tumors initiating cells. Nature 2004; 432: 396-401.
    
    19. Kondo T, Setoguchi T, Taga T. Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line, Proc Natl Acad Sci USA 2004; 101:781-786.
    
    20. Dirks PB.Cancer: tem cells and brain tumours. Nature 2006; 444:687-8.
    21 .Sighn S, Dirks PB. Brain tumor stem cells: identification and concepts. Neurosurg Clin N Am 2007; 18:31-38.
    
    22. Hadnagy A, Gaboury L, Beaulieu R, et al. SP analysis may be used to identify cancer stem cell populations. Exp Cell Res 2006; 312:3701-3710.
    23.Kim M,Turnquist H,Jackson J et al.The Multidrug Resistance Transporter ABCG2(Breast Cancer Resistance Protein 1)Effluxes Hoechst 33342 and is overexpressed in Hematopoietic Stem Cells.Clinical Cancer Research 2002;8:22-28.
    24.Bao S,Wu Q,McLendon RE,Hao Y.et al.Glioma stem cells promote radio resistance by preferential activation of the DNA damage response.Nature 2006;444,756-760.
    25.Pardal R,ClarkeM F,Mo rrison SJ.Applying the principles of stem-cell biology to cancer.Nat Rev Cancer 2003;3:895-902.
    26.王彬,杨辉,何家全等.逆转录病毒介导v-myc基因转染神经干细胞的实验研究.中国创伤杂志 2004;20:551-555.
    27.朱玉德,季晓燕,黄强等.人脑胶质瘤干细胞初步研究.中华神经外科杂志2007 23:127-130.
    28.黄强.胶质瘤干细胞玉神经干细胞研究.实用肿瘤杂志 2004,19:267-269.
    29.李茗初,邓永文,伍军等.髓母细胞瘤中脑肿瘤干细胞的分离培养及鉴定.癌症.2006,25(2):241-246.
    30.Beier,D.,Hau,P.,Proescholdt,M.et al.CD133(+)and CD133(-)glioblastoma -derived cancer stem cells show differential growth characteristics and molecular profiles.Cancer Res 2007;67:4010-4015.
    31.Zheng X S,Shen G,Yang XF,and Liu WG.Most C6 cells are cancer stem cells:evidence from clonal and population analyses.Cancer Res 2007;67(8):3691-3697.
    32.Liang Zhou,Xudong Wei,Lei Cheng,et al.CD133,One of the Markers of Cancer Stem Cells in Hep-2 Cell Line.Laryngoscope 2007;117:455-460.
    33.Lee,J.,Kotliarova,S.,Kotliarov Y.,et al.Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines.Cancer Cell 2006;9:391-403.
    34.Inagaki A,Soeda A,Oka N,et al.Long-term maintenance of brain tumor stem cell properties under at non-adherent and adherent culture conditions.Biochemical and Biophysical Research Communications 2007;361:586-592.
    1.Reya T,Morrison SJ,Clarke MF,Weissman IL.Stem cells,cancer,and cancer stem cells.Nature 2001;414:105-111.
    2.Pardal R,Clarke MF,Morrison SJ.Applying the principles of stem-cell biology to cancer.Nat Rev Cancer 2003;3:895-902.
    3.Dirks PB.Cancer:stem cells and brain turnouts.Nature 2006;444:687-8.
    4.Hemmati HD,Nakanol,Lazaref JA,et al.Cancerous stem cells can arise from pediatric brain tumors.Proc Nat1 Acad Sci USA,2003;100(25):15178-15183.
    5.Singh SK,Hawkins C,Clarke ID,et al.Identification of human brain tumors initiating cells.Nature,2004;432(7015):396-401.
    6.Galli,R,Binda,E,Orfanelli,U,et al.Isolation and characterization of tumorigenic,stem-like neural precursors from human glioblastoma.Cancer Res 2004;64:7011-7021.
    7.Singh SK,Clarke ID,Terasaki M,et al.Identification stem cell in human brain tumors.Cancer Res 2003;63(18):5821-5828
    8.Pilkington GJ.Cancer stem cells in the mammalian central nervous system.Cell Prolif.2005;38:423-433.
    9.Kondo T,Setoguchi T,Taga T.Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line.Proc Natl Acad Sci USA 2004;101:781-786.
    10.李茗初,陈风华,邓永文等.悬浮法培养C6胶质瘤细胞系和该细胞系中脑肿瘤干细胞的分离.中国现代医学杂志,2004,14:57-60.
    11.Vescovi AL,Galli R,Reynolds BA,Brain tumour stem cells.Nat.Rev.Cancer 2006;6:425-436.
    12.Singh SK,Dirks PB.Brain tumor stem cells:identification and concepts.Neurosurg Clin N Am.2007;18(1):31-38.
    13.Yuan,XP,Curtin J,Xiong Y,et al.Isolation of cancer stem cells from adult glioblastoma multiforme.Oncogene 2004;23(58):9392-9400.
    14.王金鹏,黄强,张全斌等.人脑胶质瘤干细胞SHG-44s的克隆及初步鉴定.中国肿瘤临床.2005;32:604-610.
    15.Ignatova TN,Kukekov VG,Laywell ED,et al.Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro.Glia 2002;39:193-206
    16.姜晓兵,周风,姚东晓等.人脑胶质瘤肿瘤干细胞的培养及鉴定.脑与神经疾病杂志.2005;1:6-8.
    17.朱玉德,季晓燕,黄强等.人脑胶质瘤干细胞初步研究.中华神经外科杂志.2007;23:127-130.
    18.Lee,J.,Kotliarova,S.,Kotliarov Y.,et al.Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines.Cancer Cell 2006;9:391-403.
    19.Hill,RP.identifying cancer stem cells in solid tumors:case not proven.Cancer Res 2006;66:1891-1895.
    20.Bachoo RM,Maher EA,Ligon KL,et al.Epidermal growth factor receptor and Ink4a/Arf:convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis. Cancer Cell 2002; 1: 269 -277.
    
    21. Zhu Y and Parada LF. The molecular and genetic basis of neurological tumours. Nat. Rev. Cancer 2002; 2: 616-626.
    
    22. Richardson GD, Robson CN, Lang SH et al. CD133, a novel marker for human prostatic epithelial stem cells. J. Cell Sci. 2004; 117: 3539 - 3545.
    
    23. Mehra N, Penning M, Maas J. et al. Progenitor marker CD133 Mrna is elevated in peripheral blood of cancer patients with bone metastases. Clin. Cancer Res 2006; 12: 4859 - 4866.
    
    24. Salmaggi A, Boiardi A, Gelati M, et al. Glioblastoma-derived tumorospheres identify a population of tumor stem-like cells with angiogenic potential and enhanced multidrug resistance phenotype. Glia 2006; 54:850 - 860.
    
    25. Liu G, Yuan X, Zeng Z, et al.Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol. Cancer 2006; 5: 67.
    
    26. Liang Zhou, Xudong Wei, Lei Cheng, et al. CD133, One of the Markers of Cancer Stem Cells in Hep-2 Cell Line. Laryngoscope 2007; 117:455-460.
    
    27. Wang J, Guo LP, Chen LZ,et al. Identification of cancer stem cell-like side population cells in human nasopharyngeal carcinoma cell line. Cancer Res. 2007; 67(8):3716-24.
    
    28. Shiras A, Chettiar ST, Shepal V, et al. Spontaneous transformation of human adult nontumorigenic stem cells to cancer stem cells is driven by genomic instability in a human model of glioblastoma. Stem Cells 2007; 25:1478-1489.
    
    29. Bissell M J and LaBarge MA. Context, tissue plasticity, and cancer: Are tumor stem cells also regulated by the microenvironment? Can Cell 2005; 7:17-23.
    
    30. Yang ZJ and Wechsler-Reyal RJ. Hit 'Em Where They Live: Targeting the Cancer Stem Cell Niche. Cancer Cell 2007; 11:3-5.
    
    31. Zheng X S, Shen G, Yang XF, and Liu WG. Most C6 cells are cancer stem cells: evidence from clonal and population analyses. Cancer Res 2007; 67(8): 3691-3697.
    
    32. Kim M, Turnquist H, Jackson J et al. The Multidrug Resistance Transporter ABCG2 (Breast Cancer Resistance Protein 1) Effluxes Hoechst 33342 and is overexpressed in Hematopoietic Stem Cells. Clinical Cancer Research 2002; 8: 22-28.
    33. Neuzil J, Stantic M, Zobalova R, et al. Tumour-initiating cells vs. cancer 'stem' cells and CD133: What's in the name? BBRC 2007; 355:855-859.
    34. Bao S, Wu Q, McLendon RE, Hao Y.et al. Glioma stem cells promote radio resistance by preferential activation of the DNA damage response. Nature 2006; 444, 756-760.
    35. Huff CA, William H. Matsui, B et al. Strategies to eliminate cancer stem cells: Clinical implications. Eur J Can 2006; 42:1293-1297.
    36. Al-Hajj M, Becker MW, Wicha M et al. Therapeutic implications of cancer stem cells. Current Opinion in Genetics & Development 2004; 14:43—47.
    37. Folkins C, Man S, Xu P, et al. Anticancer Therapies Combining Antiangiogenic and Tumor Cell Cytotoxic Effects Reduce the Tumor Stem-Like Cell Fraction in Glioma Xenograft Tumors. Cancer Res 2007; 67:3560-3564.
    1.Reya T,Morrison S J,Clarke MF,Weissman IL.Stem cells,cancer,and cancer stem cells. Nature 2001; 414:105-111.
    2. Dirks PB.Cancer: stem cells and brain tumours. Nature 2006,444:687-8.
    3. Sighn S, Dirks PB. Brain tumor stem cells: identification and concepts. Neurosurg Clin N Am 2007; 18:31-38.
    4. Calabrese C, Poppleton H, Kocak M, et al. A perivascular niche for brain tumor stem cells. Cancer Cell 2007; 11.69-82.
    5. Kim M, Turnquist H, Jackson J et al. The Multidrug Resistance Transporter ABCG2 (Breast Cancer Resistance Protein 1) Effluxes Hoechst 33342 and is overexpressed in Hematopoietic Stem Cells. Cli Can Res 2002; 8: 22-28.
    6. Bao S, Wu Q, McLendon RE, Hao Y.et al. Glioma stem cells promote radio resistance by preferential activation of the DNA damage response. Nature 2006; 444:756-760.
    7. Weigmann A, Corbeil D, Hellwig A, & Huttner, W. B. Prominin, a novel microvilli-specific polytopic membrane protein of the apical surface of epithelial cells, is targeted to plasmalemmal protrusions of non-epithelial cells. Proceedings of the National Academy of Sciences of the United States of America. 1997; 94: 12425-12430.
    8. Fargeas CA, Corbeil D &Huttner WB. AC133 Antigen, CD133, Prominin-1, Prominin-2, Etc.: Prominin Family Gene Products in Need of a Rational Nomenclature. Stem Cells 2003; 21: 506-508.
    9. Singh SK, Clarke ID, Terasaki M, et al. Identification stem cell in human brain tumors .Cancer Res. 2003; 63: 5821-5828.
    10. Suetsugu A, Nagaki M, Aoki H, et al.Characterization of CD133+ hepatocellular carcinoma cells as cancer stem/progenitor cells. Biochem. Biophys. Res. Commun. 2006;351: 820 - 824.
    11. O'Brien CA., Pollett A, Gallinger S, et al. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 2006; 445: 106 - 110.
    12. Menra N, Penning M, Maas J. et al. Progenitor marker CD133 Mrna is elevated in peripheral blood of cancer patients with bone metastases, Clin. Cancer Res 2006; 12: 4859-4866.
    13.黄强,董军,朱玉德等.人脑胶质瘤组织中分离和培养干细胞.中华肿瘤杂志2006;5:331-333.
    14.王金鹏,黄强,张全斌等.人脑胶质瘤干细胞SHG-44s的克隆及初步鉴定.中国肿瘤临床.2005;32:604-610.
    15.Goodell M.A,Brose K,Paradis G,et al.Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo,J Exp.Med.1996;183:1797-1806.
    16.Kondo T,Setoguchi T,Taga T.Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line,Proc Natl Acad Sci USA.2004;101:781-786.
    17.Deichmann M,Thome M,Egner U,et al.The chemoresistance gene ABCG2(MXR/BCRP1/ABCP1)is not expressed in melanomas but in single neuroendocrine carcinomas of the skin.J Cutan Pathol 2005;32:467-73.
    18.Yuan,XP,Curtin J,Xiong Y,et al.Isolation of cancer stem cells from adult glioblastoma multiforme.Oncogene 2004;23:9392-9400.
    19.Galli,R.,Binda,E.,Orfanelli,U.,et al.Isolation and characterization of tumorigenic,stem-like neural precursors from human glioblastoma.Cancer Res.2004;64:7011-7021.
    20.Hemmati HD,Nakanol,Lazaref JA,et al.Cancerous stem cells can arise from pediatric brain tumors.Proc Natl Acad Sci USA 2003;100:15178-15183.
    21.Ignatova TN,Kukekov VG,Laywell ED,et al.Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro.Glia 2002;39:193-206
    22.Uchida N,Buck DW,He D,et al.Direct isolation of human central nervous system stem cells.Proc Natl Acad Sci U S A.2000;97:14720-14725.
    23.Singh SK,Clarke ID,Hide T,Dirks PB.Cancer stem cells in nervous system tumors.Oncogene 2004;23:7267-7273.
    24.Ricci-Vitiani L,Lombardi D.G.,Pilozzi E.,et al.Identification and expansion of human colon-cancer-initiating cells, Nature. 2007; 445:111 - 115.
    25. Collins A.T., Berry P.A., Hyde C, et al. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 2005,65:10946 - 10951.
    26. Richardson G.D., Robson C.N., Lang S.H.,et al. CD133, a novel marker for human prostatic epithelial stem cells. J. Cell Sci. 2004; 117:3539 - 3545.
    27. Salmaggi A., Boiardi A., Gelati M., et al. Glioblastoma-derived tumorospheres identify a population of tumor stem-like cells with angiogenic potential and enhanced multidrug resistance phenotype. Glia 2006; 54:850 - 860.
    28. Liu G., Yuan X., Zeng Z., et al. Analysis of gene expression and chemoresistance of CD 133+ cancer stem cells in glioblastoma. Mol.Cancer. 2006; 5: 67.
    29. Singh SK., Hawkins C., Clarke E)., et al. Identification of human brain tumour initiating cells. Nature 2004; 432:396 - 401.
    30. Kang MK, Kang SK. Tumorigenesis of chemotherapeutic drug-resistant cancer stem-like cells in brain glioma. Stem Cells Dev. 2007; 16:837-47.
    31. Sakariassen PΦ, Immervoll H, Chekenya M. Cancer stem cells as mediators of treatment resistance in brain tumors: status and controversies. Neoplasia 2007; 9:882-892.
    32. Chalmers AJ. Radioresistant glioma stem cells—therapeutic obstacle or promising target? DNA Repair (Amst) 2007; 6:1391-1394.
    33. Hambardzumyan D, Squatrito M, Holland EC. Radiation resistance and stem-like cells in brain tumors. Cancer Cell 2006; 10:454-456.
    34. Neuzil J, Stantic M, Zobalova R, et al. Tumour-initiating cells vs. cancer 'stem' cells and CD133:What"s in the name? Biochem and Biophy Res Com. 2007; 355:855-859
    35. Yin S, Li J , Hu C, et al. CD133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity. Int. J.Cancer. 2007; 120:1436 - 1442.
    36. Hill, R.P. identifying cancer stem cells in solid tumors: case not proven. Cancer Res2006;66:1891-1895.
    37. Beier, D., Hau, P., Proescholdt, M. et al. CD133 (+) and CD133 (-) glioblastoma -derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res 2007; 67: 4010-4015.
    38. Lee, J., Kotliarova, S., Kotliarov Y., et al. Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 2006; 9: 391-403.
    39. Hadnagy A, Gaboury L, Beaulieu R, et al. SP analysis may be used to identify cancer stem cell populations. Exp Cell Res 2006; 312:3701-3710.
    40. Burkert J, Otto W, Wright N. Side populations of gastrointestinal cancers are not enriched in stem cells. J Pathol 2007; 214:564-573.
    41.Christgen M, Ballmaier M, Bruchhardt H.et al. Identification of a distinct side population of cancer cells in the Cal-51 human breast carcinoma cell line. Mol Cell Biochem 2007; 306:201-212.
    
    42. Ho MM, Ng AV, Lam S, Hung JY. Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Res 2007; 67:4827-33.
    
    43.Salmaggi A, Boiardi A, Gelati M.et al. Glioblastoma-derived tumorospheres identify a population of tumor stem-like cells with angiogenic potential and enhanced multidrug resistance phenotype. Glia 2006; 54:850-860.
    
    44. Calatozzolo C, Gelati M, Ciusani E,et al. Expression of drug resistance proteins Pgp, MRP1, MRP3, MRP5 and GST-pi in human glioma. J Neurooncol 2005; 74:113-21.
    45. Platet N, Mayol J.F, Berger F, et al. Fluctuation of the SP/non-SP phenotype in the C6 glioma cell line. FEBS Lett 2007; 581:1435-1440.
    46. Benchaouir R, Rameau P, Decraene C, et al. Evidence for a resident subset of cells with SP phenotype in the C2C12 myogenic line: a tool to explore muscle stem cell biology. Exp. Cell Res. 2004; 294:254-268.
    47. Morita Y, Ema H, Yamazaki S, Nakauchi H. Non - side-population hematopoietic stem cells in mouse bone marrow. Blood 2006; 108:2850-2856.
    48. Triel C, Vestergaard ME,.Bohmd L, et al. Side population cells in human and mouse epidermis lack stem cell characteristics. Exp. Cell Res. 2004; 295:79-90.
    49. Liu BY, McDermott SP, Khwaja SS, et al. The transforming activity of Wnt effectors correlates with their ability to induce the accumulation of mammary progenitor cells. Proc. Natl. Acad. Sci. U. S. A. 2004; 101:4158-4163.
    50. Montanaro F, Liadaki K, Schienda J, et al. Demystifying SP cell purification: viability, yield, and phenotype are defined by isolation parameters. Exp Cell Res 2004; 298:144-154.
    1.Passegue E,Jamieson CH,Ailles LE,et al.Normal and leukemic hematopoiesis:are leukemias a stem cell disorder or a reacquisition of stem cell characteristics?Proc Natl Acad Sci USA 2003;100:11842-11849.
    2.Till JE,Mcculloch EA.A direct measurement of the radiation sensitivity of normal mouse bone marrow cells.Radiat Res 1961;14:213-22
    3.Hamburger AW,Salmon S E.Primary bioassay of human tumor stem cells.Science 1977;197:461-463.
    4.Rosenblum ML,Gerosa MA,Wilson CB,et al.Stem cell studies of human malignant brain tumors.Part 1:development of the stem cell assay and its potential.J Neurosurg 1983;58:170-176.
    5.Bonnet D,Dick JE.Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell.Nat Med 1997;3:730-737.
    6.Blair A,Hogge DE,Ailles LE et al.Lack of expression of Thy-1(CD90)on acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo.Blood 1997;89:3104-3112.
    7.Reya T,Morrison SJ,Clarke MF,Weissman IL.Stem cells,cancer,and Cancer stem cells.Nature 2001;414:105-111.
    8. Hajj M, Wicha M S, Benito-Hernandez A, et al. Prospective identification of tumorigenic breast cancer cells. Proc Natf Acad Sc USA 2003; 100:3983-3898.
    9. Gudjonsson T, Villadsen R, Nielsen HL, et al. Isolation, immortalization, and characterization of a human breast epithelial cell line with stem cell properties. Gene Dev 2002; 16:693-706.
    10. Daidone MG, Costa A, Frattini M, et al. Evidence that APC regulates Survivin expression: a possible mechanism contributing to the stem cell origin of colon cancer. Cancer Res 2004; 64:776-777.
    11. Dick JE. Breast cancer stem cells revealed. Proc Natl Acad Sci USA 2003; 100: 3547-3549.
    12. Mina J, Bissell and LaBarge MA. Context, tissue plasticity, and cancer: Are tumor stem cells also regulated by the microenvironment? Cancer cell 2005; 7:17-23.
    13. Hill, R.P. identifying cancer stem cells in solid tumors: case not proven. Cancer Res 2006; 66:1891-1895.
    14. Natsume A, Tsujimura K, Mizuno M, et al. IFN-beta gene therapy induces systemic antitumor immunity against malignant glioma. J Neurooncol 2000; 47:117-124.
    15. Folkins C, Man S, Xu P, et al. Anticancer Therapies Combining Antiangiogenic and Tumor Cell Cytotoxic Effects Reduce the Tumor Stem-Like Cell Fraction in Glioma Xenograft Tumors. Cancer Res 2007; 67: 3560-3564.
    16. Kyritsis AP, Tachmazoglou F, Rao JS, and Puduvalli VK. Bortezomib sensitizes human astrocytoma cells to tumor necrosis factor related apoptosis-inducing ligand induced apoptosis. Clin Cancer Res 2007; 13:6540-6541.
    17. Dirks PB. Cancer: stem cells and brain tumours. Nature 2006,444:687-8.
    18. Vescovi AL, Galli R, Reynolds BA. Brain tumour stem cells. Nat. Rev. Cancer 2006; 6: 425-436.
    19. Fomchenko EI, Holland EC. Stem cells and brain cancer. Exp Cell Res 2005; 306: 323-329.
    20. Oliver TG, Wechsler-Reya RJ. Getting at the root and stem of brain tumors.Neuron 2004; 42: 885-888.
    21.Dean M,Fojo T,Bates S.Tumor stem cells and drug resistance.Nat Rev Cancer 2005;5(4):275-284.
    22.Bao S,Wu Q,McLendon RE,Hao Y.et al.Glioma stem cells promote radio resistance by preferential activation of the DNA damage response.Nature 2006;444:56-760.
    23.Ignatova TN,Kukekov VG,Laywell ED,et al.Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro.Glia 2002;39:193-206.
    24.Galli R,Binda E,Orfanelli U,et al.Isolation and characterization of tumorigenic,stem-like neural precursors from human glioblastoma.Cancer Res 2004;64:7011-7021.
    25.Singh SK,Hawkins C,Clarke ID,et al.Identification of human brain tumors initiating cells.Nature 2004;432:396-401.
    26.Singh SK,Clarke ID,Terasaki M,et al.Identification stem cell in human brain tumors.Cancer Res 2003;63(18):5821-5828.
    27.Hemmati HD,Nakano 1,Lazaref JA,et al.Cancerous stem cells can arise from pediatric brain tumors.Proc Nat1 Acad Sci USA 2003;100(25):15178-15183.
    28.Kondo T,Setoguchi T,Taga T.Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line.Proc Natl Acad Sci USA 2004;101(3):781-786.
    29.Partial R,ClarkeM F,Mo rrison SJ.Applying the principles of stem-cell biology to cancer.Nat Rev Cancer 2003;3:895-902.
    30.王彬,杨辉,何家全等.逆转录病毒介导v-myc基因转染神经干细胞的实验研究.中国创伤杂志,2004;20:551-555.
    31.Recht L,Jang T,Savarese T,et al.Neural stem cells and neuro-oncology:quo vadis.Cell J Biochem 2003;88(1):11-19.
    32.Dahmane N,Sanchez P,Gitton Y,et al.The Sonic Hedgehog-Gli pathway regulates dorsal brain growth and tumorigenesis.Development 2001;128(24):5201-5212.
    33.Wechsler-Reya RJ.Analysis of gene expression in the normal and malignant cerebellum.Recent Prog Horm Res 2003;58:227-248.
    34.Aboody KS,Brown A,Rainov NG,et al.Neural stem cells display extensive tropism for pathology in adult brain:Evidence from intracranial gliomas.Proc Nat1Acad Sei USA 2000;97(23):12846-12851.
    35.Berger F,Gay E,Pelletier,et al.Development of gUomas:potential role of asymmetrical cel division of neural stem cells.Lancet Oncol,2004;5:511-514.
    36.Yuan XP,Curtin J,Xiong Y,et al.Isolation of cancer stem cells from adult glioblastoma multiforme.Oncogene 2004;23(58):9392-9400.
    37.Zheng XS,Shen G,Yang XF,et al.Most C6 cells are cancer stem cells:evidence from clonal and population analyses.Cancer Res 2007;67(8):3691-3697.
    38.Ho MM,Ng AV,Lam S,et al.Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells.Cancer Res 2007;67:4827-33.
    39.Zhang QB,Ji XY,Huang Q,et al.Differentiation prolife of brain tumor stem cells:a comparative with neural stem cells.Cell Res 2006;16(12):909-915.
    40.黄强.胶质瘤干细胞玉神经干细胞研究.实用肿瘤杂志 2004;19:267-269.
    41.Marx J.Mutant stem cells may seed cancer.Science 2003;301(5638):1308-1310.
    42.黄强,董军,朱玉德等.人脑胶质瘤组织中分离和培养干细胞.中华肿瘤杂志.2006,5(28):331-333.
    43.Zhou S,Schuetz J,Bunting K,et al.The ABC transporter ABCG2/Bcrpl is expressed in a wide variety of stem cells and is a molecular determinant of the side population phenotype.Nat Med 2001;7(9):1028-10334.
    44.Neuzil J,Stantic M,Zobalova R,et al.Tumour-initiating cells vs.cancer "stem"cells and CD133:What's in the name? Biochem and Biophy Res Com.2007;355:855-859
    45.方加胜,邓永文,李茗初,等.胶质瘤中肿瘤干细胞的分离、培养及鉴定.中国现代医学杂志,2005;15:2449-2452.
    46.李茗初,方加胜,邓永文,等.髓母细胞瘤中脑肿瘤干细胞的分离培养及鉴 定.癌症,2006;25:241-246.
    47.Lee,J,Kotliarova,S,Kotliarov Y,et al.Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines.Cancer Cell 2006;9:391-403.
    48.方加胜,邓允文,李茗初,等.神经上皮来源脑肿瘤干细胞的分离培养与鉴定.中华医学杂志,2007;5:298-303.
    49.Beier,D,Hau,P,Proescholdt,M.et al.CD133(+)and CD133(-)glioblastoma -derived cancer stem cells show differential growth characteristics and molecular profiles.Cancer Res 2007;67:4010-4015.
    50.Liu G.,Yuan X.,Zeng Z.,et al.Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma.Mol.Cancer.2006;5:67.
    51.Shiras A,Chettiar ST,Shepal V,et al.Spontaneous transformation of human adult nontumorigenic stem cells to cancer stem cells is driven by genomic instability in a human model of glioblastoma.Stem Cells 2007;25:1478-89.
    52.Weigmann A,Corbeil D,Hellwig A,& Huttner,W.B.Prominin,a novel microvilli-specific polytopic membrane protein of the apical surface of epithelial cells,is targeted to plasmalemmal protrusions of non-epithelial cells.Proceedings of the National Academy of Sciences of the United States of America 1997;94:12425-12430.
    53.Fargeas CA,Corbeil D &Huttner WB.AC 133 Antigen,CD133,Prominin-1,Prominin-2,Etc.:Prominin Family Gene Products in Need of a Rational Nomenclature.Stem Cells 2003;21:506-508.
    54.Uchida N,Buck DW,He D,et al.Direct isolation of human central nervous system stem cells.Proc Natl Acad Sci U S A.2000;97:14720-14725,
    55.Suetsugu A,Nagaki M,Aoki H,et al.Characterization of CD 133+ hepatocellular carcinoma cells as cancer stem/progenitor cells,Biochem.Biophys.Res.Commun.2006;351:820-824.
    56.O'Brien C.A.,Pollett A,Gallinger S,et al.A human colon cancer cell capable of initiating tumour growth in immunodeficient mice.Nature 2006;445:106-110.
    57.Collins AT.,Berry PA.,Hyde C,et al.Prospective identification of tumorigenic prostate cancer stem cells.Cancer Res 2005;65:10946-10951.
    58.Richardson GD,Robson CN,Lang SH,et al.CD133,a novel marker for human prostatic epithelial stem cells.J.Cell Sci.2004;117:3539-3545.
    59.王金鹏,黄强,张全斌等.人脑胶质瘤干细胞SHG-44s的克隆及初步鉴定。中国肿瘤临床.2005;32:604-610.
    60.Kang MK,Kang SK.Tumorigenesis of chemotherapeutic drug-resistant cancer stem-like cells in brain glioma.Stem Cells Dev.2007;16:837-47.
    61.Sakariassen Pφ,Immervoll H,Chekenya M.Cancer stem cells as mediators of treatment resistance in brain tumors:status and controversies.Neoplasia 2007;9:882-892.
    62.Chalmers AJ.Radioresistant glioma stem cells--therapeutic obstacle or promising target? DNA Repair(Amst).2007;6:1391-1394.
    63.Yin S,Li J,Hu C,et al.CD133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity.Int.J.Cancer.2007;120:1436 - 1442.
    64.Hadnagy A,Gaboury L,Beaulieu R,et al.SP analysis may be used to identify cancer stem cell populations.Exp Cell Res 2006;312:3701-3710.
    65.Burkert J,Otto W,Wright N.Side populations of gastrointestinal cancers are not enriched in stem cells.J Patho12007;214:564-573.
    66.Christgen M,Ballmaier M,Bruchhardt H.et al.Identification of a distinct side population of cancer cells in the Cal-51 human breast carcinoma cell line.Mol Cell Biochem 2007;306:201-212.
    67.Kondo T,Setoguchi T,Taga T.Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line.Proc Natl Acad Sci USA 2004;101:781-786.
    68.Calatozzolo C,Gelati M,Ciusani E,et al.Expression of drug resistance proteins Pgp,MRP1,MRP3,MRP5 and GST-pi in human glioma.J Neurooncol 2005;74:113-21.
    69.Platet N,Mayol J.F,Berger F,et al.Fluctuation of the SP/non-SP phenotype in the C6 glioma cell line. FEBS Lett 2007; 581:1435-1440.
    70. Benchaouir R, Rameau P, Decraene C, et al. Evidence for a resident subset of cells with SP phenotype in the C2C12 myogenic line: a tool to explore muscle stem cell biology, Exp. Cell Res. 2004; 294:254-268.
    71. Morita Y, Ema H, Yamazaki S, Nakauchi H. Non - side-population hematopoietic stem cells in mouse bone marrow, Blood 2006; 108:2850-2856.
    72. Triel C, Vestergaard ME,.Bolund L, et al. Side population cells in human and mouse epidermis lack stem cell characteristics. Exp. Cell Res. 2004; 295:79-90.
    73. Tunici P, Bissola L, Lualdi E, et al. Genetic alterations and in vivo tumorigenicity of neurospheres derived from an adult glioblastoma. Mol Cancer 2004; 3 (1):25.
    74. Houman DH, Ichiro N, Jorge AL, et al.Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci 2003; 100:15178-15183.
    75. Hattori K, Dias S, Heissig B, et al. Vascular endothelial growth factor and angiopoietin2 stimulate postnatal hematopoiesis by recruitment of vasculogenic and hematopoietic stem cells. J Exp Med 2001; 193 (9):1005-1014.
    76. Stephen BF, Gotter KC, Haarris AL. tumor angiogenesis. J Pathol. 1996; 179:232-237.
    77. Maniotis AJ, Folberg R, Hess A, et al. Vascular channel formation by human melanoma cells in vivo and in vitro:vasculogenic mimicry. Am J Pathol 1999; 155(3): 739-752.
    78. Morayma R, Arkadiusz D, Balkrishna J, et al. Origin of endothelial progenitors in human postnatal bone marrow. J Clin Invest 2002; 109:337.
    79. Calabrese C. Poppleton H, Kocak M, et al. A Perivascular Niche for Brain Tumor Stem Cells. Cancer Cell 2007; 11:69-82.
    80. Bao, S. et al. Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res 2006; 66: 7843-7848.
    81. Li F, Tiede B, Massague J, Kang Y. Beyond tumorigenesis: cancer stem cells in metastasis. Cell Res. 2007; 17(1):3-14
    82. Vredenburgh JJ. et al. Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma. Clin Cancer Res 2007; 13:1253-1259.
    83. Itoh T, Satou T, Dote K. Effect of basic fibroblast growth factor on cultured rat neural stem cell in three dimensional collagen gel. Neurological Research 2005; 27: 429-432.
    84. Whittemore SR, Morassutti DJ, Walters WM, et al. Mitogen and substrate differentially affect the lineage restriction of adult rat sub—ventricular zone neural precursor populations. Ex p Cell Res 1999; 252:75-95.
    85. Caldwell MA, He X, Wilkie, N, et al. Growth factors regulate the survival and fate of cells derived from human neurospheres. nature biotechnology 2001; 19:475-479.
    86. Dai C, Celestino JC, Okada Y. et, al. PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo. GENES & DEVELOPMENT 2001; 15:1913-1925.
    87. Maric D, Maric I, Chang YH and Barker JL. Prospective Cell Sorting of Embryonic Rat Neural Stem Cells and Neuronal and Glial Progenitors Reveals Selective Effects of Basic Fibroblast Growth Factor and Epidermal Growth Factor on Self-Renewal and Differentiation. The Journal of Neuroscience 2003; 23:240 -251.
    88. Evseenko DA, Murthi P, Paxton JW,et al. The ABC transporter BCRP/ABCG2 is a placental survival factor, and its expression is reduced in idiopathic human fetal growth restriction. FASEB J. 2007; 21(13):3592-605.
    89. Ifergan I, Scheffer GL, Assaraf YG. Novel extracellular vesicles mediate an ABCG2-dependent anticancer drug sequestration and resistance. Cancer Res 2005; 65(23):10952-10958.
    90. Batchelor TT, Sorensen AG, di Tomaso E, et al. AZD2171, a Pan-VEGF Receptor Tyrosine Kinase Inhibitor, Normalizes Tumor Vasculature and Alleviates Edema in Glioblastoma Patients. Cancer Cell 2007; 11: 83-95.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700