用户名: 密码: 验证码:
酵母菌添加对饲喂不同精粗比饲粮肉牛瘤胃发酵、养分降解和血浆代谢组的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文目的是研究活性酵母菌添加对饲喂不同精粗比饲粮的肉牛瘤胃发酵和养分降解的影响,并从瘤胃微生物区系和纤维素酶活两个角度探索酵母菌影响养分降解的机理;同时本试验还对酵母添加对饲喂不同精粗比饲粮肉牛血浆代谢组的影响进行了探索。试验选择10头装有永久性瘤胃瘘管的西门塔尔×本地牛阉牛(450±50kg BW),随机分为对照组和酵母添加组,两组饲喂相同的基础饲粮,酵母添加组每天晨饲前通过瘘管投喂活性酵母菌,投喂量为0.8g/d。采用了交叉试验设计,共分为两期试验,每期包含4个阶段,从第1阶段到第4阶段,饲粮精粗比逐渐提高,分别为30:70、50:50、70:30和90:10,每个阶段持续17天,即10天预饲期,6天尼龙袋试验期,最后1天晨饲前采集颈静脉血液,晨饲后3h采集瘤胃内容物。试验采用了MIXED模型对试验结果进行了统计分析,并对饲粮精粗比的线性效应和二次曲线效应采用了正交多项式对比分析(orthogonal polynomial contrast)。具体的试验结果如下:
     试验一:本试验目的是研究活性酵母菌添加对饲喂不同精粗比饲粮肉牛瘤胃发酵参数的影响。结果表明,精粗比和酵母菌添加没有互作。随饲粮精粗比的提高,各瘤胃发酵参数分别呈线性或者二次曲线趋势变化,其中瘤胃pH、乙酸摩尔比例、异丁酸摩尔比例和乙丙比(A:P)呈线性趋势降低(L;P<0.01);TVFA浓度、丙酸摩尔比例、丁酸摩尔比例、戊酸摩尔比例和异戊酸摩尔比例呈线性趋势升高(L;P<0.01);氨态氮和乳酸浓度呈二次曲线趋势变化(Q;P<0.01)。不考虑饲粮精粗比的影响,酵母菌添加组瘤胃液pH显著高于对照组(P<0.01),酵母添加组TVFA浓度、氨态氮浓度和乳酸浓度与对照组之间差异不显著(P>0.05),各挥发酸的摩尔比例两组之间也没有显著差异(P>0.05)。试验结果表明:饲粮精粗比显著影响瘤胃发酵参数;活性酵母菌具稳定瘤胃pH的作用;活性酵母菌对瘤胃发酵模式无显著影响。
     试验二:本试验目的是研究活性酵母菌添加对饲喂不同精粗比饲粮肉牛瘤胃养分降解的影响。试验采用尼龙袋法测定了蒸汽压片玉米干物质(DM)的消失率与羊草、苜蓿颗粒和青贮玉米秸DM和NDF降解参数。统计结果结果表明:(1)随饲粮精粗比的提高,蒸汽压片玉米干物质各时间点的消失率均呈现二次曲线趋势变化(Q;P<0.01),三种纤维饲料DM和NDF快速降解成分(aDM,aNDF)呈二次曲线趋势降低(Q;P<0.01),降解速率(cDM,cNDF)和有效降解率(EDDM,EDNDF)呈线性趋势降低(Linear, P<0.01);(2)不考虑饲粮精粗比的影响,酵母菌添加组蒸汽压片玉米3h,6h,12h的DM消失率显著低于对照组(P<0.05);24h,48h的消失率与对照组无显著差异(P>0.05);酵母菌添加组羊草aDM,bDM,aNDF与对照组之间无显著差异(P>0.05),bNDF显著低于对照组(P<0.05), cDM,EDDM,ENDF和EDNDF显著高于对照组(P<0.05);酵母添加组苜蓿颗粒aDM,bDM和EDDM与对照组无显著差异(P>0.05), CDM极显著高于对照组(P<0.01), aNDF,bNDF与对照组无显著差异(P>0.05), cNDF显著高于对照组(P<0.05), EDNDF极显著高于对照组(P<0.01);酵母添加组青贮玉米秸的各个降解参数与对照组之间无显著差异(P>0.05)。试验结果表明:饲粮精粗比显著影响养分瘤胃降解;酵母菌添加降低了蒸汽压片玉米干物质消失速率,提高了纤维饲料养分的降解速率和有效降解率;酵母菌添加对纤维饲料降解的影响与纤维饲料本身的性质有关。
     试验三:本试验目的是通过瘤胃微生物区系和酶活两类指标来研究活性酵母菌添加影响饲喂不同精粗比饲粮肉牛瘤胃养分降解的机理。试验采用了Real-time PCR测定了瘤胃total bacteria、rumen fungi和protozoa的拷贝数及纤维降解菌、淀粉降解菌、乳酸利用菌和乳酸产生菌的百分比;同时采用了DNS比色法测定了测定了木聚糖酶活、羧甲基纤维素酶活、微晶纤维素酶活和β-葡萄糖苷酶活。统计结果表明,(1)随饲粮精粗比的提高,Total bacteria, Rumen fungi, Protozoa的拷贝数和StrBov的百分比呈二次曲线趋势变化(Q;P<0.01),4种纤维降解菌(R. flavefaciens, R.ablus, FibSuc, ButFib)的百分比、RumAmy和SelRum的百分比呈线性趋势降低(L;P<0.01),而Lactobacillus的百分比呈线性趋势增加(L;P<0.01);4种纤维素酶均呈线性趋势增加(L;P<0.01)。(2)不考虑饲粮精粗比的影响,酵母添加组Total bacteria的拷贝数显著高于对照组(P<0.05), Rumen fungi和Protozoa的拷贝数有高于对照组的趋势(P<0.1), R. flavefaciens, R.ablus, FibSuc, ButFib, StrBov, Lactobacillus的百分比与对照组无显著差异(P>0.05), RumAmy的百分比显著低于对照组(P<0.05),SelRum的百分比显著高于对照组(P<0.05);(3)不考虑饲粮精粗比的影响,酵母添加组木聚糖酶活、微晶纤维素酶活和β-葡萄糖苷酶活菌显著高于对照组(P<0.05),羧甲基纤维素酶活与对照组无显著差异(P>0.05)。试验结果表明,饲粮精粗比显著影响瘤胃微生物区系;酵母菌添加降低蒸汽压片玉米瘤胃消失速率的机理与其增加原虫数量、降低淀粉降解菌百分比有关;酵母菌促进纤维饲料降解的机理与其增加瘤胃真菌数量和纤维素酶活有关。
     试验四:本试验目的是研究酵母菌添加对饲喂不同精粗比饲粮肉牛血浆代谢组的影响。试验采用超高效液相色谱四级杆飞行时间质谱联用仪(UPLC-QTOFMS)对采集的血浆样品代谢组分进行了分析,应用PCA、PLS-DA和OPLS-DA等模型对不同精粗比饲粮的生物标志物和酵母添加组的生物标志物进行了筛选。试验结果为不同饲粮精粗比组的生物标志物有胞嘧啶、二氢胸腺嘧啶、软脂酰胺、硬脂酰胺、油脂酰胺和磷酸泛酸;精粗比为30:70时,酵母添加组的生物标志物有鞘氨醇、植物鞘氨醇和卵磷脂(18:0),饲粮精粗比为50:50时,酵母添加组的生物标志物有芥酰胺、鞘氨醇和卵磷脂(16:0),饲粮精粗比为70:30时,酵母添加组的生物标志物有甘油一脂、甘油二脂、甘油三脂、卵磷脂(17:0)和卵磷脂(18:0),饲粮精粗比为90:10时,酵母添加组的生物标志物有芥酰胺、胆酸、卵磷脂(18:2)和卵磷脂(20:2)。试验结果表明:随饲粮精粗比提高,机体的脂肪代谢途径得到改善,有利于提高动物的生产性能;但是动物瘤胃壁和肠道内壁的完整性受损可能加重;酵母添加改善了动物脂肪和磷脂代谢,有利于提高动物的生产性能并有利于维护消化道内壁细胞的完整性。
The objective of the current study was to evaluate the effect of live yeast (5. cerevisiae, CNCM1-1077, Lallemand, Toulouse, France) on rumen fermentation and nutrient degradation in steers fed diets with different concentrate to forage ratios (CTFR); the mechnism of S. cerevisiae (SC) affect nutrient degradation was studied through the effect of SC on fibrolytic activities and rumen microbial populations. Effect of SC on plasma metabonomics in steers fed diets with different concentrate to forage ratios (CTFR) was studied at the same time. Ten Simental x Local breed steers (450±50kg BW) fitted with rumen fistulas (10cm diameter) were assigned to control and treatment groups. Steers in the two groups were fed the same basal diets but the treatment groups received supplementation with SC (8×109cfu/h/day through the ruminal fistula) following a2-period crossover design. Each period consisted of four phases, each of which lasted17days:16days for dietary adaptation, and1day for rumen sample collection. From the1st to the4th phase, steers were fed in a stepwise fashion with increasing CTFRs, i.e.,30:70,50:50,70:30, and90:10. MIXED procedure was used to analysis effect of dietary CTFR and SC supplementation on peremeters. Linear and quadratic responses for dietary CTFR were assessed using orthogonal polynomial contrast statements.
     Experiment1:The objective was to assess the effects of S. cerevisiae on rumen fermentation characteristics of steers fed diets with different CTFRs. With CTFR increasing, rumen fermentation characteristics presented quadratic variation trend. Ruminal pH, molar proportion of acetate and isobutyrate, and A:P linearly decreased (L; P<0.01); TVFA concentration, molar proportion of propionate, butyrate, valerate and isovalerate linearly increased (L; P<0.01); ammonia N and lactate concentration presented quadratic variation (Q; P<0.01). Ruminal pH in the SC groups was higher than the control (P<0.05). There were no difference in concentrations of TVFA, ammonia N and D+L-lactate, and in VFA molar proportion between SC supplementation and control groups. These results showed that dietary concentrate to forage ratios significantly affect rumen fermentation characteristics; SC supplementation increased rumen pH, but has no effect on rumen ammonia N, TVFA and lactate concentration or rumen fermentation pattern.
     Experiment2:The objective was to assess the effects of S. cerevisiae supplementation on nutrient degradation of steers fed diets with different CTFR. With CTFR increasing, steam-flaked corn DM disappearance rate at each time point presented quadratic variation trend (Q; P<0.01); rapidly degradable fraction (aDM,aNDF) of the three fibrous feedstuffs quadraticly decreased (Q; P<0.01); degradation rate (cDM, cNDF) and effective degradability (EDDM, EDND) linearly decreased (L; P<0.01). SC supplementation decreased3h,6h and12h corn DM disappearance rate (P<0.05), but had no effect on24h and48h disappearance rates (P>0.05). There were no difference in CRH aDM, bDM,aNDF between SC supplementation and control groups; CRH BNDF was lower than control groups (P<0.05); CRH cDM, EDDM,cNDF and EDNDF were higher than control groups (P<0.05). There were no differences (P>0.05) in alfalfa aDM, bDM, EDDM, aNDF and bNDF between the two groups, but cDM, cNDF and EDNDF were higher (P<0.05) than control groups.There was no differences (P>0.05) for silage maize stalk degradation characters between two groups. The results showed that dietary CTFR significantly affect nutrient degradation. SC supplementation enhanced fibrous feedstuff degradation rate and effective degradability.
     Experiment3:The objective was to assess the effects of S. cerevisiae supplementation on fibrolytic activities and rumen microbial populations of steers fed diets with different CTFR. With CTFR increasing, microbial popolations presented in linear or quadratic variation trend but fibrolytic activities linearly increased. Compared with the control group, there was an increasing trend of rumen fungi and protozoa in SC group (P<0.1); copies of total bacteria in SC group were significantly higher (P<0.05). Additionally, percentage of Ruminobacter amylophilus was significantly lower (P<0.05) but percentage of Selenomonas ruminantium was significantly higher (P<0.05) in the SC group. Compared with control,S. cerevisiae supplementation gave higher activities of xylanase and avicelase (P<0.05) as well as β-glucanase activity (P<0.1), but had no effect on carboxymethyl cellulose activity (P>0.05). Overall, S. cerevisiae supplementation increased rumen total bacteria, fungi, protozoa, and lactate-utilizing bacteria but reduced starch-degrading and lactate-producing bacteria; S. cerevisiae supplementation increase enzyme fibrotic activities.
     Experiment4:The objective was to assess the effects of S. cerevisiae supplementation on plasma metabonomics of steers fed diets with different CTFR. UPLC-QTOFMS was used to detecte plasma metabonomics. PCA, PLS-DA and OPLS-DA was used to filtrate biomarkers.The results showed that biomarkers among different dietary CTFR groups were cytosine, dihydrothymine, palmitic amide, stearamide, oleamide, D-4'-phosphopantothenate. Dietary CTFR at30:70, biomarkers between SC supplementation and control groups were Sphinganine, Phytosphingosine, PC (18:0). Dietary CTFR at50:50, biomarkers between the two groups were13E-docosenamide,1-monoacylglycerol, PC(16:0). Dietary CTFR at70:30, biomarkers between the two groups were diacylglycerol,1-monoacylglycerol, triacylglycerol, PC (18:0), PC (17:0). Dietary CTFR at90:10, biomarkers between the two groups were13E-docosenamide, glycocholic acid, PC (18:2), PC (20:2). The results show that with concentrate level increasing, fat metabolism was improved, which was benifical to improve production performance, but rumen wall damage may be aggravating; SC supplementation improved phospholipid and fat metabolism, which is beneficial to maitain animal health status and improve production performance.
引文
[1].阿基业.2010.代谢组学数据处理方法-主成分分析。中国临床药理学与治疗学.15(5):481-489.
    [2].成玉.2012.基于色谱质谱联用技术的代谢组学方法研究及大肠癌代谢组学研究.[博士学位论文].上海:华东师范大学.
    [3].戴晋军,韩薇,蔡学敏,周小辉.2009.活性干酵母对奶牛抗应激效果的影响.饲料研究.12:30-31.
    [4].戴辉,任丽萍,孟庆翔.2010.玉米蒸汽压片和活性酵母添加对奶牛产奶性能和血液生化指标的影响.中国农业大学学报.15(1):50-54.
    [5].邓露芳,王加启,卜登攀,郑琛,奚晓琦,张乐颖.2009.2007-2008年国际反刍动物营养研究进展Ⅱ.瘤胃发酵调控.中国畜牧兽医.36(1):12~18.
    [6].段曌,肖炜,王永霞,赖泳红,崔晓龙.2011.454测序技术在微生物生态学研究中的应用.微生物学杂志.31(5):76-81.
    [7].杜瑞平,卢德勋,钟彩霞.2011.组学技术及其在动物营养学中的应用.畜牧与饲料科学.32(9-10):22-25.
    [8].冯仰廉.2004.反刍动物营养学.北京:科学出版社.pp 332-333.
    [9].冯仰廉,澳斯柯夫.1984.反刍家畜降解蛋白质的研究(一)用尼龙袋法测定几种中国精饲料在瘤胃中的降解率及该法稳定性的研究.中国畜牧杂志.5:2-5.
    [10].方热军,王康宁,印遇龙.2003.尼龙袋技术评定饲料营养价值研究进展.饲料工业.24(12):47-52.
    [11].和红兵,石先哲,陈静,高鹏,雷雅燕,许国旺.2012.气相色谱-质谱和液相色谱-质谱联用方法用于口腔癌代谢组学分析.色谱.30(3):245-251.
    [12].霍鲜鲜,侯先志,赵志恭,陈冰静.2003.不同精粗比饲粮对绵羊瘤胃内纤维素酶活的影响.甘肃畜牧兽医.5:16-20.
    [13].黄恒新,强刚,刘仕军,马玉敏.2011.奶牛专用稀释活性干酵母对奶牛产奶量和采食量的影响.乳液科学与技术.2:82-86.
    [14].蒋春燕,王泰健,王琴等.2005.实时荧光定量PCR技术.动物医学进展.26(12):97-101.
    [15].林云.2001.饲料抗生素的应用及面临的问题.饲料研究.4:25-26.
    [16].刘烨彤.2009.慢性酸中毒对瘤胃发酵功能及瘤胃微生物数量变化的影响.[硕士学位论文].内蒙古:内蒙古农业大学.
    [17].梁国林,苗帅,杨志刚,张蕾.2012.高活性干酵母生产的干燥设备和工艺介绍.干燥工艺与设备.10(1):28-31.
    [18].彭一凡,张丽容.2008.活性干酵母产品与酵母培养物的区别.饲料工业.29(12):32-35.
    [19].亓云鹏,胡杰伟,柴逸峰,范国荣,吴玉田.2008.代谢组学数据处理研究的进展.计算机与应用化学.25(9):1139-1142.
    [20].荣辉,余成群,孙维,下条雅敬,邵涛.2010.瘤胃微生物对结构性碳水化合物的降解机制研究进展.草业科学.27(9):134-143.
    [21].施学任,韩正康.1982.不同饲养制度下乳用山羊瘤胃内纤毛虫种群变化以及pH值和氧化还原电位对其数量的影响.南京农学院学报.12(4):66-76.
    [22].孙志宏,刘文俊,张和平.2012.基于宏基因组方法对西藏传统发酵牦牛奶中微生物多样性的研究.30(4):19-24.
    [23].王小艳.2013.中国荷斯坦奶牛泌乳相关营养代谢组学研究.[硕士学位论文].黑龙江:东北农业大学.
    [24].王世成,李国琛,王颜红,胡小燕,张红.2010.代谢组学方法研究牛注射氯霉素后牛奶中的生物标志物.分析化学.38(8):1199-1202.
    [25].辛杭书,许曾曾,张跃文,孟庆翔.2006.蒸汽压片技术对玉米营养价值及奶牛饲喂效果的影响.中国畜牧杂志.42(10):57-60。
    [26].肖英平.2012.早期断奶仔猪血清代谢组学研究及谷氨酰胺对饲粮消化吸收和代谢的影响.[博士学位论文].浙江:浙江大学.
    [27].谢锦啸,范占炼,徐国忠,王光文,徐晓明,张克春.2010.全混合饲粮中添加高活性干酵母对奶牛生产性能的影响.乳业科学与技术.4:183-187.
    [28].袁亚男,刘文忠.2008.荧光定量PCR技术类型、特点与应用.中国畜牧兽医.35(3):27-30.
    [29].赵芸君.2006.瘤胃微生物合成烟酸、B12、核黄素的饲粮影响因素及其与瘤胃纤维降解的关系.[博士学位论文].北京:中国农业大学.
    [30].周宏伟,谭凤仪,钟音,栾天罡.2007.代谢组学及其在微生物领域的研究进展.分析化学.35(2):309-314.
    [31]. Anadon, A.,2006. The EU ban of antibiotics as feed additives:alternatives and consumer safety. J. Vet. Pharmacol. Ther.29:41-44.
    [32]. Angeles, S.C., Mendoza, G.D., Cobos, M.A., Crosby, M.M., Castrejon, F.A.,1998. Comparison of two commercial yeast cultures (Saccharomyces cerevisiae) on ruminal fermentation and digestion in sheep fed on corn-stover diet. Small Rumin. Res.31:45-50.
    [33].Andrae,J.G., C.W. Hunt, S.K. Duckett, L.R. Kennington, P. Feng, F.N. Owens, and S.Soderlund. 2000. Effect of high oil corn on growth performance diet digestibility, and energy content of finishing diets fed to beef cattle. J.Anim. Sci.78:2257-2262.
    [34].ARC,1984. The nutrient requirement of ruminant livestock. Supplement 1. Report of protein group of the ARC working party on the nutrient requirement of ruminants. Commonwealth Agricultural Bureaux, Belgium.
    [35].Arcos-Garcia J.L., Castrejon F.A., Mendoza G.D., Perez-Gavilan E.P.,2000. Effect of two commercial yeast cultures with Saccharomyces cerevisiaeon ruminal fermentation and digestion in sheep fed sugar cane tops. Livest Prod Sci.63:153-157.
    [36].Arroyo J.M., Gonzalez.2013. Effect of the ruminal comminution rate and microbial contamination of particles on accuracy of in situ estimates of ruminal degradability and intestinal digestibility of feedstuffs. Journal of animal physiology and animal nutrition.97:109-118.
    [37].Bach A., Iglesias C., Devant M.,2007. Daily rumen pH pattern of loose-housed dairy cattle as affected by feeding pattern and live yeast supplementation. Anim. Feed Sci. Tech.136:146-153.
    [38].Bach, A., Calsamiglia, S., Stern, M.D.,2005. Nitrogen metabolism in the rumen. J. Dairy Sci.88: 9-21.
    [39].Brossard, L., Martin, C., Chaucheyras-Durand, F., Michalet-Doreau, B.,2004. Protozoa involved in butyric ratherthan lactic fermentative pattern during latent acidosis in sheep. Reprod. Nutr. Dev. 44:195-206.
    [40].Brossard L., Chaucheyras-Durand F., Michalet-Doreauand B. and Martin C.,2006. Dose effect of live yeasts on rumen microbial communities and fermentations during butyric latent acidosis in sheep:new type of interaction. Anim Sci.82:829-836.
    [41].Burim N.,Ametaj, Qendrim Zebeli, Fozia Saleem, Nikolaos Psychogios, Michael J.Lewis, Suzanna M.Dunn, Jiangguo Xia, David S.Wishart.2010. Metabolomics reveals unhealthy alterations in rumen metabolism with increased proportion of cereal grain in diets of dairy cows. Metabolomics, 6:583-594.
    [42].Carro, M. D., P. Lebzien, and K. Rohr.1992. Influence of yeast culture on the in vitro fermentation (Rusitec) of diets containing variable portions of concentrates. Anim. Feed Sci. Technol.37:209
    [43].Chaucheyras, F., Fonty, G., Bertin, G., Gouet, P.,1995b. Effects of live Saccharomyces cerevisiae cells on zoospore germination, growth, and cellulolytic activity of the rumen anaerobic fungus, Neocallimastix frontalisMCH3. Curr. Microbiol.31:201-205
    [44].Chaucheyras, F., Fonty, G., Bertin, G., Salmon, J.M., Gouet, P.,1996. Effects of a strain of Saccharomyces cerevisiae (Levucell SC), a microbial additive for ruminants, on lactate metabolism in vitro. Can. J. Microbiol.42:927-933.
    [45].Chaucheyras-Durand, F., Fonty, G.,2001. Establishment of cellulolytic bacteria and development of fermentative activities in the rumen of gnotobiotically-reared lambs receiving the microbial additive Saccharomyces cerevisiaeCNCM I-1077. Reprod. Nutr. Dev.41:57-68.
    [46].Chaucheyras-Durand F., Fonty G.2002. Influence of a Probiotic Yeast (Saccharomyces cerevisiae CNCM 1-1077) on Microbial Colonization and Fermentations in the Rumen of Newborn Lambs. Microbial Ecology in Health and Disease.14:30-36.
    [47].Chaucheyras-Durand F., N.D. Walker, A. Bach.2008. Effects of active dry yeasts on the rumen microbial ecosystem:Past, present and future. Animal Feed Science and Technology.145:5-26
    [48].Cheng, K.J., McAllister, T.A., Popp, J.D., Hristov, A.N., Mir, Z., Shin, H.T.,1998. A review of bloat in feedlot cattle. J. Anim. Sci.76:299-308.
    [49].Church D C.,1988. The ruminant animal digestive physiology and nutrition. Prentice Hall, Englewood Cliffs, pp147.
    [50].Corona, L., Mendoza, G.D., Castrejon, F.A., Crosby, M.M., Cobos, M.A.,1999. Evaluation of two yeast cultures (Saccharomyces cerevisiae) on ruminal fermentation and digestion of feed fed a corn stover diet. Small Rumin. Res.31:209-214.
    [51].Desnoyers, M., S. Giger-Reverdin, G. Bertin, C. Duvaux-Ponter, and D. Sauvant.2009. Meta-analysis of the influence of Saccharomyces cerevisiae supplementation on ruminal parameters and milk production of ruminants. J. Dairy Sci.92:1620-1632.
    [52].Enjalbert F., Garrett J.E., Moncoulon R., Bayourthe C., Chicoteau P.,1999. Effects of yeast culture (Saccharomyces cerevisiae) on ruminal digestion in non-lactating dairy cows. Anim. Feed Sci. Tech.76:195-206.
    [53]. Garner, M.R., Gronquist, M.R., Russell, J.B.,2004. Nutritional requirements ofAllisonella histaminiformans, a ruminal bacterium that decarboxylates histidine and produces histamine. Curr. Microbiol.49:295-299.
    [54]. Garner, M.R., Flint, J.F., Russell, J.B.,2002.Allisonella histaminiformansgen. nov., sp. nov., a novel bacterium that produces histamine, utilizes histidine as its sole energy source, and could play a role in bovine and equine laminitis. Syst. Appl. Microbiol.25:498-506.
    [55].Gibson U.E., Heid C.A., and P.M.Williams.1996. A novel method for real time quantitative RT-PCR. Genome Res.6:995-1001.
    [56].Giulietti A., L. Overbergh,D. Valckx, B. Decallonne, R. Bouillon and C, Mathieu.2001. An overview of real-time quantitative PCR:applications to quantify cytokine gene expression Method.25:386-401.
    [57].Gerard Fonty and Frederique Chaucheyras-Durand.2006. Effects and modes of action of live yeasts in the rumen. Biologia, Bratislava.61(6):741-750.
    [58].Gonzalez J., M. Ouarti, C.A. Rodriguez, M.R. Alvir.2006. Effects of considering the rate of comminution of particles and microbial contamination on accuracy of in situ studies of feed protein degradability in ruminants. Animal Feed Science and Technology.125:89-98.
    [59].Gozho, G.N., Krause, D.O., Plaizier, J.C.,2006. Rumen lipopolysaccharide and inflammation during grain adaptation and subacute ruminal acidosis in steers. J. Dairy Sci.89:4404-4413.
    [60].Gozho, G.N., Plaizier, J.C., Krause, D.O., Kennedy, A.D., Wittenberg, K.M.,2005. Subacute ruminal acidosisinduces ruminal lipopolysaccharide endotoxin release and triggers an inflammatory response. J. Dairy Sci.88:1399-1403.
    [61].Goodacre R, Vaidyanathan S, Dunn W B.2004. Metabolomics by numbers:acquiring and understanding global metabolite data. Trends in biotechnology.22(5):245-252.
    [62].Guedes C.M., Gongalves D., Rodrigues M.A.M., Dias-da-Silva A.,2008. Effects of a Saccharomyces cerevisiae yeast on ruminal fermentation and fibre degradation of maize silages in cows. Anim. Feed Sci. Tech.145:27-40.
    [63].Hernandez-Sanabria E., Goonewardene L.A., Wang Z., Durunna O.N., Moore S.S., and Guan L.L. 2012. Impact of feed efficiency and diet on adaptive variations in the bacterial community in the rumen fluid of cattle.78(4):1203-1214.
    [64].Javier Gonzalez, Mafhoud Ouarti, Carlos Alberto Rodriguez and Carmen Centeno.2009. A simplified management of the in situ evaluation of feedstuffs in ruminants:Application to the study of the digestive availability of protein and amino acids corrected for ruminal microbial contamination. Archives of Animal Nutrition,63(4):304-320.
    [65]. Jensen C., Weisbjerg M.R., N(?)rgaard P., Hvelplund T.,2005. Effect of maize silage maturity on site of starch and NDF digestion in lactating dairy cows. Anim. Feed Sci. Tech.118:279-294.
    [66].Jouany, J.P.,Mathieu, F., Senaud, J., Bohatier, J., Bertin, G., Mercier, M.,1998. The effect of Saccharomyces cerevisiae and Aspergillus oryzae on the digestion of the cell wall fraction of a mixed diet in defaunated and refaunated sheep rumen. Reprod. Nutr. Dev.38:401-416.
    [67]. Jung HG, Mertens DR, Phillips RL.2011. Effect of reduced ferulate-mediated lignin/arabinoxylan cross-linking in corn silage on feed intake, digestibility, and milk production. Journal of Dairy Science.94(10):5124-5137.
    [68].Krawielitzki K., Th. Schmidt, J. Voigt, J. Kowalczyk and M. Gabel.2006. Dynamics of microbial contamination of protein during ruminal in situ incubation of feedstuffs. Journal of Animal and Feed Sciences.15:313-328.
    [69].Krause, K.M., Oetzel, G.R.,2005. Inducing subacute acidosis in dairy cows. J. Dairy Sci.88: 3633-3639.
    [70].Kumar, U., Sareen, V.K., Singh, S.,1994. Effect ofSaccharomyces cerevisiaeyeast culture supplement on ruminal metabolism in buffalo calves given a high concentrate diet. Anim. Prod.59: 209-215.
    [71].Kfizova L., M. Richter, J. Trinacty, J. Riha, D. Kumprechtova.2011. The effect of feeding live yeast cultures on ruminal pH and redox potential in dry cows as continuously measured by a new wireless device. Czech J. Anim. Sci.56 (1):37-45.
    [72].Lesmeister, K.E., Heinrichs, A.J., Gabler, M.T.,2004. Effects of supplemental yeast (Saccharomyces cerevisiae) culture on rumen development, growth characteristics, and blood parameters in neonatal dairy calves. J. Dairy Sci.87:1832-1839.
    [73].Lila, Z.A., Mohammed, N., Yasui, T., Kurokawa, Y., Kanda, S., Itabashi, H.,2004. Effects of a twin strain of Saccharomyces cerevisiaelive cells on mixed ruminal microorganism fermentationin vitro. J. Anim. Sci.82:1847-1854.
    [74].Luciene Lignani Bitencourt; Jose Ricardo Martins Silva; Bruno Menezes Lopes de Oliveira;Gilson Sebastiao Dias Junior; Fernanda Lopes; Sancho Siecola Junior; Ozana de Fatima Zacaroni; Marcos Neves Pereira.2011. Diet digestibility and performance of dairy cows supplemented with live yeast. Sci. Agric. (Piracicaba, Braz.).68(3):301-307.
    [75].Lynch, H.A., Martin, S.A.,2002. Effects ofSaccharomyces cerevisiaeculture andSaccharomyces cerevisiaelive cells on in vitro mixed ruminal microorganism fermentation. J. Dairy Sci.85: 2603-2608.
    [76].Mathieu, F., Jouany, J.P., Senaud, J., Bohatier, J., Bertin, G., Mercier, M.,1996. The effect of Saccharomyces cerevisiae and Aspergillus oryzaeon fermentations in the rumen of faunated and defaunated sheep; protozoal and probiotic interactions. Reprod. Nutr. Dev.36:271-287.
    [77].Martin, S.A., Nisbet, D.J., Dean, R.G.,1989. Influence of a commercial yeast supplement on thein vitroruminal fermentation. Nutr. Rep. Int.40:395-403.
    [78].Martin, C., Morgavi, D., Doreau, M., Jouany, J.P.,2006b. Comment r'eduire la production de m' ethane chez les ruminants? Fourrages 187:283-300.
    [79].Marden J. P., C. Bayourthe, F. Enjalbert, and R. Moncoulon.2005. A New Device for Measuring Kinetics of Ruminal pH and Redox Potential in Dairy Cattle. J. Dairy Sci.88:277-281.
    [80].Marry S, Gabriel R, Wayne S.2004. Overcoming RNA inhibition in the fluorescent polymerase chain reaction assay to enhance detection of bovine DNA in cattle feeds. Foodborne pathogens and disease. 1(2):105-113.
    [81]. Mir Z. and Mir P. S.,1994. Effect of the Addition of Live Yeast (Saccharomyces cerevisiae) on Growth and Carcass Quality of Steers Fed High-Forage or High Grain Diets and on Feed Digestibility and In Situ Degradability. J Anim Sci.72:537-545.
    [82].Moonen P, Boonstra J Van D H R H.2003. Validation of a light cycler-based reverse transcription polymerase chain reaction for detection of foot-and-mouth disease. Virol Methods.113(1):35-41.
    [83]. Moss, A.R., Jouany, J.P., Newbold, C.J.,2000. Methane production by ruminants:its contribution to global warming. Ann. Zootech.49:231-253.
    [84].Mutsvangwa, T., Edwards I. E., Topps J. H., and Paterson G.F.M.,1992.The effect of dietary inclusion of yeast culture (Yea-Sacc) on patterns of rumen fermentation, food intake and growth of intensively fed bulls. Anim. Prod.55:35-45.
    [85].Mu Hao-jie, Meng Qing-xiang, Ren Li-ping, Wang li,2009. Simultaneous determination of lactic acid and volatile fatty acids in ox rumen juice by ion chromatography. PTCA (PART B:CHEM. ANAL).45(1):52-55.
    [86].Newbold, C.J., Rode, L.M.,2006. Dietary additives to control methanogenesis in the rumen. Int. Congr. Ser.1293:138-147.
    [87].Nicholson J K, Lindon J C, Holmes E.1999. "Metabonomics":understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenbiotica.29:1181-1189.
    [88]. Nicholson J.K., Lindon J.C.2008. System biology:metabonomics. Nature.455:1054-1056.
    [89].Nocek, J. Bovine.1997. Acidosis:Implications on Laminitis. J.Dairy Sci.80:1005-1018.
    [90].Oetzel, G.R.2001. Introduction to Ruminal Acidosis in Dairy Cattle. Preconvention Seminar 8: Dairy herd problem investigations. American association of bovine practitioners.34th Annual Covention. pp 11-12.
    [91].(?)rskov, E.R. and McDonald. I.1979. The estimation of protein degradability in the rumen from incubation messurements weighted according to rate of passage. J Agr Sci.92:499-503.
    [92].(?)rskov, E.R., Hovell, F.D. and Mould, F.1980. The use of nylon bag technique for the evaluation of feedstuffs. Trop Anim Prod.5:195-213.
    [93].Perez J.F., Rodriguez C.A., Gonzalez J., Balcells J., Guada J.A.2006. Contribution of dietary purine bases to duodenal digesta in sheep. In situ studies of purine degradability corrected for microbial contamination, Aninal Feed Science and Technology.62:251-262.
    [94].Penner G. B., K. A. Beauchemin, and T. Mutsvangwa.2006. An Evaluation of the Accuracy and Precision of a Stand-AlonebSubmersible Continuous Ruminal pH Measurement System. J. Dairy Sci.89:2132-2140.
    [95].Pinos-Rodriguez J.M., P.H. Robinson, M.E. Ortega, S.L. Berry, G. Mendoza, R.B'arcena.2008. Performance and rumen fermentation of dairy calves supplemented withSaccharomyces cerevisiae1077 o rSaccharomyces boulardii1079. Animal Feed Science and Technology.140:223-232.
    [96].Qzaki H, Mclaughlin L. W.1992.The estimation of distance between specific backbone-labeled sites in DNA using fluorescence resonance energy transfer. Nucleic Acid Res.20(19):5205-5214.
    [97].Rezzi S.,Ramadan Z.,Fay L.B., Kochhar S.2007. Nutritional metabonomics:applications and perspectives. Journal of Proteome Research.6:513-525.
    [98].Rodriguez CA, Gonzalez J.2006. In situstudy of the relevance of bacterial adherence to feed particles on the contamination and accuracy of rumen degradability estimates of feeds of vegetable origin. Brit J Nutr.96:316-325.
    [99].Saleem F., Ametaj B.N., Bouatra S., Mandal R., Zebeli Q., Dunn S.M. and Wishart D.S.2012. A metabolomics approach to uncover the effects of grain diets on rumen health in dairy cows. J. Dairy Sci.95:6606-6623.
    [100]. Schwartz, F.J., Ettle, T.,2002. Effect of live yeast (Saccharomyces cerevisiae, Levucell SC CNCM 1-1077) on performance of beef and dairy cattle. Proc. Soc. Nutr. Physiol. Band,11.
    [101]. Shendure J, Ji H.2008. Next-generation DNA sequencing. Nature Bitotechnology. 26(10):1135-1145.
    [102]. Stella A.V., Paratte R., Valnegri L., Cigalino G., Soncini G., Chevaux E., Dell'OrV. t, Savoini G.,2007. Effect of administration of live Saccharomyces cerevisiae on milk production, milk composition, blood metabolites, and faecal flora in early lactating dairy goats. Small Rumin. Res. 67:7-13.
    [103]. Steinfeld, H., Gerber, P., Wassenaar, T., Castel, V., Rosales, M., de Haan, C.,2006. Livestock's role in climate change and air pollution. In:Livestock Long Shadow:Environmental Issues and Options, FAO Report. LEAD publications, Roma, Italy. pp 79-124.
    [104]. Thrune M., Bach A., Ruiz-Moreno M., Stern M.D., Linn J.G.,2009. Effects of Saccharomyces cerevisiae on ruminal pH and microbial fermentation in dairy cows:Yeast supplementation on rumen fermentation. Livest Sci.124:261-265.
    [105]. Thompson, P., Hentzen, A., Schultheiss, W.,2006. The effect of rumen lesions in feedlot calves:which lesions really affect growth? In:Proceedings from the 4th Schering Plough Ruminant day, University of Pretoria, Pretoria, South Africa. pp 23-27.
    [106]. Trygg J.,Holmes E., Lundstedt T.2007.Chemometrics in metabonomics. Journal of Proteome Reasearch.6:469-479.
    [107]. VAN Duinkerken G., Blok M. C., Bannink A., Cone J. W., Dijkstra J., Van vuuren A. M. AND Tamminga S.,2011. Update of the Dutch protein evaluation system for ruminants:the DVE/OEB2010 system. J Agr Sci.149:351-367.
    [108]. Varga GA, Kolver ES.1997. Microbial and animal limitations to fiber digestion and utilization. Journal of Nutrition.127(5 Suppl):819-823.
    [109]. Vermorel, M.,1995. Emissions annuelles de methane d'origine digestive par les bovins en France. Variations selonle type d'animal et le niveau de production. INRA Prod. Anim.8:265-272.
    [110]. Williams, P.E., Tait, C.A., Innes, G.M., Newbold, C.J.,1991. Effects of the inclusion of yeast culture (Saccharomyces cerevisiaeplus growth medium) in the diet of dairy cows on milk yield and forage degradation and fermentation patterns in the rumen of steers. J. Anim. Sci.69:3016-3026.
    [111]. Weimer PJ.1996. Why don't ruminal bacteria digest cellulose faster? Journal of Dairy Science. 79(8):1496-1502.
    [112]. YU Peiqiang and Zhiyuan Niu.,2009. Using a complex non-TDN based model (the DVE/OEB system) to predict microbial protein synthesis, endogenous protein, degradation balance, and total truly absorbed protein supply of different varieties of cereal oats for ruminants. Anim Sci J. 80:273-279.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700