用户名: 密码: 验证码:
二维稳态传热系统的模糊反演及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传热学反问题(Inverse Heat Transfer Problems,IHTP)是一类典型的反演课题,它是指根据研究对象内部或表面的温度信息反求如热物性参数、几何形状、边界条件以及源项等未知特征参量。各类传热学反问题广泛存在于科学研究以及航天、化工、材料加工处理、动力工程、冶金工程、无损探伤等工程领域,对其进行深入研究,具有十分重要的科学意义和工程意义。
     模糊推理是建立在模糊集合理论基础上的一种较为典型的不确定推理方法和计算框架,对输入信息具有明显的抗干扰能力;能够有效利用不精确、不确定和不完备信息进行推理和决策;能够综合运用定性知识(包括经验知识)和定量知识完成推理过程,并具有较低的计算成本。本文研究了基于模糊推理的稳态传热过程的反演问题,主要研究工作与结果包括以下五个方面。
     ①以平板传热系统边界温度分布反演问题为例,建立了基于共轭梯度法(CGM)、Levenberg-Marquardt方法(L-MM)和遗传算法(GA)等常用最优化算法的传热学反问题模型。通过数值仿真试验,讨论了待反演参数的初始猜测值、温度测点数目以及温度测量误差等条件对反演结果的影响,在此基础上,总结了前述的求解传热学反问题常用方法存在的局限性。
     ②针对前述最优化算法求解传热反问题存在的局限性,提出了应用模糊逻辑理论研究传热学反问题的新思路;针对传热过程热边界条件反演问题测量信息与待反演信息所固有的空间分布特征,提出了一种适于传热学反问题的分散式模糊推理(Decentralized Fuzzy Inference,DFI)机制,建立了二维稳态传热学反问题的分散式模糊推理系统。该系统利用一组分散的模糊推理单元根据局部测量信息及相应的推理规则,通过模糊推理,产生与该局部信息对应的模糊推理分量;进一步,根据各待反演信息对于各局部测量信息影响程度进行综合协调,在综合考虑所有测量信息的前提下,获得各待反演参数的补偿量,实现传热系统的模糊反演。
     ③研究了分散式模糊推理(DFI)系统中分散推理结果的综合协调问题,提出了基于影响关系矩阵的传热学反问题分散式模糊推理系统的综合协调方法。对于规则区域导热系统热边界条件分布反演问题,提出通过传热过程定性分析确定影响关系矩阵方法,并以此方法建立了两类典型的规则区域导热系统的影响关系矩阵,形成了基于定性加权的分散模糊推理(QDFI)方法;对于一些相对复杂的非规则区域传热系统反演问题,提出采用灵敏度分析建立影响关系矩阵方法,形成基于灵敏度加权的分散模糊推理(SDFI)方法。利用DFI方法研究了典型的二维稳态传热系统边界温度分布和几何形状分布的反演问题,并与CGM的反演结果进行比较,证明了DFI方法求解传热学反问题的有效性。
     ④采用QDFI方法分别求解了连铸结晶器内壁热流分布估计以及工业窑炉内壁温度分布两类实际分布参数传热系统的反演问题;讨论了待反演参数的初始猜测值、温度测点数目及测量误差等因素对于热边界条件反演结果的影响,并CGM进行了比较。结果表明,相对CGM,DFI能够明显降低反演结果对测点数目的依赖程度以及对测量误的敏感程度,具有良好的抗不适定性。
     ⑤采用所建立的SDFI方法根据膜式水冷壁背火侧的局部可测壁温实现了水冷壁向火侧辐射热流、水冷壁管内汽水介质温度以及对流换热系数等传热边界条件的同时反演;讨论了不同反演条件对反演结果的影响,并与CGM的反演结果进行了对比,证明了SDFI具有较好的抗不适定性。研究表明,采用DFI方法能够更加有效地根据水冷壁背火侧的局部可测量壁温确定水冷壁传热边界条件以及向火侧温度分布及危险点位置等重要信息,为电站锅炉运行状态的分析与监测提供必要依据。
Inverse heat transfer problems (IHTP ) is a typical inverse subject, which involves the determination of thermophysical properties, geometric parameters, boundary conditions and source heat based on the internal or surface temperature of the object studied. IHTP is widely used in scientific research and the engineering filed such as aerospace, chemicals, materials processing, power engineering, metallurgical engineering, nondestructive testing, etc. It is of significant scientific and engineering value to further study the IHCP.
     Fuzzy inference is a typical uncertain reasoning method and calculation framework on the basis of the fuzzy set theory. It has the low computational cost and the strong capacity of resisting disturbance to input information and can effectively use the imprecise and incomplete information for reasoning and decision-making. What’s more, qualitative knowledge (including experience knowledge) and quantitative knowledge can both be applied in fuzzy inference process. In this paper the inverse problem of steady heat transfer process is studied based on the fuzzy inference, the main works include the following five parts:
     ①Take the problem of estimating the flat boundary temperature for example, the inverse model of heat transfer process is established on the typical optimal algorithms such as CGM, L-MM and GA. Through numerical simulation experiments, the influence of different initial guesses of the estimated parameters, the number of temperature measuring points and measurement errors on the inversion results are discussed, and the limitation of the before-mentioned method used for solving the inverse heat transfer problems are summarized.
     ②For the limitation of the optimization algorithm used for solving the inverse heat transfer problems, a new idea based on fuzzy logical theory is presented to study the inverse heat transfer problem, and for the inherent spatial distribution characteristics among measured information and the estimated information of the inverse thermal boundary conditions problem, the decentralized fuzzy inference (DFI) strategy tending to solve the inverse heat transfer problems is proposed. And then the decentralized fuzzy inference system is set up based on DFI strategy for two-dimensional inverse steady heat transfer problem. According to the local measured information and the fuzzy inference rules, the system utilizes a set of decentralized fuzzy inference units to produce the fuzzy inference components which are corresponding to the local measured information. Further, depending on the importance of the estimated information for local measured information, the fuzzy inference components are synthesized. And under the premise of considering all the measured information, the compensations of estimated information are gained, and the estimation is achieved.
     ③The synthetic issue on the fuzzy inference results in the DFI system is studied, and the synthesized method based on influence relation matrix for DFI system is presented. For the inverse heat transfer problem to estimate thermal boundary conditions of heat transfer system on regular domain, the influence relation matrix is gained by the qualitative analysis of the heat transfer process, by which the influence relation matrix of two typical heat transfer system on regular domain is established, and the qualitative weighting decentralized fuzzy inference (QDFI) method is formed. For some complicated inverse heat transfer problem on irregular domain, the sensitivity analysis is used to build the influence relation matrix, and the sensitivity weighting decentralized fuzzy inference (SDFI) is formed. The DFI is performed to estimate the temperature boundary of a flat and the geometry of a tube inner surface, and the results are compared with the CGM to show its validity.
     ④The heat flux distribution at the metal-mold interface and the temperature distribution at furnace inner surface are solved by QDFI method respectively, and the influence of initial guesses of the inverse parameters, the number of measuring points and measurement errors on thermal boundary conditions results are discussed. From the results, it can be concluded that DFI compared to CGM can reduce the dependence of results on the number of measuring points and weaken the effect of measurement errors on the results. The DFI is of a good anti ill-posed characteristic for solving inverse problem of the actual distribution parameters heat transfer system.
     ⑤The thermal boundary conditions of membrane water wall, which are comprised of the radiation heat flux at the fireside, the temperature of the working steam-water-mixtures and the convective heat transfer coefficient in the water wall tubes, are estimated in the same time by the SDFI method based on the local measured temperatures on the back of membrane water wall, and the influence of the different inverse conditions on the results are discussed. In comparison with CGM, it is concluded that SDFI is of a good anti ill-posed characteristic. The study shows that DFI can determine the thermal boundary conditions of membrane water wall, the temperature distribution of the fireside and the positions of the dangerous points more effectively based on the local measured temperatures on the back of membrane water wall. It would provide necessary basis for the operation state analysis and monitoring of power plant boilers.
引文
[1]王彦飞.反问题的计算方法及其应用[M].北京:高等教育出版社, 2007.
    [2]于达仁,范轶,徐志强.基于分布信息融合的直流锅炉燃料量信号重构[J].中国电机工程学报, 2004, 24(2): 191-195.
    [3] Zhou Huaichun, Lou Chun, Cheng Qiang, et al. Experimental investigations on visualization of three-dimensional temperature distributions in a large-scale pulverized-coal-fired boiler furnace [J]. Proceedings of the Combustion Institute, 2005, 30(1): 1699-1706.
    [4] Huai-Chun Zhou, Shu-Dong Han. Simultaneous reconstruction of temperature distribution, absorptivity of wall surface and absorption coefficient of medium in a 2-D furnace system [J]. International Journal of Heat and Mass Transfer, 2003, 46(14): 2645-2653.
    [5] D. Liu, F. Wang , J.H. Yan, et al. Inverse radiation problem of temperature field in three-dimensional rectangular enclosure containing inhomogeneous, anisotropically scattering media[J]. International Journal of Heat and Mass Transfer, 2008, 51(13): 3434-3441.
    [6]刘吉臻,刘焕章,常太华,等.部分烟气信息下锅炉煤质分析模型[J].中国电机工程学报,2007,27(14): 1-5.
    [7] Piotr Duda, Jan Taler. A new method for identification of thermal boundary conditions in water-wall tubes of boiler furnaces [J]. International Journal of Heat and Mass Transfer, 2009, 52(5-6): 1517-1524.
    [8] V. T. Borukhov, V. A. Tsurko, G. M. Zayats. The functional identification approach for numerical reconstruction of the temperature-dependent thermal-conductivity coefficient [J]. International Journal of Heat and Mass Transfer, 2009, 52(1): 232-238.
    [9]王广军,邓良才,陈红.锅炉汽温对象逆动力学过程模糊辨识[J].中国电机工程学报, 2007, 27(20): 76-80.
    [10]李灵犀,高海军,陈龙,等.两相邻路口信号的分层递阶模糊控制[J].中国公路学报, 2002, 15(4):66-68.
    [11]任新宇,樊思齐.航空发动机多变量自学习模糊解耦控制[J].推进技术, 2004, 25(6):535-537.
    [12]王庆利,王丹,井元伟.基于模糊解耦的火电单元机组负荷控制[J].控制与决策, 2006, 21(4):435-439.
    [13] Lin, D.T.W., Yang, C.Y. The estimation of the strength of the heat source in the heat conduction problems [J]. Applied Mathematical Modelling, 2007, 31(12): 2696-2710.
    [14]高思云,杨晨.利用贝叶斯模型进行热参数估计[J].系统仿真学报, 2006, 18(6):1462-1465.
    [15]谭建宇,刘林华,杨建国.管道内壁侵蚀形状识别的无网格法研究[J].工程热物理学报, 2010, 31(1): 124-126.
    [16]钟志强,叶向荣,张振顶,等.基于最小二乘支持向量机的水冷壁温度软监测建模[J]. , 2011, 3:21-24.
    [17] Alifanov, O.M. Inverse heat transfer problems [M].Spring-Verlag, Berlin, 1994.
    [18] Chen, T.C., Liu, C.C. Inverse estimation of heat ?ux and temperature on nozzle throat-insert contour [J]. International Journal of Heat and Mass Transfer, 2008, 51:3571-3581.
    [19] Guo, Z.P., Xiong, S.M., Liu, B.C., et al. Determination of the heat transfer coefficient at metal–die interface of high pressure die casting process of AM50 alloy [J]. International Journal of Heat and Mass Transfer, 2008, 51:6032-6038.
    [20] Chen, T.C., Liu, C.C., Jang, H.Y., et al. Inverse estimation of heat ?ux and temperature in multi-layer gun barrel [J]. International Journal of Heat and Mass Transfer, 2007, 50: 2060-2068.
    [21] Ouafa, T., Marcel, L. Prediction of protective banks in high temperature smelting furnaces by inverse heat transfer [J]. International Journal of Heat and Mass Transfer, 2006, 49:2180-2189.
    [22] Lau, F., Lee, W.B., Xiong, S.M., Liu, B.C. A study of the interfacial heat transfer between an iron casting and a metallic mould [J]. Journal of Materials Processing Technology, 1998, 79: 25-29.
    [23] Nowak, I., Smolka, J., Nowak, A.J. An effective 3-D inverse procedure to retrieve cooling conditions in an aluminum alloy continuous casting problem [J]. Applied Thermal Engineering, 2010, 30(10): 1140-1151.
    [24] Zhang, L.Q., Li, L.X., Ju, H., et al. Inverse identification of interfacial heat transfer coefficient between the casting and metal mold using neural network [J]. Energy Conversion and Management, 2010, 51(10): 1898-1904.
    [25] Zhu, L.N., Wang, G.J., Chen, H., et al. Inverse estimation for heat flux distribution at the metal-mold interface using fuzzy inference [J]. Journal of Heat Transfer of the ASEM, 2011, 133(8): 1602-1608.
    [26] Duda, P., Taler, J. A new method for identification of thermal boundary conditions in water-wall tubes of boiler furnaces[J]. International Journal of Heat and Mass Transfer, 2009, 52(5):1517-1524.
    [27] Taler J., Duda P., Taler D., et al. Identification of local heat flux to membrane water walls in steam boilers[J]. Fuel, 2009, 88(2):305-311.
    [28] Fang Z H, Xie D L, Diao N R. A new method for solving the inverse conduction problem insteady heat flux measurement[J]. Heat Mass Transfer, 1997, 40(16):3947-3953.
    [29]张志正,孙保民,徐鸿,等.沁北发电厂超临界压力电站锅炉水冷壁截面温度场分析[J].中国电机工程学报, 2006, 26(7):25-28.
    [30]张志正,曲志忠,刘汉政,等.膜式水冷壁特定点温度相关性的研究[J].动力工程, 2005, 25(6):25-28.
    [31]张志正,孙保民,郭永红,等.超超临界压力锅炉水冷壁危险点壁温在线监测方法研究[J].中国电机工程学报, 2005, 25(3):130-134.
    [32]钱炜祺,蔡金狮.再入航天飞机表面热流密度辨识[J].宇航学报, 2000, 21(4): 1-6.
    [33]蔡泽民.基于图像处理技术的飞行器表面传热测量与计算方法[D].中山:中山大学博士学位论文, 2009.
    [34]刘俊峰.罐装食品灭菌传热过程中的数值研究[J].河南工业大学学报, 2008, 29(5): 67-70.
    [35]朱伯芳.大体积混凝土的温度应力与温度控制[M].北京:中国电力出版社, 1999.
    [36]刘俊峰,宋玉普,王登刚,等.基于遗传算法的混凝土一维瞬态导热反问题[J].工程力学, 2003, 20(5): 87-90.
    [37]单奎,张小松,李舒宏.一种现场测定土壤源热泵岩土热物性的新方法[J].太阳能学报, 2010, 31(1): 22-26.
    [38]张锦玲.基于遗传算法的岩土热物性参数确定方法研究[D].武汉:华中科技大学硕士学位论文, 2009.
    [39] Yi, Y.H., Y, D.W., Chen, D.Y., et al. Retrieving crop physiological parameters and assessing water deficiency using MODIS data during winter wheat growing period [J]. Canadian Journal of Remote Sensing, 2007, 33(3): 189-202.
    [40]许永华,吴敏,曹卫华,等.高炉温度场的红外图像识别检测方法及应用[J].控制工程, 2005, 12(4): 354-356.
    [41]徐志敏.基于边界元的高炉侵蚀线反演[D].上海:复旦大学博士学位论文, 2006.
    [42]李晓春.摄动方法求解高炉炉底热侵蚀反问题[D].上海:复旦大学硕士学位论文, 2005.
    [43]尚志刚.基于红外热像图的糖尿病诊断新技术[D].上海:同济大学硕士学位论文, 2002.
    [44] Jing, Liu, Lisa, X. Xu. Boundary information based on diagnostics on the thermal states of biological bodies [J]. International Journal of Heat and Mass Transfer, 2000, 43(15): 2827-2839.
    [45]李晓会.利用红外热像诊断人体内部病灶机理的研究[D].天津:天津理工大学硕士学位论文, 2007.
    [46]高思云.基于热传导反问题的材料热物性预测方法研究[D].重庆:重庆大学博士学位论文, 2005.
    [47] Sawaf, B., Ozisik, M.,N. Determing the constant thermal conductivities of orthotropicmaterials by inverse analysis [J]. International Journal of Heat and Mass Transfer, 1995, 22(2): 201-211.
    [48] Okamoto, K., Li, B.Q. A regularization method for the inverse design of solidification processes with natural convection [J]. International Journal of Heat and Mass Transfer, 2007, 50(22): 4409-4423.
    [49] Hong, Y.K., Baek, S.W. Inverse analysis for estimating the unsteady inlet temperature distribution for two-phase laminar flow in a channel [J]. International Journal of Heat and Mass Transfer, 2006, 49(5): 1137-1147.
    [50]隋大山,崔振山.金属凝固过程界面换热系数的Tikhonov正则化辨识[J].计算物理, 2008, 25(4): 463-469.
    [51]王登刚,刘迎曦,李守巨.二维稳态导热反问题的正则化解法[J].计算物理, 2000, 4(2): 56-60.
    [52] Yang, F., Fu, C.L. A simplified Tikhonov regularization method for determining the heat source [J].Applied Mathematical Modeling, 2010, 34(11): 3286-3299.
    [53] Lin, Z.C., Lin, V.H. Thermal conductivity investigation for upsetting with a procedure of combining inverse model and the proposed regularization of Tikhonov method[J].Journal of Materials Processing Technology, 2005, 167(2): 208-217.
    [54] Shidfar, A., Darooghehgimofrad, Z., Garshasbi, M. Note on using radial baisi functions and Tikonov regularization method to solve an inverse heat conduction problem [J].Engineering Analysis with Boundary Elements, 2009, 33(10): 1236-1238.
    [55] Engl, H.W., Zou, J. A new approach to convergence rate analysis of Tikhonov regularization for parameter identification in heat conduction [J].Inverse Problems, 2000, 16: 1907-1923.
    [56] Hansen. P.C. Regularization tools: A Matlab package for analysis and solution of discrete ill-posed problems [J]. Numerical Algorithms, 1994, 6:1-35.
    [57] Sawaf, B., Ozisik, M.N. Deterrmining the constant thermal conductivities of orthotropic materirals by inverse analysis [J]. International Journal of Heat and Mass Tranfer, 1995, 22(2): 201-211.
    [58] Park, H.M., Yoon, T.Y. Solution of the inverse radiation problem using a conjugate gradient method [J]. International Journal of Heat and Mass Transfer, 2000, 43: 1767-1776.
    [59] Lin, David. T.W., Yan, W.M., Li, H.Y. Inverse problem of unsteady conjugated forced convection in parallel plate channels [J]. International Journal of Heat and Mass Tranfer, 2008, 51: 993-1002.
    [60] Colaco, M. J., Orlande, H.R.B. Inverse natural convection problem of simultaneous estimation of two boundary heat fluxes in irregular cavities [J]. International Journal of Heat and MassTranfer, 2004, 47: 1201-1215.
    [61] Huang, C.H., Ozisik, M.N. A irect integration approach for simultaneously estimating spatially varying thermal conductivity and heat capacity [J]. International Journal of Heat and Fluid Flow, 1990, 11(3): 262-268.
    [62] Brasil, W.M., Su, J., Freire, A.P.S. An inverse problem for the estimation of upstream velocity profiles in an incompressible turbulent boundary layer [J]. International Journal of Heat and Mass Transfer, 2004, 47: 1267-1274.
    [63] Huang, C.H., Chi, L.H. A three-dimensional inverse problem in predicting the heat flux distribution in the cutting tools [J]. Numerical Heat Transfer Part A: Application, 2005, 48(10): 1009-1034.
    [64] Alifanov, O.M. Solution of an inverse problem of heat conduction by iteration methods [J]. Journal of Engineering Physics and Thermopysics, 1974, 26(4): 471-476.
    [65] Artyukhin, E.A., Rumyantsev, S.V. Optimal choice of descent steps in gradient methods of solution of inverse heat-conduction problems [J]. Journal of Engineering Physics and Thermophysics, 1980, 39(2): 865-869.
    [66] Huang, C.H., Yuan, I.C., Ay, Herchang. A three-dimensional inverse problem in imaging the local heat transfer coefficients for plate finned-tube heat exchangers [J]. International Journal of Heat and Mass Transfer, 2003, 46(19): 3629-3638.
    [67] Huang, C.H., Jan, L.C., Li, Rui. A three-dimensional inverse problem in estimating the applied heat flux of a titanium drilling [J]. International Journal of Heat and Mass Transfer, 2007, 50: 3265-3277.
    [68] Huang, C.H., Lo, H.C. A three-dimensional inverse problem in estimating the internal heat flux of housing for high speed motors [J]. Applied Thermal Engineeing, 2006, 26: 1515-1529.
    [69] Huang, C.H., Chiang, M.T. A transient three-dimensional inverse geometry problem in estimating the space and time-dependent irregular boundary shpaes [J]. International Journal of Heat and Mass Transfer, 2008, 51: 5238-5246.
    [70] Huang C H, Chen C W. A boundary element-based inverse problem in estimating transient boundary conditions with conjugate gradient method[J]. International journal of Numerical Methods Engineering, 1998, 42(5):943-965.
    [71] Huang, C.H., Shih, C.C. A shape identification problem in estimating simultaneously two interfacial configurations in multiple region domain [J]. Applied Thermal Engineering, 2006, 26(1): 77-88.
    [72] Huang, C.H., Wang, S.P. A three-dimensional inverse heat conduction problem in estimating surface heat flux by conjugate gradient method [J]. International Journal of Heat and MassTranfer, 1999, 42(18): 3387-3403.
    [73] Huang C H. Inverse heat conduction problem of estimating boundary fluxes in an irregular domain with conjugate gradient method[J]. International Journal of Heat and Mass Transfer, 1998, 34(1):47-54.
    [74] Liu, L.H., Tan, H.P. Inverse radiation problem in three-dimensinal complicated geometric systems with opaque boundaries [J]. Journal of Quantitative Spectroscopy and Radiative Tranfer, 2001, 68(5): 559-573.
    [75]杨海天,胡国俊.共轭梯度法求解多宗量稳态传热反问题[J].应用基础与工程科学学报, 2002, 10(2): 174-180.
    [76]范春利,孙瑞丰,杨立.基于红外测温的试件内部缺陷的识别算法研究[J].工程热物理学报, 2007, 28(2): 304-306.
    [77] Waston, G.A. A Levenberg-Marquardt method for estimating polygonal regions [J]. Journal of Computational and Applied Mathematics, 2007, 208: 331-340.
    [78]刘慧开,杨立,孙丰瑞.基于传热反问题的异步电机参数估计方法研究[J].中国电机工程学报, 2006, 26(22):151-156.
    [79]范春利,孙丰瑞,杨立,等.电气设备零件内部三维缺陷的定量红外识别算法研究[J].中国电机工程学报, 2006, 26(2):159-164.
    [80]杨晨,高思云.基于热传导反问题的各向异性材料热物性预测方法[J].化工学报, 2007, 58(6):1378-1384.
    [81]卢涛,刘波,卢红光. Levenberg-Marquardt算法求解三维圆管稳态导热反问题[J].热科学与技术, 2010, 09(2):133-138.
    [82] Rouquette, S., Guo, J., Masson, P. Le. Estimation of the parameters of a Gaussian heat source by the Levenberg-Marquardt method: Application to the electron beam welding, International Journal of Thermal Sciences, 2007, 46(2): 128-138.
    [83]孙金金,朱彤,吴家正.神经网络法求解墙体传热系数关键输入变量的分析[J].新型建筑材料, 2006,12:61-63.
    [84]曲洪权,庞丽萍,李运泽.序列蒙特卡洛滤波在卫星传热反问题中的应用[J].系统仿真学报, 2006,20(13):3614-3616.
    [85]程文龙,张宏泽,赵锐.基于蒙特卡洛反演的热探针导热系数测量方法[J].中国科学技术大学学报, 2008,38(4):414-418.
    [86]闫长海,曲寿江,孟松鹤.金属热防护系统多层隔热材料的传热分析及参数优化[J].南京航空航天大学学报, 2006,23(4):257-263.
    [87] Raudensky M, Horsky J, Krejsa J, Slama L. Usage of artificial intelligence methods in inverse problems for estimation of material parameters[J]. International Journal of Numerical methodheat fluid flow, 1996, 6(8):19 -29.
    [88] Karadag, R., Akgobek, O. The prediction of convection heat transfer in floor-heating system by artificial neural networks [J]. Sensors and Acuators A: Physical, 2011, 166(1): 149-156.
    [89]袁利国,邱华,聂笃宪.热传导(对流-扩散)方程源项识别的粒子群优化算法[J].数学的实践与认识, 2009, 39(14):94-101.
    [90]师学明,王家映.地球物理资料非线性反演方法讲座(四)遗传算法[J].工程地球物理学报, 2008, 5(2):129-140.
    [91]陈怡.用遗传算法和反问题监测高炉炉缸炉底热侵蚀[D].上海:复旦大学硕士学位论文, 2005.
    [92]王振红,朱岳明,武圈怀,等.混凝土热学参数试验与反分析研究[J].岩土力学, 2009, 30(6):1821-1830.
    [93] Liu, F.B. A modified genetic algorithm for solving the inverse heat transfer problem of estimating plan heat source [J]. International Journal of Heat and Mass Transfer, 2008, 51: 3745-3752.
    [94] Liu, F.B. A hybrid method for the inverse heat transfer of estimating fluid thermal conductivity and heat capacity [J]. International Journal of Thermal Science, 2011, 50(5): 718-724.
    [95] Kim, K.W., Baek, S.W., Kim, M.Y., et al. Estimation of emissivities in a two-dimensional irregular geometry by inverse radiation analysis using hybrid genetic algorithm [J]. Journal of Quantitative Spectroscopy and Radiative, 2004, 87: 1-4.
    [96] Adili, A., Hasni, C., Kerkeni, C., et al. An inverse problem based on genetic algorithm to estimate thermophysical properties of fouling [J]. International Journal of Thermal Science, 2010, 49(6): 889-900.
    [97]王旭东,姚曼,尹合壁,等.神经元网络应用于圆坯连铸结晶器传热计算[J].北京科技学学报, 2008, 30(2):184-188.
    [98]蔻蔚,孙丰瑞,杨立.基于随机有限元与神经网络的传热参数的智能辨识[J].激光与红外, 2005, 27(1):70-74.
    [99] Deng, S., Hwang, Y. Applying neural networks to the solution of forward and inverse heat conduction problems [J]. International Journal of Thermal Science, 2006, 49: 4732-4750.
    [100] Sablani, S.S., A neural network approach for non-iterative calculation of heat transfer coefficient in fluid-particle systems [J]. Chemical Engineering and Processing, 2006, 40(4): 363-369.
    [101] Sablani, S.S., Kacimov, A., Perret, A.S, et al. Non-iterative estimation of heat transfer coefficients using artificial neural network models [J]. International Journal of ThermalScience, 2005, 48: 665-679.
    [102] Coelho, L.D.S., Freire, R.Z., Santos, G. H. D, et al. Identification of temperature and moisture content fields using a combined neural network and clustering method approach [J]. International Journal of Communications in Heat and Mass Transfer, 2009, 36(4): 304-313.
    [103]蔻蔚,孙丰瑞,杨立.粒子群优化算法用于缺陷的红外识别研究[J].激光与红外, 2006, 36(8):710-714.
    [104] Lee, K.H., Baek, S.W., Kim, K.W. Inverse radiation analysis using repulsive swarm optimization algorithm [J]. International Journal of Heat and Mass Transfer, 2008, 51: 2772-2783.
    [105] Vakili, S., Gadala, M.S. Effectiveness and efficiency of particle swarm optimization technique in inverse heat conduction analysis [J]. Numerical Heat Transfer Part B: Fundamentals, 2009, 56(2): 119-141.
    [106] Cortes, O., Urquiza, G., Hernandez, J.A. Inverse heat transfer using Levenberg-Marquardt and particle swarm optimization methods for heat source estimation [J].Applied Mechanics and Materials, 2009, 15: 35-40.
    [107]李士勇.模糊控制·神经控制和智能控制论[M].哈尔滨:同济大学出版社哈尔滨工业大学出版社, 1998.
    [108]王恒,贾民平,许飞云,等.球磨机负荷加权模糊控制算法设计与仿真[J].电力自动化设备, 2009, 29(2):117-120.
    [109]史雪虹,康景利,董巍,等.模糊控制在导弹倾斜稳定系统中的应用[J].北京理工大学学报, 1999, 19(2):189-189.
    [110]刘耀年,伏祥运,张文生,等.基于模糊识别与模糊聚类理论的短期负荷预测[J].电工技术学报学报, 2002, 17(8):83-86.
    [111]蔡开龙,谢寿生,吴勇.航空发动机的模糊故障诊断方法研究[J].航空动力学报, 2007, 22(5):833-837.
    [112]邓良才,王广军,陈红.锅炉气温对象的在线模糊辨识[J].中国电机工程学报, 2006, 26(18):111-115.
    [113]朱晓东,王杰.基于分层模糊系统的石油钻井参数预测模型[J].石油学报, 2010, 31(5):838-842.
    [114]刘训良,陶文铨,郑平,等.模糊控制方法在粘性流场计算中的应用[J].中国科学(E辑), 2002, 32(4):472-478.
    [115] Li, H.X., Zhang, X.X. , Li, S.Y. A three-dimensional fuzzy control methodology for a class of distributed parameter systems [J]. IEEE Transactions on fuzzy systems, 2007, 15(3): 470-481.
    [116]朱丽娜,王广军,沈曙光.基于分散推理结构的加热炉钢坯温度分布模糊控制[J].控制与决策, 2009, 24(9):1425-1428.
    [117]张吉礼,赵天怡,卢振,等.环境试验室热工系统规则自提取模糊控制仿真[J].控制理论与应用, 2010, 27(4):457-465.
    [118]路永坤,夏超英.改进变论域模糊控制及其在混沌系统中的应用[J].天津大学学报, 2007,43(8):749-754.
    [119]黄冬梅,程树康,李军.变论域自组织模糊PID控制在逆变电源中的应用[J].电力自动化设备, 2005,27(11):45-47.
    [120]李保国,宗光华.未知环境中移动机器人实时导航与避障的分层模糊控制[J].机器人, 2007,27(6):481-485.
    [121]孙多青,霍伟,杨枭.含模型不确定性移动机器人路径跟踪的分层模糊控制[J].控制理论与应用, 2007,21(4):489-494.
    [122]林金星,沈炯,肖国涛,等.一种基于分层模糊控制的免疫遗传优化算法[J].东南大学学报, 2005,35(1):46-49.
    [123]胡包钢,应浩.模糊PID控制技术研究发展回顾及其面临的若干重要问题[J].自动化学报, 2001,27(4):567-582.
    [124]杨金龙,姬红兵,樊振华.一种模糊推理强机动目标跟踪新算法[J].西安电子科技大学学报, 2011,38(2):72-76.
    [125]林剑,雷英杰.基于神经网络的直觉模糊推理方法[J].系统工程与电子技术, 2009,31(2):1172-1175.
    [126]方德洲.基于支持向量机的模糊规则提取算法的研究[D].北京:中国科学技术大学硕士学位论文, 2007.
    [127]胡玉霞,高金峰.一种预测混沌时间序列的模糊神经网络方法[J].物理学报, 2005,54(11):5034-5038.
    [128]卢险峰.最优化方法应用基础[M].上海:同济大学出版社, 2003.
    [129]唐焕文,秦学志.实用最优化方法[M].大连:大连理工大学出版社, 2004.
    [130]胡志刚,花向红. Levenberg-Marquarat算法及其在测量模型参数估计中的应用[J].测绘工程, 2008, 17(4): 31-34.
    [131]张光澄,王文娟,韩红蕾.非线性最优化计算方法[M].北京:高等教育出版社, 2005.
    [132]周荣敏,雷延峰.管网最优化理论与技术:遗传算法与神经网络[M].郑州:黄河水利出版社, 2002.
    [133]诸静.模糊控制原理与应用[M].北京:机械工业出版社, 2004.
    [134]孔祥谦.有限单元法在传热学中的应用[M].北京:科学出版社, 1998.
    [135] O.M. Alifanov. Solution of an inverse problem of heat conduction by iteration methods [J]. J. Eng. Phy. Thermophys, 26 (1974) 471-476.
    [136] Wang, H.M., Li, G.R., Lei, Y.C. et al. Mathematical heat transfer model research for the improvement of continous casting slab temperature[J]. ISIJ International, 2005, 45(9): 1291 -1296.
    [137] Yin, H.B., Yao, M. Inverse problem-based analysis on non-uniform profiles of thermal resistance between strand and mould for continuous round billets casting[J]. Journal of Materials Processing Technology, 2007, 183:49-56.
    [138] Han, H.N., Lee, J.E., Yeo, T.J. et al. A finite element model for 2-Dimensional slice of cast strand [J]. ISIJ International, 1999, 39(5): 445-454.
    [139]李春燕,阎维平,梁秀俊,等. 600MW超临界锅炉燃烧器区膜式水冷壁温度场的数值计算[J].中国电机工程学报, 2008, 28(5):677-681.
    [140]刘旭东,盛伟,张劲松. 600MW超临界锅炉炉膛膜式水冷壁的热行为研究[J].中国电机工程学报, 2008, 28(5):677-681.
    [141]李燕,李文凯,吴玉新,等. 600MW超临界循环流化床锅炉的炉膛水冷壁传热[J].清华大学(自然科学版), 2009, 29(12):1083-1087.
    [142]盛春红,陈听宽.膜式水冷壁温度场分布的数值计算[J].热能动力工程, 1998, 13(73): 61-65.
    [143]李春燕,阎维平,李钧,等.基于矩量法的超临界锅炉水冷壁温度场数值计算[J].中国电机工程学报, 2008, 32(5):29-34.
    [144]盛春红,陈听宽.矩形鳍片膜式水冷壁辐射角系数的求解[J].锅炉技术, 1997, 8: 8-11.
    [145]蒋文萍.膜式水冷壁传热边界条件反演[D].重庆:重庆大学, 2011.
    [146]杨世铭,陶文铨.传热学(第三版)[M].高等教育出版社, 1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700