用户名: 密码: 验证码:
团头鲂EST-SSR的开发及在育种中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
团头鲂(Megahbrama amblycephala Yih),俗称武昌鱼,属硬骨鱼纲、鲤形目、鲤科、鲌亚科。自然分布区域狭窄,原产仅在长江中游的一些通江湖泊,如湖北省的梁子湖、淤泥湖和江西的鄱阳湖等。由于其独特的文化元素以及具有草食性、成活率高、生长较快、抗病力强、含肉率高及营养价值较高等优点,在20世纪60年代己确认为一种优良养殖鱼类。目前已经推广到全国各地饲养,成为我国池塘和网箱养殖的主要或者混养鱼类之一。由于人工繁殖的成功突破和养殖驯化水平的不断提高,在2010年团头鲂在我国的养殖产量已经达到652,215t(CAFS,2010)。然而,随着养殖驯化过程中的近亲繁殖、野生资源的过度捕捞以及生存环境的破坏,团头鲂的种质资源己经受到了严重的威胁。团头鲂的养殖群体逐渐出现了生长减缓、体型变长变薄、抗病力差和性成熟个体变小等问题。
     目前团头鲂分子遗传基础薄弱、基因序列和分子标记资源匮乏、遗传育种理论尚不成熟,严重影响团头鲂遗传育种计划的开展。为了更加有效地开展团头鲂先进的育种计划,尽快培育出优良品种,本论文从团头鲂转录组高通量测序入手,开发微卫星标记,构建亲子鉴定技术平台,并在此基础上结合团头鲂F1代生长表型数据进行了全面的数量遗传学研究。在本论文结合数量遗传学、杂交育种和MAS等多方面知识,运用了家系选育、群体选择、BLUP育种和后裔测定等多种方法开展团头鲂的育种研究,为早日获得团头鲂具有生长优势的优良品种奠定了坚实的基础。总的来说主要有如下结果和结论:
     1.团头鲂转录组454GS FLX高通量测序和分析
     应用高通量454测序技术对团头鲂多个组织的均一化cDNA文库进行测序,一共获得了1,409,706条高质量序列,总长度为577Mbp,平均长度为411bp。经过拼接组装后获得了26,802条contigs和73,675条singletons,测序深度大约为7.6倍。Contigs的平均长度达730bp,且有74.1%的contigs序列长度超过500bp。对团头鲂拼接得到的unigenes与Nr、Swiss-prot和UniProt等公共蛋白质数据库比对,超过50%的序列获得了注释;通过GO注释对基因进行分类,获得了zinc ion bingding等41个小类别,鉴别出大量与生长、繁殖、免疫和抗逆等相关性状的候选基因。通过与斑马鱼、青鳉、绿河豚、河豚、三棘刺鱼、人、小鼠和鸡的基因组比较,发现团头鲂转录组中的基因与这些物种具有很高的比例的相似度,同时还鉴定了778条的团头鲂特有的基因。另外,在团头鲂转录组中一共检测到有4,952个SSR位点和大量的SNP位点(25,697个)和插入缺失位点(23,287个)。
     2.根据团头鲂转录组EST序列,开发大量微卫星标记
     EST文库筛选微卫星具有方法简便、花费较低等特点。本研究从团头鲂454转录组测序得到的大量isotigs序列中搜索SSR位点,一共随机设计了300对EST-SSR引物,经过PCR扩增和聚丙烯酰胺凝胶电泳分型,其中146个位点(48.7%)可以清晰扩增出条带,93个(31%)微卫星位点具有多态性。多态性微卫星标记应用于梁子湖野生样本的遗传多样性分析,发现有效等位基因数从2到18个,平均等位基因数为5.11个。观测杂合度(Ho)的大小在0.25到1之间,平均为0.69;期望杂合度(HE)在0.25到0.86之间,平均为0.65。此外,从所开发出的多态性微卫星标记中,筛选20个微卫星位点构建了6个多重PCR反应体系,高效地分析团头鲂淤泥湖野生群体群体的遗传多样性,发现其遗传多样性较低,并且在多个位点上显著偏离哈迪-温伯格平衡,说明了该团头鲂野生群体遭到了严重的干扰。
     3.利用高质量多态性的微卫星标记构建亲子鉴定技术体系
     基于微卫星的亲子鉴定技术的使用克服了传统选育过程中的种种弊端。本研究利用8个高质量多态性微卫星标记构建了团头鲂亲子鉴定平台,平均等位基因为10个,平均观测杂合度和期望杂合度分别是0.649和0.670,多态信息含量是0.655,在混养家系鉴定中准确率达到96.33%,可以实现团头鲂多个家系从出生就可以进行混养,成功地减少管理成本,增加家系数量,同时大大降低环境误差,从而为后续实验如家系生长性能评估、杂交优势和遗传参数评估等多个方面的研究更加精确地进行奠定了基础,提高选育效率,加快育种进程。
     4.团头鲂子一代优良家系筛选
     本研究通过收集团头鲂自然群体,然后进行群体繁育的方法,构建了团头鲂317个F1代全同胞家系。F1代从鱼苗下塘开始就一起混合饲养,直到收获(20月龄)时,利用微卫星的亲子鉴定技术进行家系鉴定。通过鉴定,708个子代(94.53%)能够准确地找到单一的父母本。结合F1代的生长性状表型值,成功筛选到了平均体重≥400g的家系的25个,其中36号、41号和1号家系生长最快,这些家系可以作为团头鲂家系育种的重要选育系。另外,根据多个生长最快的家系和生长最慢的家系的体长和体重建立关系式,分别为W=0.1059*L2.5224(R2=0.9035)和W=0.1117*L2.4608(R2=0.9106)。两关系式中a值相近,说明不同家系的生长环境较稳定,家系之间具有可比性;b<3,说明两组家系均处于异速生长阶段,符合团头鲂正常的生长规律。
     5.团头鲂杂交优势和配合力分析
     本研究对团头鲂梁子湖(LZ)、淤泥湖(YN)和鄱阳湖(PY)3个地理种群进行双列杂交实验,采用亲本多雌配多雄的人工繁殖方法构建团头鲂F1家系,Fl代在混合养殖的条件下,通过亲子鉴定的手段来比较各个繁殖组合20月龄的生长性状,评估了三个地理种群的配合力和杂交优势。结果表明,在总体水平上父本对于体重的一般配合力大大高于母本;不管是父本还是母本,LZ群体的一般配合力都是最大的;YN♀×PY♂的特殊配合力最大,杂交优势明显,可见种内群体间杂交是培育团头鲂优良新品系的重要方法之一。除此之外,团头鲂子一代的生长性状与亲本群体的遗传多样性指数在一定范围内存在显著性线性正相关关系,其中体重与亲本群体期望杂合度的关系。式为y=600.7x-29.472(r=0.8651, p=0.0026)。
     6.团头鲂20月龄遗传参数和育种值估计
     本研究采用混合家系遗传参数估计法对20月龄团头鲂F1代的生长相关性状(体重、体长、全长和体高)的遗传参数和育种值进行了估计。利用SPSS19软件的一般线性模型(GLM)计算表型变量的方差组分,估计生长相关性状的遗传力。结果显示团头鲂20月龄的生长相关性状的遗传力在0.50~0.65之间,表明在加性效应控制下,团头鲂的生长性状具有较大的遗传改良潜力;遗传相关在0.98~1之间,说明团头鲂生长相关性状紧密连锁,在选育实践中可以只针对一个性状进行选育,如体重或体长,节约操作时间和降低成本。此外,本研究采用BLUP法估计了团头鲂生长相关性状的育种值和考虑团头鲂体型因素的综合育种值。单性状(体重或体长)的育种值与综合育种值排名相比较差异不大。育种值排名靠前的亲本绝大部分来自梁子湖和鄱阳湖,说明这两个湖泊的亲本比较优秀。
     7.团头鲂亲本对子代的贡献及优良亲本筛选
     本研究通过利用9对微卫星亲子鉴定技术研究亲本对子代群体的贡献及筛选优良亲本。通过微卫星标记分析发现,子代生长快和生长慢群体的FST较大(0.024,P<0.0343),说明了通过表型选择会引起团头鲂子代群体间显著性的遗传差异。经过亲子鉴定分析发现,对于子代生长快群体和生长慢的群体,不是所有亲本均有贡献,在生长快和生长慢群体的有效群体数量比亲本显著降低,分别约为65和67尾。生长快和生长慢群体的近交系数分别约为0.77%和0.75%,这两个值高于亲本群体的近交系数。另外,经过亲本对生长快和生长慢群体的贡献分析,发现15个亲本(6个母本和9个父本)对生长快群体的贡献显著高于生长慢的群体,说明他们具有生产具有生长优势的后代的潜能,另外,通过对亲本体重育种值的估计,发现所选亲本的体重育种值排名均靠前,证实了通过亲本对子代的贡献筛选优秀亲本具有较高的可靠性。所筛选的亲本可用于构建团头鲂优良的家系,也可繁殖优质鱼苗直接用于生产。这些结果可以使团头鲂的选育计划更加完善,同时也为其他鱼类的选育提供了一定的借鉴。
Blunt snout bream (Megalobrama amblycephala) or Wuchang Fish, belongs to the family of Cyprinidae, which is an herbivorous freshwater fish species native to China. It was originally endemic to certain large and medium-sized lakes of middle reach of Yangtze River, such as Liangzi lake (LZ) and Yuni lake (YN) in Hubei province and Poyang lake (PY) in Jiangxi province.
     Because of its special cultural elements, high resistance to diseases, high rate of meat and rich nutition, M. amblycephala has been widely favored and recognized as a main aquaculture species in the freshwater polyculture system since1960s in China. Due to its successful artificial propagation and high economic value, M. amblycephala aquaculture industry has greatly developed in the past decades and its total output had reached652,21tons in2010(CAFS,2010). As a consequence of fast domestication, over-fishing, however, germplasm resource of this fish is under threat of recession and mixture due to its artificial breeding. Nowadays, the cultured population of M. amblycephala is gradually exhibiting early sexual maturity, low growth rate and disease susceptibility. Therefore, applying genomics tools in the selection of broodstock has the potential to enhance the productivity and value of commercial production for this species.
     Right now, the molecular genetic basis of M. amblycephala is very weak and genetic breeding theory is not mature, serious influencing genetic breeding program of M. amblycephala. In order to carry out advanced breeding programmes more effectively as soon as possible, and to breed better varieties, transcriptome of M. amblycephala using next genration sequencing (NGS) technique was first sequenced. And then, we developed many microsatellite markers based on these EST sequences. We used eight microsatellite markers to build a parentage assignment technology platform, and based on this technology, detailed study was conducted on quantitative genetics of M. amblycephala F1generation. In this thesis, we combined with the theoties of quantitative genetics, cross breeding and molecular-assited selection (MAS), and used the methods of family selection, mass selection, BLUP breeding and progeny testing to carry out a breeding programme of M. amblycephala. This research lays the foundation for gaining good varieties of M. amblycephal in future. Our results and conclusions are as follows:
     1. De novo assembly and characterization of M. amblycephala using454pyosequencing
     A total of1,409,706high quality reads (total length577Mbp) were generated from the normalized cDNA of pooled M. amblycephala individuals using454pyosequencing. These sequences were assembled into26,802contigs and73,675singletons, with7.6×sequencing depth. The average length of contigs was730bp, and more than70%of contigs were longer than500bp. After BLAST searches against the Nr and UniProt databases with an arbitrary expectation value of E-10, over40,000unigenes were functionally annotated and classified. Of which, a substantial number of candidate genes putatively involved in growth, development, reproduction and immune were identified, and were considered as an invaluable genetic resource for gene functional analysis and breeding program. A comparative genomics approach revealed a substantial proportion of genes expressed in M. amblycephala tanscriptome to be shared across the genomes of zebrafish, medaka, fugu, stickleback, tetraodon, chicken, mouse, and human, and also identified a lot of potentially novel M. amblycephala genes. A total of4,952SSRs were identified and93polymorphic loci have been characterized. A large number of SNPs (25,697) and indels (23,287) were identified based on specific filter criteria in M. amblycephala.
     2. Development of SSR markers from EST sequences
     It is a low cost and simple to development of SSR markers from EST sequences. In this study,300SSR loci were randomly selected for primer design, of these,146loci (48.7%) were successfully amplified and93loci (31%) were polymorphic across panels of40individuals from LZ population. Number of alleles (NA) is from2to18, with an average of5.11. The observed heterozygosity (Ho) and the expected heterozygosity (HE) ranged from0.25to1and0.25to0.86, respectively. In order to analysis population genetic diversity or genetic structure more efficient and more accurately, six multiple PCR reaction systems were constructed with20polymorphic microsatellite markers to analysis the genetic diversity of PY population. The results indicated the genetic diversity of PY population is a little low, and most loci were significantly deviated from Hardy-Weinberg equilibrium, indicating the M. amblycephal wild population suffered serious artificial interference.
     3. Construction of a parentage assignment technology for M. amblycephala
     In this study, we used eight highly polymorphic microsatellite markers to assign parentage to offspring under different scenarios both simulation and real. Simulations based on allele frequency data from the population of M. amblycephal demonstrated that4loci were required to assign91.3%and6loci to assign99.6%of progeny. In a real-life commercial breeding system, using8SSR loci with NA of10, the assignment success of progeny to their true parental was98%with known parental and filial information and96.33%in mixed families groups.
     4. The growth performance of F1generation and rapid growth families screening
     317full-sub F1families were constructed by a complete diallel crossing of three strains (Liangzi-LZ, Poyang-PY and Yuni-YN). All the F1progeny were fed in a communal pond from newborn until to when harvested. Based on microsatellite parentage assignment techniques,708(94.53%) of749offspring could be assigned directly to a single parental pair. Finally,25families with body weight (?0400g were screened, which could be as core breeding families in M. amblycephal selection program. In addition, based on these body length and weight growth fastest and growth slowest families, the body length and weight relationship was constructed with correlation coeffient R2>0.5. The a values of two equations were similar, indicating these families were in stable growth environment; The b values were both<3, implying these families were in allometric growth stage, which is in accordance with the normal growth rule of M. amblycephal.
     5. Heterosis and combination ability analysis in a diallel cross of three populations of M. amblycephala
     In this study, a complete diallel crossing of three strains (LZ, PY and YN) was used to evaluate the combining ability and heterosis effects of intraspecific crossbreeding on its growth performance. The offspring produced between the three strains were reared in a communal pond for20months and9microsatellites were used to pedigree. Significant differences were observed in growth among different mating combinations, indicating combining ability of body weight (BW) from each strain was significantly different. General combining ability (GCA) of BW from sire is much higher than dam. Both the GCA for dam and sire of LZ was the largest and that of YN was poorest. Special combining ability of YN(?)×PY(?) was the largest and YN(?)×PY(?) showed significantly positive heterosis effects on F1growth (P<0.05). A significant and positive linear correlation existed between the growth of progeny and the level of genetic variation in the parental generation.
     6. Estimation genetic parameter and breeding value for growth traits of M. amblycephala
     The genetic parameters estimates for important economic traits are needed for its selective breeding. The aim of the current study was to estimate the heritabilities for its growth-related traits and explore the genetic and phenotypic correlations among the traits using microsatellite-based pedigree approach. Offspring from a mass-spawning of92broodstocks (42sires and50dams) were reared in a communal pond and nine microsatellites were used to identify the parents of each sampled offspring. Data was analyzed by the method of restricted maximum likelihood (REML) using animal model and the results showed the heritabilities of body weight, body length, total length and body height were0.65,0.53,0.53and0.50, respectively. High genetic correlations were found among these four traits. According to these results, selection for growth seems to be feasible in M. amblycephala and the other growth traits will be heightened accordingly with the selection based on body length. In addition, breeding value for growth-related traits of20-month M. amblycephala was estimated by the BLUP method. The BLUP breeding value for single trait (body weight or body length) was similar with combined breeding value, which took full into account the body type. The results shown most of the parents with high breeding value were from Liangzi strain and Poyang strain.
     7. Assessment of parental contributions to progenies in M. amblycephala and selection of parents with good traits
     The parentage assignment base on microsatellite markers was used to assess the parental contributions to fast-and slow-growing progeny group.95.32%individuals could be unambiguously assigned to their putative parents. The FST value was0.024(p<0.05), implying significant genetic differences between the two progeny groups. A globally significantly unequal contribution of breeders to fast-and slow-growth progeny was found in this experiment.15breeders (6females and9males) contributed significantly more to the fast-growth progeny, while11(4females and7males) contributed significantly more to the slow-growth progeny. In addition, we estimated the BLUP breeding value for body weight of parents, and found that the breeding value of the selected parents were all much high. The result indicated it is reliable to select excellent parents by estimating parents' contribution to progeny. These excellent breeders could be used to establish good families as core selection group and could be directly used in production mass fry. The findings are helpful to perfect the selective breeding program of M. amblycephala and also gave some advices for breeding selection in other fish species.
引文
1.边春媛,董仕,谭书贞.3个群体团头鲂mtDNA D-loop区段的限制性片段长度多态性分析.大连水产学院学报,2007,22:175-179
    2.毕金贞,陈松林.牙鲆亲本间遗传距离与其后代生长速度的相关性分析.中国农学通报,2010,26:395-401
    3.常亚青,刘小林,相建海,宋林生,刘宪杰.栉孔扇贝不同种群杂交效果Ⅲ:中国种群与俄罗斯种群及其杂种1-2龄的生长发育.海洋学报,2006,28:114-120
    4.程晓凤,黄福江,刘明典,汪登强.454测序技术开发微卫星标记的研究进展.生物技术通报,2011,8:82-90
    5.储昭辉,彭天蔓,张利达,周斌,魏君,王石平.水稻全生育期均一化cDNA文库的构建和鉴定.科学通报,2002,47:1656-1662
    6.邓宗觉.江西婺源荷包红鲤提纯复壮.淡水渔业,1982,1:20-31
    7.董世瑞,孔杰,张天时,孟宪红,王如才.中国对虾微卫星家系鉴定的模拟分析与应用.水生生物学报,2008,32:96-101
    8.董迎辉.泥蚶高通量转录组分析及生长相关基因的克隆与表达.[博士学位论文].青岛:中国海洋大学,2012
    9.傅洪拓,乔慧,李法君,吴滟,龚永生,蒋速飞,熊贻伟,王宁.8长江不同江段青虾的遗传多样性.水产学报,2010,34,204-211
    10.高保全,刘萍,李健.三疣梭子蟹3个地理群体种群杂交子一代生长和存活率比较.大连水产学院院报,2008,23:325-329
    11.高泽霞.蓝鳃太阳鱼性控和性决定机制以及性别相关分子标记的研究.[博士学位论文].武汉:华中农业大学,2010
    12.公维华,张宁波,程佳月,杨述林,黄宏刚,冯书堂,王爱德,甘世祥,李奎.小型猪微卫星标记多重PCR体系的建立与应用.中国比较医学杂志,2009,19:21-25
    13.桂建芳,朱作言.水产动物重要经济性状的分子基础及其遗传改良.科学通报,2012,57:1719-1729
    14.黄付友,何玉英,李健,马甡,王学忠.“黄海1号”中国对虾体长遗传力的估计.中国海洋大学学报,2008,38:269-274
    15.黄银花,胡晓湘,徐慰倬,高宇,冯继东,孙汉,李宁.影响多重PCR扩增效果的因素.遗传,2003,25:65-68
    16.黄真理,常剑波.鱼类体长体重关系中的分型特征.水生生物学报,1999,23:330-336
    17.侯吉伦.牙鲆减数分裂雌核发育和有丝分裂雌核发育的细胞学研究.[硕士学位论文].沈阳:东北大学,2010
    18.侯睿.虾夷扇贝基因组结构特征与进化基因组学分析.[博士学位论文].青岛:中国海洋大学,2012
    19.柯鸿文.一种优良淡水鱼-团头鲂Megalobrama amblycephala的繁殖和饲养.水生生物学报,1975,5:293-314
    20.李和平.动物群体与数量遗传学.哈尔滨:东北林业大学出版社,2004
    21.李弘华.淤泥湖、梁子湖、鄱阳湖团头鲂mtDNA序列变异及遗传结构分析.淡水渔业,2008,38:45-56
    22.李宏俊.海湾扇贝微卫星标记的开发及遗传连锁图谱的构建.[博士学位论文].青岛:中国科学院海洋研究所,2009
    23.李镕,白俊杰,李胜杰,王解香,叶星.大口黑鲈生长性状的遗传参数和育种值估计.中国水产科学,2011,18:766-773
    24.李绍戊,常玉梅,梁利群,孙效文.团头鲂微卫星标记的快速制备.中国水产科学,2006,13:188-192
    25.李思发,周碧云,林国青.淤泥湖团头鲂的生长和繁殖-兼谈资源的保护.动物学杂志,1991a,06:7-11
    26.李思发,蔡完其,周碧云.团头鲂种群间的形态差异和生化遗传差异.水产学报,1991b,15:204-211
    27.李思发,李广丽.一代远近交选育对团头鲂遗传变异的影响的初步研究.水产养殖,1992,6:1-15
    28.李思发,杨学明.双向选择对团头鲂生化遗传变异的影响.中国水产科学,1996,3:1-5
    29.李思发,蔡完其.团头鲂双向选育效应研究.水产学报,2000,24:201-205
    30.李思发,朱泽闻,邹曙明,赵金良,蔡完其.鲂属团头鲂、三角鲂及广东鲂种间遗传关系及种内遗传差异.动物学报,2002,48:339-345
    31.李思发,蔡完其.团头鲂浦江一号选育技术.中国专利,02111286.2003-10-22
    32.李思发,邹曙明,蔡完其.团头鲂异源四倍体的建立方法.中国专利,200510110746.9.2005-11-25
    33.李莹,孙超,罗红梅,李西文,牛云云,陈士林.基于高通量测序454GS FLX的丹参转录组学研究.药学学报,2010,45:524-529
    34.李杨.团头鲂三个野生群体的遗传结构分析及遗传图谱的构建.[博士学位论文].武汉:华中农业大学,2010
    35.刘宝锁.大菱鲆幼鱼生长和耐高温性状的遗传参数估计与家系筛选.[硕士学位论文].上海:上海海洋大学,2012
    36.刘红亮,郑丽明,刘青青,权富生,张涌.非模式生物转录组研究.遗传,2013,35:955-970
    37.刘明华,沈俊宝,张铁齐.选育中的高寒鲤.中国水产科学,1994,1:10-19
    38.刘小林,常亚青,相建海,刘宪杰,李富花,刘保忠.栉孔扇贝中国种群与日本种群杂交一代的中期生长发育.水产学报,2003a,27:193-199
    39.刘小林,常亚青,相建海,宋坚,曹学彬.虾夷马粪海胆早期生长发育的遗传力估计.中国水产科学,2003b,10:206-211
    40.刘少军,刘筠、罗凯坤,张纯,陶敏,赵如榕,肖俊,何国伟,肖军.雌核发育团头鲂的培育方法.中国专利,200910227152.4.2009-12-09
    41.刘宗岳.虹鳟主要经济性状的遗传分析.[硕士学位论文].沈阳:东北大学,2007
    42.栾生,孔杰,王清印.水产动物育种值估计方法及其应用的研究进展.海洋水产研究,2008,3:101-107
    43.栾生,孙慧玲,孔杰.刺参耳状幼体遗传力的估计.中国水产科学,2006,13:378-383
    44.鲁翠云,曹顶臣,孙效文,梁利群.微卫星分子标记辅助镜鲤家系选育.中国水产科学,2008,15:893-901
    45.罗俊烈.杂种优势在鱼类生产上的利用.动物学杂志,1990,25:54-57
    46.罗坤,孔杰,栾生,杨国梁,王军毅,张宇飞.应用动物模型对罗氏沼虾育种值估计的差别分析.海洋水产研究,2008,29:85-91
    47.阮晓红.大菱鲆(Turbot)微卫星标记的筛选与应用.[博士学位论文].青岛:中国海洋大学,2009
    48.石文芳.2012基于RNA-seq测序的梅花转录组分析.[硕士学位论文].北京:北京林业大学,2012
    49.沈俊宝,刘明华.选择育种,见:楼允东主编,鱼类育种学.北京:中国农业出版社,2009,10-29
    50.盛志廉,吴常信.数量遗传学.北京:中国农业出版社,1999
    51.舒妙安,周宇芳,朱晓宇,赵晓枫,郭晓令.中国沿海拟穴青蟹群体遗传多样性的微卫星分析.水产学报,2011,35:977-984
    52.宋春妮,李健,刘萍,陈萍,高保全.日本蟳4个野生群体遗传多样性的微卫星分析.水产学报,2011,35:985-991
    53.孙博.海湾扇贝分子标记的研究及应用.[硕士学位论文].青岛:中国科学院海洋研究所,2003
    54.孙效文,梁利群.鲤鱼的遗传连锁图谱(初报).中国水产科学,2000,7:1-5
    55.孙效文,张晓锋,赵莹莹,张研,贾智英,常玉梅,鲁翠云,梁利群.水产生物微卫星标记技术研究进展及其应用.中国水产科学,2008,15:689-703
    56.孙效文,鲁翠云,贾智英, 梁利群,曹顶臣.水产动物分子育种研究进展中国水产科学,2009,16:981-990
    57.孙效文.鱼类分子育种学.北京:海洋出版社,2010
    58.唐首杰,李思发,蔡完其,赵岩.团头鲂野生群体与养殖群体遗传变异的微卫星分析.见:中国水产学会学术论文摘要集,2008年中国水产学术年会,昆明,2008,166
    59.田永胜,陈松林,徐田军,邓寒,丁浩.牙鲆不同家系生长性能比较及优良亲本选择.水产学报.2009,33:901-911
    60.王炳谦,.谷伟,贾钟贺,赵吉伟,牟振波,范兆廷.虹鳟不同养殖群体杂交F1及其自繁系生产性能的比较.淡水渔业,2007,37:65-69
    61.王炳谦,谷伟,高会江,范兆廷,石连玉.利用配合力和微卫星标记预测虹鳟品系间的杂交优势.中国水产科学,2009,16:206-213
    62.王金玉,陈国宏.遗传参数.见:王金玉主编,数量遗传与动物育种.南京:东南大学出版社,2004,66-92
    63.王庆志.牡蛎品种选育与生长性状的遗传参数估计.[博士学位论文].青岛:中国海洋大学,2011
    64.王晓清,王志勇,何湘蓉.大黄鱼40日龄体长和体重遗传力估计.集美大学学报,2010:157-10
    65.吴常信.对建立“农业动物分子遗传育种育种质资源保存工程中心”的建议.中国畜牧杂志,1999,35:1-4
    66.吴仲庆,洪水根.鱼类杂交育种的原理和应用.福建水产,1985,1:61-65
    67.夏德全,吴婷婷.人工诱导白鲢(Hypophthalmichthys molitrix)雌核发育及性转.发育与生殖生物学报(英文版),2000,9:31-36
    68.尹增强,孔立辉.阿根廷滑柔鱼体长、体重组成以及体长与体重关系的初步分析.河北渔业,2007,157:1-14
    69.易少奎,高泽霞,罗伟,段晓克,李艳和,王卫民.团头鲂EST-SSR在厚颌鲂中的跨种扩增及杂交F1的鉴定.水产学报,2013,37:971-977
    70.曾聪.团头鲂生长相关性状的形态和遗传分析.[硕士学位论文].武汉:华中农业大学,2012
    71.翟虎渠,王健康.应用数量遗传学.北京:中国农业出版社(第二版),2007.1-8
    72.战爱斌.栉孔扇贝(Chlamys farreri)微卫星标记的筛选及应用.[博士学位论文].青岛:中国海洋大学,2007
    73.张德春.淤泥湖和梁子湖团头鲂遗传多样性的研究.三峡大学学报自然科学版,2001,23:282-284
    74.张国范,张喜昌,刘晓.中国近海皱纹盘鲍不同地理群体的遗传结构与变异研究.海洋科学集刊,2006,47:194-205
    75.张建森,孙小异.建鲤综合育种新技术的公开和分析.中国水产,2006,370:69-75
    76.张留所.凡纳滨对虾分子标记筛选、连锁图谱构建和QTL定位.[博士学位论文].青岛:中国科学院海洋研究所,2006
    77.张吕平,吴立峰,沈琪,杜少波,胡超群.凡纳滨对虾全同胞家系的建立及生长比较.水产学报.2009,33:932-939
    78.张天时,孔杰,刘萍,王清印,张庆文.中国对虾家系建立及不同家系生长发育的初步研究.海洋学报,2007,29:120-124
    79.张天时.中国对虾(Fenneropenaeus chinensis)育种的模型分析与遗传参数评估.[博士学位论文].青岛:中国海洋大学博,2010
    80.张新辉,夏新民,罗伟,高泽霞,钱雪桥,王卫民.团头鲂雌核发育后代的微卫星标记分析.华中农业大学学报,2012,6:737-743
    81.张新辉,罗伟,高泽霞,杨坤,祝东梅,温久福,钱雪桥,王卫民.团头鲂三倍体的诱导及其鉴定.水产科学,2013,32::503-508
    82.张毅,孙东晓,俞英,张沅.家养水牛30个微卫星标记的多重PCR体系建立及其多态性检测.遗传,2008,30::59-64
    83.张义凤,张研,鲁翠云,曹顶臣,孙效文.鲤鱼微卫星标记与体重、体长和体高性状的相关分析.遗传,2008,30:613-619
    84.赵岩,李思发,唐首杰.团头鲂“浦江1号”选育后期世代群体同野生群体间遗传变异的ISSR分析.水产学报,2006,33:893-900
    85.邹拓谜.人工诱导团头鲂和鲤鱼雌核发育及相关研究.[硕士学位论文].长沙:湖南师范大学,2011
    86. Abdelkrim J, Robertson B, Stanton JA, Gemmell NJ. Fast, cost-effective development of species-specific microsatellite markers by genomic sequencing. BioTechniques,2009,46:185-192
    87. Appleyard SA, Renwick JM, Mather PB. Individual heterozygosity levels and relative growth performance in Oreochromis niloticus (L.) cultured under Fijian conditions. Aquac Res, 2001,32:287-296
    88. Agresti JJ, Seki S, Cnaani A, Poompuang S, Hallerman EM, Umiel N, Hulata G, Gall GAE, May B. Breeding new strains of tilapia: development of artificial center of origin and linkage map based on AFLP and microsatellite loci. Aquaculture, 2000, 185:43-56
    89. Aho T, Ronn J, Piironen J, Bjorklund M. Impacts of effective population size on genetic diversity in hatchery reared Brown trout (Salmo trutta L.) populations. Aquaculture, 2006, 253:244-248
    90. Allen Jr SK, Shpigel M, Utting S, Spencer B. Incidental production of tetraploid Manila clams, Tapes philippinarum (Adams and Reeve). Aquaculture, 1994, 128: 13-19
    91. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry M, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G. Gene Ontology:tool for the unification of biology. Nat Genet, 2000, 25:25-29
    92. Bai X, Rivera-Vega L, Mamidala P, Bonello P, Herms DA, Mittapalli O. Transcriptomic Signatures of Ash (Fraxinus spp.) Phloem. PLoS One, 2011,6: e16368
    93. Bakos J, Gorda S. Genetic improvement of common carp strains using intraspecific hybridization. Aquaculture, 1995,129:183-186
    94. Barbazuk WB, Emrich SJ, Chen HD, Li L, Schnable PS. SNP discovery via 454 transcriptome sequencing. Plant J, 2007, 51:910-918
    95. Beacham TD, Varnavskaya NV, Mcintosh B, MacConnachie C. Population structure of sockeye salmon from Russia determined with microsatellite DNA variation. T Am Fish Soc,2006,135:97-109
    96. Beaumont MA. Adaptation and speciation: what can FST tell us? Trends Ecol Evol, 2005,20:435-440
    97. Beheregaray LB, Moller LM, Sehwartz TS, Chao NL, Caccone A. Microsatellite markers for the cardinal tetra Paracheirodon axelrodi, a commercially important fish from central Amazonia. Mol Ecol Notes,2004,4,330-332
    98. Beldade P, Rudd S, Gruber JD, Long AD. A wing expressed sequence tag resource for Bicyclus anynana butterflies, an evo-devo model. BMC Genomics, 2006, 7:130
    99. Bentsen HB, Eknath AE, Palada-de Vera MS, Danting JC, Bolivar HL, Reyes RA, Dionisio EE, Longalong FM, Circa AV, Tayamen MM, Gjerde B. Genetic improvement of farmed tilapias:growth performance in a complete diallel cross experiment with eight strains of Oreochromis niloticus. Aquaculture, 1998,160: 145-173
    100. Benzie JAH, Kenway M, Ballment E, Frusher S, Trott L. Interspecific hybridization of the tiger prawns Penaeus monodon and Penaeus esculentus. Aquaculture, 1995, 133:103-111
    101. Benzie JAH, Kenway M, Trott L. Estimates for the heritability of size in juvenile Penaeus monodon prawns from half-sib mating. Aquaculture, 1996, 152:49-53
    102. Bernard C. Enhanced individual selection for selecting fast growing fish: the "PROSPER" method, with application on brown trout (Salmotrutta fario). Genet Sel Evol, 2004,36:643-661
    103. Bierne N, Beuzart I, Vonan V, Bonhomme F, Be'dier E, AQUACOP. Microsatellite associated heterosis in hatchery-propagated stocks of the shrimp Penaeus stylirostris. Aquaculture, 2000, 184:203-219
    104. Bolivar RB, Newkirk GF. Response to within family selection for body weight in Nile tilapia (Oreochromis niloticus) using a single-trait animal model. Aquaculture, 2002,204:371-381
    105. Bouck A, Vision T. The molecular ecologist's guide to expressed sequence tags. Mol Ecol, 2007,16:907-924
    106. Borrell YJ, Gallego V, Garcia-Fernandez C, Mazzeo I, Perez L, Asturiano JF, Carleos CE, Vazquez E, Sanchez JA., Blanco G. Assessment of parental contributions to fast- and slow-growing progenies in the sea bream Sparus aurata L. using a new multiplex PCR. Aquaculture, 2011,314:58-65
    107. Brian PK. A review of quantitative genetics in fish breeding. Aquaculture, 1983,31: 283-30
    108. Brown RC, Woolliams JA, McAndrew BJ. Factors influencing effective population size in commercial populations of gilthead seabream, Sparus aurata. Aquaculture, 2005,247:219-225
    109. Bryden CA, Heath JW, Heath DD. Performance and heterosis in farmed and wild chinook salmon (Oncorhynchus tshawytscha) hybrid and purebred crosses. Aquaculture, 2004, 235:249-261
    110. CAFS (Chinese Academy of Fishery Sciences). Fishery Statistic Data. Chinese Academy of Fishery Sciences, Beijing, 2001.
    111. Campton DC. Sperm competition in salmon hatcheries:the need to institutionalize genetically benign spawning protocols. Trans Am Fish Soc, 2004, 133:1277-1289
    112. Cao XJ, Wang HP, Yao H, O'Bryant P, Rapp D, Wang WM, MacDonald R. Evaluation of 1-stage and 2-stage selection in yellow perch Ⅰ: Genetic and phenotypic parameters for body weight of F1 fish reared in ponds using microsatellite parentage assignment. JAnim Sci, 2011,90,27-36
    113. Castro J, Pino A, Hermida M, Bouza C, Riaza A, Ferreiro I, Sanchez L, Martinez P. A microsatellite marker tool for parentage analysis in Senegal sole (Solea senegalensis):Genotyping errors, null alleles and conformance to theoretical assumptions. Aquaculture, 2006, 261:1194-1203
    114. Chourrout D. Pressure-induced retention of second polar body and suppression of first cleavage in rainbow trout:Production of all-triploids, all-tetraploids, and heterozygous and homozygous diploid gynogenetics. Aquaculture, 1984, 36:111-126
    115. Couch CR. Microsatellite DNA marker-assisted selective breeding of striped bass. (Ph D dissertation). Raleigh: North Carolina State University, 2006
    116. Cruz P, Ibarra AM. Larval growth and survival of two catarina scallop (Argopecten circularis, Sowerby, 1835) populations and their reciprocal crosses. J Exp Mar Biol Ecol, 1997,212:95-110
    117. Davison A. The inheritance of divergent mitochondria in the land snail, Cepaea nemoralis. J Mollus Stud, 2000, 66:143
    118. Deng Y, Liu X, Zhang G, Wu F. Heterosis and combining ability:a diallel cross of three geographically isolated populations of Pacific abalone Haliotis discus hannai Ino. Chin J Oceanol Limnol, 2010,28:1195-1199
    119. Der JP, Barker MS, Wickett NJ, dePamphilis CW, Wolf PG. De novo characterization of the gametophyte transcriptome in bracken fern, Pteridium aquilinum. BMC Genomics, 2011,12:99
    120. Doupe RG, Lymbery AJ, Greeff J. Genetic variation in the growth traits of traight-bred and crossbred black bream (Acanthopagrus butcheri Munro) at 90 days of age. Aquac Res, 2003,34:1297-1301
    121. Dubut V, Grenier R, Meglecz E, Chappaz R, Costedoat C, Danancher D, Descloux S, Malausa T, Martin J, Pech N, Gilles A. Development of 55 novel polymorphic microsatellite loci for the critically endangered Zingel asper L. (Actinopterygii: Perciformes:Percidae) and cross-species amplification in five other percids. Eur J Wildlife Res,2010,56:931-938
    122. Dupont-Nivet M, Vandeputte M, Vergnet A, Mergnet A, Merdy O, Haffray P, Chavanne H, Chatain B. Heritabilities and G×E interactions for growth in the European sea bass (Dicentrarchus labrax L.) using a marker-based pedigree. Aquaculture, 2008, 275,81-87
    123. Eknath AE, Tayamen MM, Palada-de Vera MS, Danting JC, Reyes R, Dionisio EE, Capili JB, Bolivar HL, Abella TA, Circa A, Bentsen HB, Gjerde B, Gjedrem T, Pullin RSV. Genetic improvement of farmed tilapias:the growth performance of eight strains of Oreochromis niloticus tested in different farm environments. Aquaculture, 1991, 111:171-188.
    124. Falconer DS. Introduction to Quantitative Genetics. 3rd ed. New York: Longman, 1989
    125. Falconer DS. Selection in different environments:effects on environmental sensitivity (reaction norm) and on mean performance. Genetics Research, 1990, 56, 57-70
    126. Falconer DS, MacKay TFC. Introduction to Quantitative Genetics. 4th ed. Essex (England):Longman, 1996
    127. Fishback AG, Danzmann RG, Ferguson MM, Ferguson MM, Gibson JP. Estimates of genetic parameters and genotype by environment interactions for growth traits of rainbow trout (Oncorhynchus mykiss) as inferred using molecular pedigrees. Aquaculture, 2002, 206, 137-150
    128. Fishback AG. Genetic and environmental influences on the spawning time and progeny growth of hatchery rainbow trout. (MS dissertation). Ontario:University of Guelph, 1999
    129. Fjalestad KT, Gjedrem T, Carr WH. Final report: the shrimp breeding program. Selective breeding of Penaeus vannamei. AKVAFORSK Rep, 1997, 17/97:85
    130. Fjalestad KT, Breeding strategies. In: Gjedrem T eds Selection and breeding programs in aquaculture. the Netherlands: Springer, 2005a, 145-158
    131. Fjalestad KT, Selection methods. In:Gjedrem T (ed), Selection and Breeding Programs in Aquaculture. Dordrecht: Springer, 2005b, 159-170
    132. Friars GW, Bailey JK, O'Flynn FM. Applications of selection for multiple traits in cage-reared Atlantic salmon (Salmo salar). Aquaculture, 1995,137, 213-217
    133. Fu B, He S. Transcriptome analysis of silver carp (Hypophthalmichthys molitrix) by paired-end RNA sequencing. DNA Research, 2012,19:131-142
    134. Fu J, Shen Y, Xu X, Chen Y, Li D, Li J. Multiplex microsatellite PCR sets for parentage assignment of grass carp (Ctenopharyngodon idella). Aquacult Int, 2013, 21:1195-1207
    135. Fuji K, Hasegava O, Honda K, Kumasaka K, Sakamoto T, Okamoto N. Marker-assisted breeding of a lymphocytis disease-resistant Japanese flounder (Paralichthys olivaceus). Aquaculture, 2007, 272:291-295
    136. Gaffney PM, Scott TM, Koehn RK, Diehl WJ. Interrelationships of heterozygosity, growth rate and heterozygote deficiencies in the coot clam, Mulinia lateralis. Genetics,1990,124:687-699
    137. Gall GAE, Huang N. Heritability and selection schemes for rainbow trout: Body weight. Aquaculture, 1988, 732:43-56
    138. Gall GAE, Bakar Y. Application of mixed-model techniques to fish breed improvement: analysis of breeding-value selection to increase 98-day body weight in tilapia. Aquaculture, 2002, 212:93-113
    139. Gao Z, Luo W, Liu H, Zeng C, Liu X, Yi S, Wang W. Transcriptome analysis and SSR/SNP markers information of the blunt snout bream (Megalobrama amblycephala). PLoS One, 2012, 7:e42637
    140. Gjerde B, Gunnes K, Gjedrem T. Effect of inbreeding on survival and growth in rainbow trout. Aquaculture, 1983,34:327-332
    141. Gjerde B. Breeding theory, salmon and rainbow trout. Landbruksbokhandelen, Norway. ISBN 82-557-0374-8.1991
    142. Gjerde B, Reddy PVGK, Mahapatra KD, Saha JN, Jana RK, Meher PK, Sahoo M, Lenka S, Govindassamy, Rye M. Growth and survival in two complete diallel crosses with five stocks of Rohu carp (Labeo rohita). Aquaculture, 2002, 209:103-115
    143. Gheyas AA, Woolliams JA, Taggart JB, Sattar MA, Das TK, McAndrewa BJ, Penman DJ. Heritability estimation of silver carp (Hypophthalmichthys molitrix) harvest traits using microsatellite based parentage assignment. Aquaculture, 2009, 294,187-193
    144. Grjedrem T. Selection for growth rate and demostication in Atlantic salmon. Z Tierz Zuchtungsbiol, 1979, 96:56-59
    145. Gjedrem T. Selection and breeding programs in aquaculture. Dordrecht: Springer, 2005
    146. Gjedrem T, Thodesen, J. Selection. In: Gjedrem T eds Selection and Breeding Programs in Aquaculture. Dordrecht:Springer, 2005,89-110
    147. Gjedrem T, Baranski M. Slection methods. In: Gjedrem T eds Selective breeding in aquaculture: an introduction. Dordrecht: Springer, 2009,93-102
    148. Gjoen HM, Gjerde B. Comparing breeding schemes using individual phenotypic values and BLUP breeding values as selection criteria. Proceedings of the 6th World Congress on Genetics Applied to Livestock Production, vol. 27. University of New England, Armidale, New SouthWales, Australia, 1998, 111-114
    149. Gonzalez EB, Nagasawa K, Umino T. Stock enhancement program for black sea bream (Acanthopagrus schlegelii) in Hiroshima Bay: Monitoring the genetic effects. Aquaculture, 2008,276:36-43
    150. Gosling E M. Genetic heterozygosity and growth rate in a cohort of Mytilus edulis from the Irish coast. Mar Biol, 1989,100:211-215
    151. Guo S, Zheng Y, Joung J, Liu S, Zhang Z, Crasta OR, Sobral BW, Xu Y, Huang S, Fei Z. Transcriptome sequencing and comparative analysis of cucumber flowers with different sex types. BMC Genomics, 2010,11:384
    152. Guy JA, Jerry DR, Rowland SJ. Heterosis in fingerlings from a diallel cross between two wild strains of silver perch (Bidyanus bidyanus). Aquac Res, 2009, 40: 1291-1300
    153. Hedgecock D, McGoldrick DJ, Bayne B. Hybrid vigor in Pacific oysters:an experimental approach using crosses among intra-population crosses. Aquaculture, 1995,137:285-298
    154. Hennequin C, Thierry A, Riehard GF, Lecointre G, Nguyen HV, Gaillardin C, Dujon B. Microsatellite typing as a new tool for identification of Saceharomyces cerevisiae strains. J Clin Microbiol, 2001,39:551-559
    155. He M, Lin Y, Shen Q, Hu J, Jiang W. Production of tetraploid pearl oyster (Pinctada martensii Dunker) by inhibiting the first polar body in eggs from triploids. J Shellfish Res,2000,19:147-151
    156. Hetzel DJS, Crocos PJ, Davis GP, Moore SS, Preston NC. Response to selection and heritability for growth in the Kuruma prawn, Penaeus japonicus. Aquaculture, 2000, 181:215-223
    157. Herlin M, Delghandi M, Wesmajervi M, Taggart JB, McAndrew BJ, Penman DJ. Analysis of the parental contribution to a group of fry from a single day of spawning from a commercial Atlantic cod (Gadus morhua) breeding tank. Aquaculture, 2008, 274:218-224
    158. Hines NO. Fish of rare breeding-salmon and trout of the Donaldson strains. Washington: Smithsonian Institution Press, 1976
    159. Hou R, Bao Z, Wang S, Su H, Li Y, Du H, Hu J, Wang S, Hu X. Transcriptome sequencing and de novo analysis for Yesso scallop (Patinopecten yessoensis) using 454 GS FLX. PLoS One,2011,6:e21560
    160. Jackson TR, Ferguson MM, Danzmann RG, Fishback AG, Ihssen PE, O'Connell M, Crease T. Identification of two QTL influencing upper temperature tolerance in three rainbow trout half-sib families. Heredity, 1998, 80: 143-151
    161. Poch JA, Ribeiro RP, Sirol RN, Streit Jr DP, Moreira HLM, Siewerdt F, Lopera-Barrero NM, Mangolin CA, Vargas L. Microsatellite analysis of the parental contribution of Piaractus mesopotamicus to the production of offspring in the semi-natural system of reproduction. Braz Arch Biol Technol, 2010, 53:389-396
    162. Jerry DR, Preston NP, Crocos PJ, Keys S, Meadows JRS, Li Y. Application of DNA parentage analyses for determining relative growth rates of Penaeus japonicus families reared in commercial ponds. Aquaculture, 2006, 254:171-181
    163. Nakamura F, Ozaki A, Mochizuki M, Akutsu T, Ishimoto S, Denda I, Okamoto N, Arakawa T, Khoo SK, Sakamoto T. Identification of a novel chromosomal region associated with infectious hematopoietic necrosis (IHN) resistance in rainbow trout Oncorhynchus mykiss. Fish Pathol, 2004, 39:95-101
    164.Kitcharoen N, Rungsin W, Koonawootrittriron S, Na-Nakorn U. Heritability for growth traits in giant freshwater prawn, Macrobrachium rosenbergii (de Mann 1879) based on best linear unbiased prediction methodology. Aquac Res, 2012, 43:19-25
    165.Kim ES, Berger PJ, Kirkpatrick BW. Genome-wide scan for bovine twinning rate QTL using linkage disequilibrium. Anim Genet, 2009, 40:300-307
    166.Kirpichinikov VV. Genetic bases of fish selection. New York: Spring-Verlag, 1981, 40-43
    167.Klmer KR, Fan S, Gunter HM, Jones JC, Boekhoff S, Kuraku S, Meyer A. Rapid evolution and selection inferred from the transcriptomes of sympatric crater lake cichlid fishes. Mol Ecol, 2010, 19 (Suppl.1):197-211
    168.Koehn PK, Gaffney PM. Genetic heterozygosity and growth rate in Mytilus edulis. Mar Biol, 1984,82:1-7
    169.Kocher TD, Lee WJ, Sobolewska H, Penman D, McAndrew B. A genetic linkage map of a cichlid fish, the tilapia (Oreochromis niloticus). Genetics, 1998,148: 851-858
    17O.Kvingedal R, Evans B, Lind CE, Taylor JJU, Dupont-Nivet M, Jerry DR. Population and family growth response to different rearing location, heritability estimates and genotype × environment interaction in the silver-lip pearl oyster (Pinctada maxima). Aquaulture, 2010, 304:1-6
    171.Liang J, Zhang GF, Zheng HP. Divergent selection and realized heritability for growth in the Japanese scallop, Patinopecten yessoensis Jay. Aquac Res, 2010, 41: 1315-1321
    172.Lee BY, Hulata G, Kocher TD. Two unlinked locicontrolling the sex of blue tilapia (Oreochromis aureus). Heredity,2004,92:543-549
    173.Lee BY, Lee WJ, Streelman JT, Carleton KL, Howe AE, Hulata G, Slettan A, Stern JE, Terai Y, Kocher TD. A second-generation genetic linkage map of tilapia (Oreochromis spp.). Genetics, 2005,170:237-244
    174.Li WT, Liao XL, Yu XM, Wang D, Tong J. Isolation and characterization of polymorphic microsatellite loci in Wuchang bream (Megalobrama amblycephala). Mol Ecol Resour,2007,7:771-773
    175.Liu X, Sui B, Wang Z, Cai M, Yao C, Chen Q. Estimated reproductive success of brooders and heritability of growth traits for large yellow croaker (Larimichthys crocea) using microsatellites. Chin J Oceanol Limnol, 2011,29,990-995
    176. Liu Z J, Dunham R. Genetic linkage and QTL mapping of ictalurid catfish. Alabama Agr.Exp. Sta Cir Bulletin, 1997, 321:1-19
    177. Liu Z, Karsi A, Li P, Cao D, Dunham R. An-AFLP-based genetic linkage map of channel catfish (Ictalurus punctatus) constructed by using an interspecific hybrid resource family. Genetics, 2003,165:687-694
    178. Liu Z. Aquaculture genome technologies. USA, IA: Blackwell Publishing, 2007
    179. Lockhart DJ, Winzeler EA. Genomics, gene expression and DNA arrays. Nature, 2000,405:827-836
    180. Lu FH, Cho MC, Park YJ. Transcriptome profiling and molecular marker discovery in red pepper, Capsicum annuum L. TF68. Mol Biol Rep, 2012, 39:3327-3335
    181. Luikart G, England PR, Tallmon D, Jordan S, Taberlet P. The power and promise of population genomics:from genotyping to genome typing. Nat Rev Genet, 2003,4: 981-994
    182. Luo W, Deng W, Yi S, Wang W, Gao Z. Characterization of 20 polymorphic microsatellites for Blunt snout bream (Megalobrama amblycephala) from EST sequences. Conserv Genet Resour, 2013a, 5:499-501
    183. Luo W, Zeng C, Deng W, Robinson N, Wang W, Gao Z. Genetic parameters estimates for growth-related traits of blunt snout bream (Megalobrama amblycephala) using microsatellite-based pedigree. Aquac Res, 2013b, doi:10.1111/are.12133
    184. Luo W, Zeng C, Yi S, Robinson N, Wang W, Gao Z. Heterosis and combining ability evaluation for growth traits of blunt snout bream (Megalobrama amblycephala) when crossbreeding three strains. Chinese sci bull, 2013c, 59:857-864
    185. Luo W, Nie Z, Zhan F, Wei J, Wang W, Gao Z. Rapid Development of microsatellite markers for the endangered fish Schizothorax biddulphi (Giinther) using next generation sequencing and cross-species amplification. Int J Mol Sci, 2012, 13: 14946-14955
    186. Malausa T, Gilles A, Megle'cz E, Blanquart H, Duthoy S, Costedoat C, Dubut V, Pech N, Castagnone-Sereno P, Delye C, Feau N, Frey P, Gauthies P, Guillemaud T, Hazard L, Corre V, Lung-Escarmant B, Male PG, Ferreiras S, Martin J. High-throughput microsatellite isolation through 454 GS-FLX Titanium pyrosequencing of enriched DNA libraries. Mol Ecol Resour,2011,11:638-644
    187. Mallet AL, Haley LE. General and specific abilities of larval and juvenile growth and viability estimated from natural oyster populations. Mar Biol, 1984, 81:53-59
    188. Martin JF, Pech N, Meglecz E, Ferreira S, Costedon C, Dubut V, Malausa T, Gilles A. Representativeness of microsatellite distributions in genomes, as revealed by 454 GS-FLX titanium pyrosequencing. BMC Genomics, 2010, 11:560
    189. Marshall T. Cervus statistical software, Ver. 1.0, University of Edinburgh.1998
    190. Marshall TC, Slate J, Kruuk LEB, Pemberton JM. Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol, 1998, 7, 639-655
    191. Marengoni NG, Onoue Y. Offspring growth in a diallel crossbreeding with three strains of nile tilapia Oreochromis niloticus. J World Aquacult Soc, 1998, 29:114-119
    192. Matson SE, Camara MD. P-LOCI: a computer program for choosing the most efficient set of loci for parentage assignment. Mol Ecol Resour, 2008, 8:765-768
    193. Merila J, Crnokrak P. Comparison of genetic differentiation at marker loci and quantitative traits. J Evol Biol, 2001,14:892-903
    194. Meyer E, Aglyamova GV, Wang S, Buchanan-Carter J, Abrego D, Colbourne JK, Willis BL, Matz MV. Sequencing and de novo analysis of a coral larval transcriptome using 454 GSF1x. BMC Genomics, 2009,10:219
    195. Miguel A, Rio-Portilla D, Andy RB. Larval growth, juvenile size and heterozygosity in laboratory reared mussels, Mytilus edulis. J Exp Mar Biol Ecol, 2000, 254: 1-17
    196. Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. KAAS:an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res, 2007,35: 182-185
    197. Myers JM. Tetraploid induction in Oreochromis spp. Aquaculture, 1986, 57:281-28
    198. Navarro A, Zamorano MJ, Hildebrandt S, Gines R, Aguilera C, Juan M. Afonso. Estimates of heritabilities and genetic correlations for growth and carcass traits in gilthead seabream (Sparus auratus L.), under industrial conditions. Aquaculture, 2009,289:225-230
    199. Neira R, Diaz NF, Gall GAE. Genetic improvement in coho salmon (Oncorhynchus kisutch). Ⅱ:Selection response for early spawning date. Aquaculture, 2006, 257:1-8
    200. Nguyen NH, Khaw HL, Ponzoni RW. Can sexual dimorphism and body shape be altered in Nile tilapia (Oreochromis niloticus) by genetic means? Aquaculture, 2007. 272:38-46
    201. Nichol KM, Young WP, Danzmann RG. A consolidated linkage map for rainbow trout. Anim Genet, 2003,34:102-115
    202. Ning Z, Cox AJ, Mullikin JC. SSAHA:a fast search method for large DNA databases. Genome Res,2001,11:1725-1729
    203. Novaes E, Drost DR, Farmerie WG, Pappas Jr GJ, Grattapaglia D, Sederoff RR, Kirst M. High-throughput gene and SNP discovery in Eucalyptus grandis, an uncharacterized genome. BMC Genomics, 2008,9:312
    204. O'Reilly PT, Herbinger C, Wright JM. Analysis of parentage determination in Atlantic salmon (Salmo salar) using microsatellites. Anim Genet, 1998, 29, 363-370
    205. Paterson A, Brubaker C, Wendel J. A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Mol Biol Rep, 1993,11:122-127
    206. Parchman TL, Geist KS, Grahnen JA, Benkman CW, Buerkle CA. Transcriptome sequencing in an ecologically important tree species:assembly, annotation, and marker discovery. BMC Genomics, 2010, 11:180
    207. Perry JC, Rowe L. Rapid microsatellite development for water striders by next-generation sequencing. J Hered, 2011,102:125-9
    208. Perez-Enciso M, Ferretti L. Massive parallel sequencing in animal genetics: wherefroms and wheretos. Anim Genet,2010,41:561-569
    209. Peruzzia S, Chatain B. Pressure and cold shock induction of meiotic gynogenesis and triploidy in the European sea bass, Dicentrarchus labrax L.:relative efficiency of methods and parental variability. Aquaculture, 2000, 189:23-37
    210. Reid DP, Szanto A, Glebe B, Danzmann RG, Ferguson MM. QTL for body weight and condition factor in Atlantic salmon:comparative analysis with rainbow trout and Arctic charr. Heredity, 2005, 94:166-172
    211. Rice P, Longden I, Bleasby A. EMBOSS:the European Molecular Biology Open Software Suite. Trends Genet, 2000, 16:276-277
    212. Roeding F, Borner J, Kube M, Klages S, Reinhardt R, Burmester T. A 454 sequencing approach for large scale phylogenomic analysis of the common emperor scorpion (Pandinus imperator). Mol Phylogenet Evol, 2009, 53:826-834
    213. Rozen S, Skaletsky HJ. Primer 3 on the WWW for general users and for biologist programmers. In:Krawetz S, Misener S eds Bioinformatics methods and protocols: methods in molecular biology. Totowa: Humana Press, 2000, 365-386
    214. Rutten MJM, Bovenhuis H, Komen H. Genetic parameters for fillet traits and body measurements in Nile tilapia (Oreochromis niloticus L.). Aquaculture, 2005, 246, 125-132
    215.Sae-Lim P, Komen H, Kause A. Bias and precision of estimates of genotype-by-environment interaction: A simulation study. Aquaculture, 2010, 310, 66-73
    216. Saillant E, Dupont-Nivet M, Haffray P, Chatain B. Estimates of heritability and genotype - environment interactions for body weight in sea bass (Dicentrarchus labrax L.) raised under communal rearing conditions. Aquaculture, 2006, 254: 139-147
    217. Sakamoto T, Danzmann RG, Gharbi K, Howard P, Ozaki A, Khoo SK, Woram RA, Okamoto N, Ferguson M, Holm L, Guyomard R, Hoyheim B. A microsatellite linkage map of rainbow trout (Oncorhynchus mykiss) characterized by large sex-specific differences in recombination rates. Genetics, 2000, 155:1331-1345
    218. Salem M, Rexroad CE Ⅲ, Wang J, Thorgaard GH, Yao J. Characterization of the rainbow trout transcriptome using Sanger and 454-pyrosequencing approaches. BMC Genomics, 2010, 11:564
    219. Sekino M, Saitoh K, Yamada T, Kumagaib A, Harac M, Yamashita Y. Microsatellite-based pedigree tracing in a Japanese flounder Paralichthys olivaceus hatchery strain:implications for hatchery management related to stock enhancement program. Aquaculture, 2003,221:255-263
    220. Shikano T, Taniguchi N. Using microsatellite and RAPD markers to estimate the amount of heterosis in various strain combinations in the guppy (Poecilia reticulate) as a fish model. Aquaculture, 2002, 204:271-281
    221. Slattery JP, Vrijenhoek RC, Lutz RA. Heterozygosity, growth, and survival of the hard clam, Mercenaria mercenaria, in seagrass vs sandflat habitats. Mar Biol, 1991, 111:335-342
    222. Somorjai IML, Danzmann RG, Ferguson MM. Distribution of temperature tolerance quantitative trait loci in arctic charr (Salv elinusalpinus) and inferred homologies in rainbow trout (Oncorhynchus mykiss). Genetics, 2003,165:1443-1456
    223. Sonesson AK, Woolliams JA, Meuwissen THE. Kinship, elationship and inbreeding. In: Gjedrem T ed Selection and Breeding Programs in Aquaculture. Dordrecht: Springer, 2005,73-88
    224. Stromgren T, Nielsen MV. Heritability of growth in larvae and juveniles of Mytilus edulis. Aquaculture, 1989, 80:1-6
    225.Su GS, Liljedahl LE, Gall GAE. Genetic correlations between body weight at different ages and with reproductive traits in rainbow trout. Aquaculture, 2002, 213, 85-94
    226. Supan JE. Tetraploid eastern oysters:An arduous effort. J Shellfish Res, 2000, 19: 655
    227. Su S, Xu P, Yuan X. Estimates of combining ability and heterosis for growth traits in a full diallel cross of three strains of common carp, Cyprinus carpio L. Afr J Biotechnol, 2013,12:3514-3521
    228. Tang SJ, Li SF, Cai WQ. Development of microsatellite markers for blunt snout bream Megalobrama amblycephala using 5'-anchored PCR. Mol Ecml Resour, 2009, 9,971-974
    229. Taris N, Ernande B, McCombie H, Boudry P. Phenotypic and genetic consequences of size selection at the larval stage in the Pacific oyster (Crassostrea gigas). J Exp Mar Biol Ecol, 2006,333:147-158
    230. Tayamen MM, Abella TA, Reyes RA, Danting MJC, Mendoza AM, Marquez EB, Salguet AC, Apaga MM, Gonzales RC. Development of tilapia for saline waters in the Philippines. In: Bolivar R B, Mair G C, Fitzsimmons K eds Proceedings of the sixth international symposium on tilapia in aquaculture. Philippines: Manila, 2004. 463-478
    231. Thanh NM, Ponzoni RW, Nguyen NH, Vu NT, Barnes A, Mather PB. Evaluation of growth performance in a diallel cross of three strains of giant freshwater prawn (Macrobrachium rosenbergii) in Vietnam. Aquaculture, 2009, 287:75-83
    232. Thodesen J, Grisdale-Helland B, Helland SJ, Gjerde B. Feed intake, growth and feed utilization of offspring from wild and selected Atlantic salmon (Salmo salar). Aquaculture, 1999,180, 237-246
    233. Thurston MI, Field D. Msatfinder: detection and characterisation of microsatellites. [http://www.genomics.ceh.ac.uk/msatfinder/],2005
    234. Tuyttens FAM, Macdonald DW. Consequences of social perturbation for wildlife management and conservation [M]//Behaviour and Conservation, Cambridge: Cambridge University Press, 2000:315-329
    235. UniProt-TrEMBL [http://www.ebi.ac.uk/trembl/FTP/ftp.html]
    236. Vandeputte M, Dupont-Nivet M, Chatain B, Chevassus B. Setting up a strain-testing design for the sea bass, Dicentrarchus labrax: a simulation study. Aquaculture, 2001, 202:329-342
    237. Vandeputte M, Kocour M, Mauger S, Dupont-Niveta M, De Guerrya D, Rodinab M, Gelab D, Vallodc D, Chevassusa B, Linhart O. Heritability estimates for growth-related traits using microsatellite parentage assignment in juvenile common carp (Cytrinus carpio L.). Aquaculture, 2004, 235,223-236
    238. Vandeputte M, Dupont-Nivet M, Haffray P, Chavanne H, Cenadelli S, Parati K, Vidal M, Vergnet A, Chatain B. Response to domestication and selection for growth in the European sea bass (Dicentrarchus labrax) in separate and mixed tanks. Aquaculture, 2009,286:20-27
    239. Vasemagi A, Nilsson J, Primmer CR. Expressed sequence tag-linked microsatellites as a source of gene-associated polymorphisms for detecting signatures of divergent selection in Atlantic salmon (Salmo salar L.). Mol Biol Evol, 2005,22:1067-1076
    240. Vera JC, Wheat CW, Fescemyer HW, Frilander MJ, Crawford DL, Hanskii I, Marden JH. Rapid transcriptome characterization for a nonmodel organism using 454 pyrosequencing. Mol Ecol, 2008,17:1636-1647
    241. Volckaert FA, Galbusera PH, Ollevier F. Gynogenesis in the African catfish, Clarias gariepinus (Burchell, 1822). Optimizing the induction of polar-body gynogenesis with combined pressure and temperature shocks. Aquac Res 1997, 28 (5):329-334
    242. Waldbieser GC, Bosworth BG, Nonneman DJ, Wolters WR. A microsatellite-based genetic linkage map for channel catfish, Ictalurus punctatus. Genetics, 2001,158: 727-734
    243. Wang CM, Lo LC, Zhu ZY, Lin G, Feng F, Li J, Yang WT, Tan J, Chou R, Lim HS, Orban L, YueGH. Estimating reproductive success of brooders and heritability of growth traits in Asian sea bass (Lates calcarifer) using microsatellites. Aquac Res, 2008,39,1612-1619
    244. Wang H, Du X, Lu W, Liu Z. Estimating the heritability for growth-related traits in the pearl oyster, Pinctada fucata martensii (Dunker). Aquac Res, 2010, 42, 57-64
    245. Wang C, Li Z. Improvement in production traits by mass spawning type crossbreeding in bay scallops. Aquaculture, 2010, 299:51-56
    246. Wang C, Cote J. Heterosis and combining abilities in growth and survival in sea scallops along the Atlantic coast of Canada. J Shellfish Res, 2012, 31:1145-1149
    247. Wangila BCC, Dick TA. Genetic effects and growth performance in pure and hybrid strains of rainbow trout, Oncorhynchus mykiss (Walbaum). Aquac Res, 1996, 27: 35-41
    248. Wang Z, Gerstein M and Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nature reviews genetics, 2009, 10:57-63
    249. Winkelman AM, Peterson RG. Genetic parameters (heritabilities, dominance ratios and genetic correlations) for body weight and length of chinook salmon after 9 and 22 months of saltwater rearing. Aquaculture, 1994, 125, 31-36
    250. Wohlfarth GW. Heterosis for growth rate in common carp. Aquaculture, 1993, 113: 31-46
    251. Wohlfarth GW, Lahman M, Hulata G, Moav R. The story of "Dor-70", a selected strain of the Israeli common carp. Bamidgeh, 1980, 32:3-5
    252. Yadav RS, Sehgal D, Vadez V. Using genetic mapping and genomics approaches in understanding and improving drought tolerance in pearl millet. J Exp Bot, 2010, 62: 397-408
    253. Young WP, Wheeler PA, Coryell VH, Keim P, Thorgaard GH. A detailed linkage map of rainbow trout produced using doubled haploids. Genetics, 1998, 148:839-850
    254. Zhang Y, Xu P, Lu C, Kuang Y, Zhang X, Cao D, Li C, Chang Y, Li H, Wang S, Sun X. Genetic linkage mapping and analysis of muscle fiber-related QTLs in common carp (Cyprinus carpio L.). Mar Biotechnol, 2011,13:376-392
    255. Zheng HP, Zhang GF, Guo XM, Liu X. Heterosis between two stocks of the bay scallop, Argopecten irradians irradians Lamarck (1819). J Shellfish Res, 2006, 25: 807-812
    256. Zeng S, Xiao G, Guo J, Fei Z, Xu Y, Roe BA, Wang Y. Development of a EST dataset and characterization of EST-SSRs in a traditional Chinese medicinal plant, Epimedium sagittatum (Sieb. Et Zucc.) Maxim. BMC Genomics, 2010, 11:94
    257. Zou S, Li S, Cai W, Zhao J, Yang H. Establishment of fertile tetraploid population of blunt snout bream (Megalobrama amblycephala). Aquaculture, 2004 238:155-164

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700