用户名: 密码: 验证码:
一种非对称式软开关逆变器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现有的相移谐振软开关技术,由于存在软开关实现的负载范围窄,不能在电
    弧这种负载范围内实现软开关的缺点,本文在研究弧焊电源的电路拓扑形式的基
    础上,提出了一种不对称的相移软开关电路拓扑形式;使超前臂工作在零电压开
    关状态;使滞后臂工作在零电流开关状态。在变压器付边增加一个辅助换流电路,
    改变了电路的拓扑形式,使软开关工作可以在空载、轻载、满载、短路等阶段实
    现,解决了相移谐振软开关电路难以用于焊接电源的难题。在对IGBT管子模型
    的研究的基础上,提出了IGBT并联电容、隔直电容等主电路参数的计算方法。
    逆变主电路采用桥式结构,分为超前臂与滞后臂。超前臂上并联较大的换流
    电容,滞后臂上并联小的电容或不并联电容,采用PWM控制策略。超前臂为活动
    臂进行PWM调节,滞后臂称为固定臂不进行PWM调节,超前臂与滞后臂各自互补
    导通,输出功率的调节是由调节超前臂的脉宽来进行的。超前臂上由于并联较大
    电容,在关断时其两端电压上升较慢,则超前臂工作在零电压关断状态。谐振电
    路由饱和电感和隔直电容组成,饱和电感的作用使换流能量基本恒定,来降低占
    空比的损失,而隔直电容可以降低环流损耗,使滞后臂关断时基本上是在零电流
    情况下,从而使关断损耗低。超前臂与滞后臂同时开通,由于超前臂上并有电容,
    开通时电容电压为零,所以超前臂是零电压开通,由于谐振回路中饱和电感的阻
    挡作用,变压器原边电流很小,故滞后臂时零电流开通。这样便保证了负载的软
    开关的实现。
    相移谐振软开关电路,由于超前臂上并有电容,必须在焊接负载的全过程中,
    保证将此电容电荷换流完毕,否则IGBT开通时,将使并联在其两端的电容短路,
    电容会直接向IGBT放电而损坏IGBT。而电弧负载有空载、负载、短路几个阶段,
    现有的相移谐振软开关电路无法在电弧全负载内实现软开关,我们增加了一由电
    感组成的换流支路,当焊接输出负载较轻或空载时,来提供空载无功环流,使空
    载时并联在IGBT、两端电容上换流完全而实现软开关。解决了相移谐振开关电路
    难以用于焊接电源的难题,提高焊机效率及可靠性。
    通过对现有的相移谐振软开关技术的改进而形成的非对称式软开关电路拓
    扑形式可同时推广到手弧焊、气保焊、埋弧焊、等离子切割等焊接电源中。
    
    山东大学硕士学位论文
     现有的逆变焊机输入侧都采用二极管整流,电解电容直接滤波的方法,将交
    流电变为直流,存在输入电网尖峰电流大、对电网干扰强的缺点,而三相有源功
    率因数校正器由于电路较复杂且昂贵,无法用于焊接电源中。根据焊接负载的特
    点,在满足焊接工艺要求基础上,提出了一种单级三相功率因数校正方案,将输
    入电网电压信号引入到逆变器的峰值电流反馈环内;利用逆变器对输入电流进行
    补偿,提高了功率因数,满额功率因数达到0.95,降低了谐波分量,5次谐波
    55%降至20%。
     逆变焊机的控制方式主要有两种:电压型控制和电流型控制。峰值电流型控
    制可以抑制变压器偏磁,防止开关管过流而烧坏,但峰值电流反馈易受干扰。本
    文在研究峰值电流闭环反馈基础上,在反馈环内引入了斜坡补偿信号,防止了脉
    冲宽度的抖动,提高了闭环电流的稳定性。针对二极管反向恢复电流对峰值电流
    环的干扰,设计了反向恢复电流消除环节,将电流反馈的电流前沿进行屏蔽,增
    加了系统的抗干扰能力。
     利用撇tlab分别对电源的输入整流部分、软开关逆变部分、峰值电流控制
    等进行了建模。对输入整流部分建模仿真时,逆变器部分可以等效为恒流源负载。
    当直流侧滤波电容较大时,电网输入电流的仿真波形有很大的尖峰,随着电容的
    容量的降低,电流尖峰降低。当电容较小,约20 pF时,电网输入电流波形变为
    近似方波,功率因数提高至约0.95,随着电网电感的增加,电网输入电流波形
    发生畸变,谐波份量增加,当电网电感很大时,而电网输入电流发生振荡。当引
    入电网电压进入峰值电流环后,逆变器的输出电流上叠加一个3OOHz的交流信
    号,使逆变器的输出电流对电网侧电流进行补偿,进而消除了振荡。仿真波形与
    实际波形一致。
     利用SIluulink建立了软开关逆变器的Simulink模型,分别对超前臂、滞后
    臂及变压器的工作波形进行了仿真。仿真结果与试验结果基本复合一致。通过在
    仿真模型上调整工作频率、谐波电容、电感及空载换流支路的参数,可以对软开
    关的工作电路进行了参数优化,大大降低了试验的工作量。
     将研究结果制成样机,已成功应用于手弧焊、气保焊、埋弧焊等多个品种的
    焊接设备中,在造船、电建、钢结构焊接工程中取得较好效果。
    关键词:相移谐振软开关逆变器三相功率因数校正仿真
The phase-shifted soft switch topology has a shortcoming whose load scope is so narrow that it can't be competent for welding. On analyzing of arc power source topology, a phase-shifted soft-switch topology is put forward to make the lead arm turn off on zero voltage and lag arm turn off on zero current in this paper. By adding an auxiliary circuit to the secondary side of transformer ,the optimized topology can work in no load,light load,full load and short-circuit and solve the problem of applying the phase-shifted soft switch technology to welding.And on the IGBT mode,the method of calculating the paralle capacitor and the blocking capacitor is presented.The main circuit of inverter adopts bridge structure which consists two parts.the lead arm and the lag arm and works on the mode of PWM.The lead arm is paralle with high capacitor and the lag arm with low value and the two arms work alternately.The output power depends on duty circle of the lead arm and the lag arm is not regulated. The voltage on the lead arm capacitor rises so slowly that the lead arm works on zero voltage turn-off mode. The resonance loop consists of saturated inductor and blocking capacitor.The saturated inductor can keep the loop energy steady to reduce the loss of the duty cycle ;the blocking capacitor can reduce the power loss causing by circle current and turn-off loss and the lag arm works mainly on the zero current turn-off mode . The lead arm works on the zero voltage mode. With the blocking effect of the saturated inductor.the initial current in the primary coiling of transformer is low ,so the lag arm works on the zero current mode when turned on.So,in conclusion, the load works on the soft-switch mode.In phase-shifted soft-switch circuit, the parallel capacitor must be completely discharged during work process;otherwise, the capacitors in parallel connection with the lead arm will be short by IGBT turned on, so IGBT will be broken. There are many states such as no load,load,short-circuit etc. in welding and the current phase-shifted
    
    soft-switch circuit can not work on soft-switch mode in all load.An auxiliary circuit is designed,which can supply a reactive current to make the capacitors parelle connection with the IGBT discharged completely in light and no load and realize soft switch mode.So,the phase-shifted soft-switch circuit can be applied to the welding power source to improve their efficiency and reliability.The research has been applied to many welding machines,such as manual arc welding,gas arc welding and Submerged arc welding ,and so on.And it gets much more achievement on then manufacture of skip, the construction of power station and steel structure project.The common inverter has input rectifying diode and filter electrolytic capacitor to turn the AC into DC.The circuit has such shortcomings as can cause electric grid peak current whose interfere to the electric grid is strong. Because it is complex and costly,three-phase active PFC rectifier can not be used in welding power source nowadays. According to welding characteristics and technics,a single stage three-phase PFC rectifier is put forward in which the voltage signal of the electric grid is introduced into the feedback loop of the inverter peak current to compensate the input current,so the PFC is improved which can reach 0.95 in full load and the harmnic is reduced whose 5th harmic reduce from 55 % to 20%.The control mode of the welding inverter can be divided into two groups :the voltage mode and the current mode. The peak current mode can prevent the transformer from bias magnet and the switching device from failing causing by overcurrent but it is easy to be interfered.On studying the peak current close loop feedback,the slope compensate signal is introduced into the feedback loop to prevent duty circle from tingling and increase the steability of the close loop current. According to the interfere the diode inverse recovery current opposed on the peak current loop, an inverse recovery current elimination circuit is designed to screen the current front edge of t
引文
[1] 林三宝,黎明,吴林.计算机在焊接中的应用现状及发展前景[J].焊接,1998, (1) :2-4
    [2] 包晔峰,吴毅雄,蔡育新.CO2焊接技术的发展趋势[J].电焊机,2001,31(8) : 7-11
    [3] 吴祥淼,黄石生,王志强,方平,薛家祥.逆变焊接电源的发展及其可靠性研究[J]. 电焊机,200l,31(2) :8-11,19
    [4] 黄石生,陆沛涛,李阳,罗卫红.逆变焊机的应用与发展现状、趋向、问题及对策[J]. 电焊机,2000,30(8) :11-12,28
    [5] 殷树言,陈树君,刘嘉,黄鹏飞,王冬平.逆变焊接技术的现状与发展[J].焊接技术, 2002,31(12) :29-32
    [6] 李建国,朱旗,刘和君,郭晓敏.统一认识全面推广使用逆变焊机[J].电焊机,2000, 30(6) :3-5
    [7] 殷树言,陈树君,黄鹏飞,刘嘉.逆变焊接技术的现状与发展[J].焊接技术(增),1999, (12) :3-4
    [8] 张占松,蔡宣三.开关电源的原理与设计[M].北京.电子工业出版社,1998:46-102
    [9] 黄石生,吴祥淼,王志强等.现代焊接电源的新发展[J].中国机械工程,2002,13(14) : 1253-1256
    [10] 黄石生,李远波,吴祥淼.大功率弧焊逆变器的电磁兼容性设计与研究[J].电焊机, 2003,33(5) :11-13
    [11] 殷树言,黄鹏飞,黄勇.软开关逆变弧焊电源的工作机理研究[J].北京工业大学学报, 1998,24(3) :55-61
    [12] 皮佑国,王定庚,黄石生.弧焊逆变电源零开关技术发展态势[J].焊接技术,1997, (3) :41-43
    [13] P. C. Theron, J. A. Ferreira, J. C. Fetter, H. W. E. Koertzen. Welding Power Supplier Using the Partial Series Resonant Converter. IEEE, 0-7803-0891-31/93, 1993: 1391-1396
    
    [14] 赵晶,齐铂全,张伟,吴红杰.串联式IGBT串联谐振感应钎焊电源及其控制[J].焊接, 2003,(4) :22-25
    [15] 殷树言,陈树君.软开关变换技术在弧焊逆变电源中的应用[J].1999, (1) : 18-21
    [16] 白志范,王伟明,蒋志宏,张义.LCL型谐振式弧焊电源稳态数学分析[J].焊接学报, 2000,21(4) :80-83
    [17] 陈树君,卢振祥,黄鹏飞,殷树言等.双零软开关弧焊逆变电源[J].焊接学报,2002, 23(3) :1-5
    [18] 陈树君,耿正,冯雷等.用饱和电感改善软开关弧焊逆变电源的性能[J].焊接学报, 1998,(12) :46-51
    [19] 王振民,黄石生,余文松等.新型软开关弧焊逆变器的仿真研究[J].机械与电子, 2001, (1) :32-34
    [20] 倪倩,齐铂金.软开关全桥PWM逆变焊机主回路拓扑结构发展现状[J].焊接技术,2002, 31(1) :4-6
    [21] 陈延明,王志强,曹彪,黄石生.软开关CO2焊机的研制[J].电力电子技术,1998, (3) :51-54
    [22] 杜贤昌,白志范,邓占峰,孙威威,张义.谐振式软开关弧焊逆变电源[J].焊接学报, 2003,24(3) :52-56
    [23] 黄石生薛家祥余文松陈延明.新型弧焊电源及其智能控制[J].中国工程科学, 2000,2(4) :20-24
    [24] 王清,张相军,吴林,林尚扬.全桥逆变电阻焊电源零电压的开通条件[J].焊接学报, 2000,21(3) :20-23
    [25] 王军波,孙振国,陈强等.半桥式IGBT逆变焊接电源输出容量计算及变压器参数设计 [J]. 电焊机,2000,30(12) :16-19
    [26] 项安,武和雷,潘辉章.一种新型的软开关PWM弧焊逆变电源[J].南昌大学学报(工科 版),1998,20(4) :43-46
    [27] 薛家祥,余文松,罗文红.电流模式控制零电压软开关焊接逆变器[J].焊接学报,2003, 23(4) :35-40
    [28] 黄石生,吴祥淼,王振民,余文松.新型弧焊逆变器的静特性理论分析[J]. 新技术新工艺,2001,(11) :31-32
    
    [29] 吴文楷,朱志明,罗小锋,张人豪.逆变焊机功率因数的分析与校正[J].电焊机, 1998,28(5) :18-20
    [30] Juan W. Dixon, Jos'e M. Contard, Luis A. Mor'an. A Fuzzy-Controlled Activ-e Front-End Rectifier with Current Harmonic Filtering Characteristics and Minimum Sensing Variables., IEEE TRANSACTIONS ON POWER ELECT-RON-ICS, 1999, 14(4) : 724-729
    [31] 费跃农,陈悦.逆变焊机主回路的计算机仿真分析[J].焊接技术,1998,(3) : 23-25
    [32] 彭华良,都东,何云峰等.弧焊逆变器功率变换网络的仿真[J].焊接学报,2001, 22(5) :53-56
    [33] 盖志武,李东升,马岩,蒲春华.逆变式焊条电弧焊电源的simulince仿真[J]. 焊接学报,2002,23(5) :31-34
    [34] 朱六妹,杜宪昌,王伟.CO2电弧焊动态特性的仿真研究[J].电焊机,Vol.31, 2001(11) :14-16,35
    [35] 吴文楷,朱志明,张波.仿真在逆变弧焊电源研究中的应用[J].电焊机,1997,(4) : 11-13

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700