用户名: 密码: 验证码:
工业CFB锅炉掺烧高硫石油焦油页岩混合燃料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2013年茂名石化2000万吨/年油品升级改造建成投产后,石油焦年产量达104万吨/年。根据石油焦性质,高硫石油焦主导出路是锅炉燃料,但是高硫焦市场销路不稳定,较难找到合适的固定用户。而社会一些小冶炼厂、土窑炉由于其燃烧设备简陋,没有任何脱硫设施,由此排放的二氧化硫对环境造成的污染造成较大影响。
     茂名石化公司2台410吨/小时CFB锅炉2005年底建成投用,根据设计,这两台CFB锅炉燃料设计为100%烟煤和70%烟煤+30%石油焦两种。按照满负荷运行,掺烧30%石油焦消耗18万吨/年,仅占茂名石化石油焦的产量的17.3%。利用CFB结构优势,通过掺烧方式提高石油焦掺烧量,为高硫焦找到一个稳定有效环保的出路,成了炼油企业急需解决的课题。
     本论文通过研究CFB锅炉结构特点以及锅炉运行安全性、环保要求和经济指标等影响因素,论证了燃料品质特性是影响指定CFB锅炉安全、经济、环保运行的关键因素。在理论研究的基础上,结合高硫石油焦油页岩不同混合物和脱硫剂石灰石理化分析数据,通过在西安热工研究院CFBC试验炉掺烧不同混合比例的高硫石油焦油页岩混合燃料的中试研究,初步确定CFB锅炉掺烧高硫石油焦油页岩混合燃料的可行性,首次提出在工业CFB锅炉掺烧高硫石油焦油页岩混合燃料。在半工业中试基础上,通过在茂名石化410t/h CFB锅炉实炉掺烧高硫石油焦油页岩混合燃料的工业试验,分析研究掺烧过程中存在问题,提出长期掺烧高硫石油焦油页岩混合燃料合理控制参数和设备技术改造建议,首家完成燃煤CFB锅炉掺烧高硫石油焦油页岩混合燃料工业试验。综合各方面研究结果,我们认为:对于指定CFB锅炉,通过对冷渣系统和石灰石系统能力核定、改造后或控制高硫石油焦油页岩适当的混合比例,在工业CFB锅炉燃烧高硫石油焦油页岩混合燃料在满足环保条件下是安全的、经济的。本论文主要内容如下:
     本论文第二章简述了CFB锅炉结构特点,阐述了CFB锅炉安全环保运行的影响因素,论述了燃料特性对CFB锅炉运行的影响。指出燃料特性对锅炉安全运行存在较大影响,明确提出锅炉燃用燃料硬度、灰熔点、硫含量、水含量、热值和灰含量必须在设计范围内,并从烟气污染物生成原理角度证明燃料特性是影响锅炉污染物达标排放唯一可控因素,燃料的热值、硫含量、灰含量是控制的关键指标。通过锅炉效率推算方法,论证对于指定锅炉,燃料品质是CFB锅炉经济运行唯一可控因素。
     本论文第三章是对高硫石油焦、油页岩和石灰石理化数据进行分析,研究高硫石油焦、油页岩及其混合物的低位发热量、元素组成、全硫、粒度分布、密度、灰熔点、灰成分、着火和燃尽特性、可磨性、冲刷磨损性、自脱硫能力、颗粒度分布特性以及石灰石颗粒分布特性、反应能力和活性。通过分析认为石油焦和油页岩单样个别指标超出了发电锅炉用煤划分标准,不适合单样燃用,但两种燃料按一定比例混合的混合燃料与燃煤电厂常规燃料相关指标水平接近,采用CFB锅炉技术燃用高硫石油焦油页岩适当混合比例的混合燃料可取得较理想效果。
     论文第四章是分析研究石油焦油页岩混合燃料在1MWth CFB试验炉燃烧、脱硫、排放及灰渣特性中试数据。研究数据表明,试验炉条件下,CFB锅炉掺烧高硫石油焦油页岩混合物能满足安全、环保和经济要求,主要依据:CFB锅炉采用床下油枪点火方式,大于420℃时混合燃料能够成功着火,床温控制在840℃-900℃,试验燃料均能稳定燃烧;飞灰可燃物含量1.91%-5.70%,底渣可燃物含量0.96%-2.42%,燃烧效率95.7%-99.05%,飞灰份额65.71%-83.90%; Ca/S=2.4, T=877.5℃时,S02排放浓度175.8-491.3 mg/m3(标,6%02),脱硫效率95.1-98.3%;NOx排放浓度321.7mg/m3-625.1 mg/m3(标,6%O2); CO排放浓度32.45 mg/m3-85.96 mg/m3,并随过量空气系数、炉膛温度等因素的不同而变化。
     论文第五章是分析研究中国石化集团茂名分公司410t/hCFB锅炉掺烧高硫石油焦油页岩混合燃料工业试验数据。研究数据表明,指定工业CFB锅炉掺烧高硫石油焦油页岩混合物能满足安全、环保和经济要求,主要依据:工业CFB锅炉掺烧75%石油焦和25%油页岩时,锅炉连续稳定运行,床温保持在830℃左右;飞灰平均含碳量11.5%,底渣平均含碳量4.3%,飞灰份额约35%,锅炉热效率90.89%。运行最佳参数为运行排烟氧量控制在3.6%,床下流化风率控制在50%左右,风室压力维持在11kPa以上。石灰石能力充足条件下,锅炉SO2排放浓度小于200 mg/Nm3,脱硫效率95%。氮氧化物排放浓度101.6 mg/Nm3-132.9 mg/Nm3,达到了GB13223-2003所规定的低于650 mg/m3(标,6%02)的排放要求;钙硫摩尔比3.0、床温830℃条件下,150℃时飞灰比电阻值为3.1×1011Ω·cm,较普通燃煤飞灰比电阻小得多;实炉飞灰磨损指数Hm为13.56%、14.32%,磨损特性属中等磨损。
The output of petroleum coke will reach 1.04 million t/a after completion and operation of the 20 million t/a oil product upgrading and revamping project of SINOPEC CORP. Maoming COMPANY (SINOPEC Maoming) in 2013. Based upon the property of petroleum coke, the dominant outlet of high sulfur petroleum coke is boiler fuel. However, as the market for high sulfur coke is instable, it is hard to find suitable regular customers. Some small metallurgical plants and earth kilns in the community, due to shabby combustion equipment and lack of desulfurization facilities, have been causing great environmental pollutions by the carbon dioxide.
     SINOPEC Maoming's 2x410 t/h CFB boilers were completed and put into operation at the end of 2005. According to the design, fuels of the two CFB boilers were 100% soft coal or 70% soft coal plus 30% petroleum coke. If calculated based on full-load operation, the two CFB boilers consume 180 K t/a by petroleum coke as 30% of the mixed combustion fuel, which, however, only accounts for 17.3% of SINOPEC Maoming's petroleum coke output. Therefore, it has become an urgent subject for the refinery to find a stable and effective environment-friendly way out for the high sulfur coke through mixed combustion to improve the quantity of mixed combustion of petroleum coke by taking advantage of CFB structural advantages.
     This paper argues that fuel properties are the critical factors impacting designated CFB boilers'safety, economics and environment-friendly operation by study of CFB boilers' construction features and such influencing factors as the boiler operation safety, environmental requirements and economic indicators. On the basis of theoretical research, in combination with the physical and chemical analysis data about different mixture of high sulfur petroleum coke and oil shale as well as the desulfurizer lime stone and by way of pilot research on mixed combustion of mixed fuels of high sulfur petroleum coke and oil shale at different blending ratios on 1MWt/h CFBC test boiler of Xi'an Thermal Power Research Institute, the feasibility of combusting mixed fuels of high sulfur petroleum coke and oil shale on CFB boilers was preliminarily determined and it was proposed for the first time to burn mixed fuels of high sulfur petroleum coke and oil shale on industrial CFB boilers. On the basis of semi-industrial pilot-scale test and through industrial test of combustion of mixed fuels of high sulfur petroleum coke and oil shale on SINOPEC Maoming's two 410 t/h physical CFB boilers, analysis and study were conducted for problems existing in the course of mixed combustion, reasonable control parameters and recommendations for technical modification of equipment were proposed for long-term combustion of mixed fuels of high sulfur petroleum coke and oil shale. SINOPEC Maoming was the first company completing the industrial test of combusting mixed fuels of high sulfur petroleum coke and oil shale on CFB boilers. Combining various study results, we drew the conclusion that combustion of mixed fuels of high sulfur petroleum coke and oil shale on industrial CFB is safe and cost-effective for designated CFB boilers under the condition of meeting environmental requirements through capacity verification of the slag cooling system and lime stone system, control of appropriate blending ratio of high sulfur and oil shale after modifications. The paper contains the following:
     The second part of this paper briefly describes CFB boilers'construction features, expounds factors impacting the safe and environment-friendly operation of CFB boilers and discusses the impact of fuel properties on CFB boilers'operation. It is pointed out in the paper that the fuel properties have greater impact on safe operation of CFB boilers. In addition, it is expressly indicated that the boilers'fuel hardness, ash melting point, sulfur content, moisture content, heat value and ash content must be within the design values. It also proves from the perspective of fume pollutant generation mechanism in the paper that the fuel properties are the only controllable factor affecting compliance discharge of boiler pollutants and the fuel's heat value, sulfur content and ash content were the critical indicators of control. It is argued through calculations of the boiler efficiency in the paper that the fuel quality is the only controllable factor for cost-effective operation of CFB.
     The third part of this paper analyzes the physical and chemical data of high sulfur petroleum coke, oil shale and lime stone, studied the lower heating value, element components, total sulfur, particle size distribution, density, ash melting point, ash content, ignition and burnout properties, grind ability, erosive wear, ability of self-desulfurization and particle size distribution features of high sulfur petroleum coke, oil shale and their mixture as well as the particle size distribution features, reaction capacity and activity of lime stone. Analysis reveals that some individual indicators of single sample of the petroleum coke and oil shale have exceeded the coal classification standards for power generation boiler. They are not applicable for combustion of single sample. However, indices of the mixture of such two fuels at certain ratios are close to those of conventional fuels of the coal fired power plant. Ideal effects can be achieved by combustion of mixed fuels blended with high sulfur petroleum coke and oil shale at appropriate ratio on CFB boilers.
     The fourth part of this paper analyzes and studies the pilot test data related to combustion of mixture of petroleum coke and oil shale on 1 MWt/h CFB testing boiler, the desulfurization, discharge and cinder property. The research data shows that combustion of mixture of high sulfur petroleum coke and oil shale on CFB under the conditions of testing boiler could meet the requirements of safety, environmental friendliness and cost-effectiveness. The main basis includes:CFB boilers adopt the mode of oil gun ignition under bed, in which the mixed fuel could successfully burn when the temperature goes higher than 420℃, the testing fuel can be stably combusted when the bed temperature is controlled between 840℃and 900℃; the content of ash flammables is 1.91%-5.70%, the content of bottom cinder flammables 0.96%-2.42%, combustion efficiency 95.7%-99.05%, the contents of fly ash 65.71%-83.90%; in the case of Ca/S=2.4 and T=877.5℃, the discharge concentration of SO2 is 175.8-491.3mg/m3(standard,6%O2) and desulfurization efficiency 95.1-98.3%; the discharge concentration of NOx is 321.7 mg/m3-625.1mg/m3 (standard,6%O2); the discharge concentration of CO is 32.45 mg/ m3-85.96mg/m3, which also changes with variations of such factors as the excess air coefficient and hearth temperature.
     The fifth part of this paper analyzes and studies the industrial test data related to combustion of mixed fuels of high sulfur petroleum coke and oil shale on SINOPEC Maoming's 410 t/h CFB boilers. The research data reveals that combustion of mixture of high sulfur petroleum coke and oil shale on designated industrial CFB boilers can meet the requirements of safety, environment and cost-effectiveness. The main basis includes:when 75% petroleum coke and 25% oil shale are combusted in industrial CFB boilers, the boilers are operated in a continuous and stable manner and the bed temperature maintains at about 830℃; the average carbon content in fly ash is 11.5%, the average carbon content in bottom cinder 4.3%, the content of fly ash about 35% and the boiler's heat efficiency 90.89%. The optimum operation parameters are that the oxygen content of operation fume discharge is controlled at 3.6%, the fluidized air rate under bed is controlled at about 50% and the pressure of air chamber is maintained above 11 kPa. Under the conditions of adequate lime stone capacity, the boiler's concentration of SO2 discharge is less than 200mg/Nm3 and the desulfurization efficiency 95%. The concentration of NOx discharge is 101.6mg/Nm3-132.9mg/Nm3, reaching the discharge requirements of below 650 mg/m3(standard,6%O2) as specified by GB13223-2003; Under the conditions of molar ratio of calcium to sulfur 3.0 and bed temperature of 830℃, the resistance of fly ash ratio at 150℃is 3.1×1011Ω·cm, much less than that of normal bunker coal; the fly ash abrasion index of physical boiler was 13.56% and 14.32%, indicating an average abrasion of abrasion property.
引文
[1]我国建材工业2008年能源需求形势分析及2009年能源供需变化趋势预测,21世纪建筑材料,2009,3:2-3.
    [2]张忠孝.吴江全,栾翔等,洁净煤燃烧技术发展趋势,电站系统工程,1999.3:15-20.
    [3]王文选,赵石铁,赵长遂等,石油焦燃烧特性研究,锅炉燃烧技术,2005,8:20-23.
    [4]刘正华.循环流化床锅炉燃烧控制系统研究,华北电力大学(河北)硕士论文,2006.
    [5]高纪栓.循环流化床锅炉及其技术特点,全国供热行业热源技术研讨会论文集,2004.
    [6]付萍.循环流化床锅炉特性分析及其参数优化,华北电力大学(河北)硕士论文,2005.
    [7]王迎东.大型循环流化床机组存在的问题及解决方法,华北电力大学(北京)硕士论文,2008.
    [8]常莉莉.模糊神经网络在循环流化床中的应用,华北电力大学(北京)硕士论文,2006.
    [9]李福友.循环流化床锅炉的磨损分析与对策,现代电力,2005,02:10-11.
    [10]贺彦.CFB锅炉燃烧控制系统初探,曲阜师范大学硕士论文,2007.
    [11]杨福涛.抛煤机链条炉和煤粉炉改循环流化床锅炉技术研究,山东大学硕士论文,2006.
    [12]侯祥松,张建胜,王进伟,蒋文斌,邢兴等.循环流化床锅炉中水冷壁的磨损原理及其预防,锅炉技术,2007,07:13-14.
    [13]徐军.循环流化床锅炉的优化控制,江南大学硕士论文,2005.
    [14]王天伟.CFB锅炉的特点及其在高海拔地区的运行,青海电力,2005,06:10-11.
    [15]刘志华.基于烟气成分分析的电站锅炉入炉煤质监测模型的研究,中南大学硕士论文,2007.
    [16]王舰.煤质(种)特性对电站锅炉影响的试验研究,浙江大学硕士论文,2002.
    [17]胡宏伟.煤种(质)变化对电站锅炉运行经济性影响的试验研究,浙江大学硕士论文,2004.
    [18]王建江.燃煤特性对电站锅炉性能的影响分析,科技资讯,2005.
    [19]张将军.基于信息融合的燃烧发热量异常判,华北电力大学(河北)硕士论文,2009..
    [20]唐平舟.火电厂煤质工程分析系统的初步研究,华北电力大学硕士论文,1999.
    [21]徐福海.三河电厂350MW锅炉改烧神华煤的研究与实施,华北电力大学(河北)硕士论文,2006.
    [22]苏怀胜.大唐盘山电厂2×600MW锅炉混煤燃烧优化分析与研究,华北电力大学(河北)硕士论文,2008.
    [23]李登新,吕俊复,郭庆杰,岳光溪等.循环流化床灰渣利用研究进展,热能动力工程,2003,01:20-15.
    [24]高廷源.循环流化床锅炉脱硫灰渣特性及综合利用研究,四川大学硕士论文,2004.
    [25]李玲燕.循环流化床锅炉脱硫飞灰的增湿脱硫研究,山东大学硕士论文,2007.
    [26]岳焕玲,原永涛,朱洪峰等.循环流化床锅炉灰渣综合利用,锅炉技术,2006,12:10-11.
    [27]杨文,谢晓闻,黄羽雕,褚国强等.循环流化床锅炉飞灰综合利用初探,工业锅炉,1999,03:12-13.
    [28]翁仁贵,刘心中,陈祖兴等.循环流化床粉煤灰综合利用研究进展,能源与环境,2008,10:20-21.
    [29]党辉,王洪升,黄红,杨爱丽等.循环流化床脱硫灰渣的特性及应用初探,国际电力,2004,12:24-25.
    [30]邓雨生.410t/h循环流化床锅炉混烧石油焦油页岩热力性能试验分析,动力工程学报,2011,06:14-15.
    [31]蒋敏华等.大型循环流化床锅炉技术[M].北京:国家电力公司热工研究院,2009.
    [32]陆伟群,房鼎业,杨智勇等.华东理工大学学报(自然科学版),2010,06:14-15.
    [33]陆伟群,房鼎业,杨智勇等.华东理工大学学报(自然科学版),2010,10:13-14.
    [34]蒋敏华等.NERC在循环流化床燃烧技术领域的研究与开发[J].热力发电,1999,(2):10-14.
    [35]蒋茂庆,孙献斌等.我国首台引进的300MW循环流化床锅炉及其关键技术[J].热力发电,2004,33(9):1-3.
    [36]岑可法等.CFB锅炉理论设计与运行[M].北京:中国电力出版社,1998.
    [37]高洪培.山西振兴集团240t/hCFB锅炉调试报告[R].国家电力公司热工研究院技术报告,2000.
    [38]吴春来主编煤炭标准及说明汇编[M].北京:中国标准出版社.1997.442-498.
    [39]巴苏P.CFB锅炉的设计与运行[M].上海:科学技术出版社,1994.
    [40]周怀春.煤质变化对锅炉燃烧稳定性影响的模拟研究[J].电站系统工程,1994,(2):35-38.
    [41]雍玉梅.煤种对循环流化床焦炭燃烧速率的影响[J].燃烧科学与技术,2005,11(1):47-51.
    [42]关越.煤质、煤种特性对火电厂经济性影响的研究[D].河北:华北电力大学,2006,(2):45-55.
    [43]沈伯雄,姚强,刘德昌等.流化床中煤和生物质混烧N20和NOx排放规律研究[J].电站系统工程,2002,18(2):51-53.
    [44]王世山.循环流化床锅炉受热面磨损的数学模型及预防措施[J].热力发电,2007,(2):24-27.
    [45]钱宇等.循环流化床锅炉防磨技术[J].热力发电,2007,35(6):72-74.
    [46]苗永兴.循环流化床磨损与稳燃的分析与研究[D],内蒙古:内蒙古工业大学,2008.
    [47]范宏丽,徐旭常,王世昌等.煤粉的煤岩和燃烧特性研究[J]工程热物理学报,1999,20(4):515-519.
    [48]李百宁.煤质对循环流化床锅炉燃烧工况的影响,电站系统工程,2006,22(4).
    [49]徐家刚.烟气露点温度的确定[J].节能,1990,(6):28-30.
    [50]马利强,路霁鸰,岳光溪等.流化床条件下煤的一次爆裂特性的实验研究[J].燃料化学学报,2000,28(1):44-48.
    [51]王舰.煤质种特性对电站锅炉影响的试验研究[D].浙江:浙江大学,2002.
    [52]Chen J H, Lu X F. Progress of petroleum coke combusting in circulating fluidized bed boilers-a review and future perspectives[J]. Resources, Conservation and Recycling,2007,49(3):203-216.
    [53]王文选,王风君,韩松等.循环流化床中石油焦和煤混合燃烧S02排放特性研究[J].燃烧科学与技术,2003,9(6):507-510.
    [54]Zhao C S, Wang W X, Wang F J, et al. S02 emission characteristics from co-firing of petroleum coke and coal in circulating fluidized bed[J]. Journal of Southeast University (English Edition).2005,21(1):48-52.
    [55]Alliston M G, Probst S G, et al. Experience with the Combustion of Alternate Fuels in a CFB Pilot Plant, In Proceeding of 13th International Conference on Fluidized Bed Combustion,1995.
    [56]Jia L F, Anthony E J, Lau I, Wang J S. Study of coal and coke ignition in fluidized bed[J]. Fuel,2006,85(5-6):635-642.
    [57]Abdulally I F, Reed K. Experience update of firing waste fuels in FOSTER WHEELER's circulating fluidized bed boilers, In Proceeding of 13th International Conference on Fluidized Bed Combustion,1995.
    [58]高洪培,王鹏利,张康道等.中国石化集团茂名石化公司石油焦油页岩燃料混合试烧试验研究报告[R],2008.
    [59]高洪培,王鹏利,张康道等.中国石化集团茂名石化公司石油焦油页岩燃料混合实炉试验研究报告[R],2009.
    [60]何宏舟,苏建民等.燃烧福建无烟煤的循环流化床锅炉的设计特点及运行性能分析[J]华东电力,2003,31(4):4-7.
    [61]党黎军.CFB锅炉的启动调试与安全运行[M].北京:中国电力出版社,2003.
    [62]高小涛,周珏等.电站锅炉低NOx燃烧技术的发展与探讨[J].华北电力,2003,17-18.
    [63]韩东太.循环流化床锅炉燃烧石油焦的可行性试验[J].华东电力,2003,31(8):51-53.
    [64]于海龙,姜秀民,赵翔等.油页岩与煤的混烧特性研究[J].燃料化学报,2004,32(3):274-277.
    [65]刘昀,姜秀民,孙键等.循环流化床油页岩燃烧的最佳方式[J].沈阳工程学院学报:自然科学版,2006,2(3):207-210.
    [66]骆仲泱,方梦祥,施正伦等.循环流化床锅炉燃烧福建无烟煤的试验研究[R]杭州:浙江大学热能工程研究所,1995.
    [67]徐建国,魏兆龙.用热分析法研究煤的燃烧特性[J].燃烧科学与技术,1999,5(2):175-179.
    [68]常晨,陈英涛.锅炉热效率变化对供电煤耗影响的定量分析[J].华北电力技术,2004,9:10-11.
    [69]姚欣,循环流化床锅炉飞灰可燃物含量高的原因分析[J].东北电力技术,2003,11:24-25.
    [70]崔敏,循环流化床锅炉燃烧系统热力计算探讨[J],电力建设,2002,23(9):8-9.
    [71]严建华.煤在流化床燃烧特性的研究[D].杭州:浙江大学,1990.
    [72]王国金,王剑秋,李术元等.油页岩流化床燃烧过程中挥发分火焰的平均温度计算[J].燃烧科学与技术,1995,1(4):354-359.
    [73]柏静偏,王攀等.茂名油页岩的热解特性[J].东北电力大学学报,2006,6(2):73-78.
    [74]沈伯雄.石油焦燃烧特性的综合实验研究和模拟[D].武汉:华中科技大学,2000.
    [75]王晓晖,董秦,田正斌等.循环流化床锅炉的现状及发展[J].能源研究与信息,2006,22(3):165-168.
    [76]路霁邻,黎永,杨小勇等.煤焦的晶格结构、本征反应活性和密度初探[J].燃料化学学报,1998,26(6):492-496.
    [77]薛雷,杨海瑞,岳光溪,等.流化床内煤着火特性实验研究[J].煤炭转化,2004,27(2):51-53.
    [78]何鹏.掺烧煤泥在300MW循环流化床锅炉中的应用[J].安徽电气工程职业技术学院学报,2009,14,(1):65-68.
    [79]孙德珍,郑德伦,杜淳.循环流化床锅炉掺烧煤泥的特点和实施[J].能源技术,2003,24(2):74,76.
    [80]王凤君,赵长遂.煤和石油焦混合燃料在循环流化床中的燃烧特性[J].电站系统工程,2004,20(4):35-36.
    [81]武卫红,蔡新春,王晓杰等.掺烧煤泥在循环流化床锅炉中应用[J].锅炉制造,2008,4:9-10,17.
    [82]冯俊凯,岳光溪,吕俊复.循环流化床燃烧锅炉[M].北京:中国电力出版社,2003.
    [83]井维刚.循环流化床锅炉煤泥掺烧方式调研[A].循环流化床机组技术交流论文集(9)2006:184-186.
    [84]邢诚.动力配煤原理在火力发电厂中的应用[D].北京:华北电力大学,2006.
    [85]董洪山.动力配煤理论值与实际值之间的规律[J].研究煤质技术,2007,4,17-19.
    [86]王启民,徐猛,郭庆杰等.压降法测量煤灰的初始粘结温度[J].燃料化学学报,2003,31(3):22--224.
    [87]欧阳永明,匡亚莉,石常省等.动力配煤数学模型的研究[J].江苏煤炭,2004,1:56-57.
    [88]殷庆勇,时勇,李彦茹等.循环流化床锅炉烧煤泥+煤矸石的试验[J].煤气与热力,2006,26(3):39-41.
    [89]Johnsson J E. Formation and reduction of nitrogen oxides in fluidized-bed combustion[J]. Fuel,1994,73(9):1398-1415.
    [90]Winter F, Wartha C, lOffler G, et al. Twenty-sixth symposium (International) on Combustion/The Combustion Institute,1996.
    [91]Liu H, Kojima T, Feng B, et al. Effect of heterogeneous reactions of coal char on nitrous oxide formation and reduction in a circulating fludized bed[J]. Energy and Fuels,2001,15(3):696-701.
    [92]Amand L E. Leckner B. Metal emissions from co—combustion of sewage sludge and coal/wood in fluidized bed[J 1. Fuel,2004, (83):1803-1821.
    [93]Li Y H, Lu G Q, Rudolph V. The kinetics of NO and N2O reduction over coal chars in fluidised-bed combustion[J]. Chemical Engineering Science, 1998,53(1):1-26.
    [94]Aarna I, Suuberg E M. A review of the kinetics of the nitric oxide-carbon reaction[J]. Fuel,1997,76(6):475-491.
    [95]Basu, "Circulating Fluidized Bed Boilers",1991。
    [96]J. M. Lee, J.S.Kim, J.J.Kim. Comminution characteristics of Korean anthracite in a CFB reactor. Fuel,2003,82:1349-1357.
    [97]Oriala M, Karki j, Hasa H, et al. The effect of wood fuels on power plant availability[J]. The Finnish Wood Energy Technolo- gY Programme,2004: 139-154.
    [98]Leont ev A V, Fomicheva O A, Proskurnina M V, et al. Modern chemistry of nitrous oxide[J]. Russian Chemical Review,2001,70(2):91-104.
    [99]Diego L F, Lonodno C A, Wang X S, et al. Influence of operating parameters on NOx and N20 axial profiles in a circulating fluidized bed combustor[J]. Fuel,1996,75(8):971-978.
    [100]ANGH, XIAO X, WANG X, et al. Model research onmaterial balance in a circulating fluidized bed boiler. In:Xuchang Xu ed [C]. Proceeding of the 5th InternationalSymposium on Coal Combustion, Nanjing China, 2003:251-255.
    [101]Winter F, Loffler G et al. The NO and N2O formation mechanism under circulating fluidized bed combustor conditions:From the single particle to the pilot-scale [J]. The Canadian journal of chemical engineering,1999, 77 (2):275-283.
    [102]唐建成,赵振宁等.410t/h燃煤锅炉水冷壁结渣原因探讨及其解决[J].华北电力技术,2001(1).
    [103]杨海瑞,吕俊复,岳光等.溪循环流化床锅炉的设计理论与设计参数的确定.动力工程,2006(1):42-43.
    [104]岑可法,倪明江,骆仲泱等.循环流化床锅炉理论设计和运行[M].北京:中国电力出版社,1998.
    [105]吉东建,于振庆,赵振林等.循环流化床锅炉原煤掺烧稻壳初探[J].工业锅炉,2005(4):38-19.
    [106]周一工,循环流化床锅炉添加石灰石脱硫后排放与灰平衡计算.环境技术,2000,1:33-34.
    [107]李绚天,煤的燃烧过程中加石灰石脱硫对NOx排放的影响,燃烧化学学报,1991,19:71-76。
    [108]曾汉才,燃烧与污染,华中理工大学出版社,1992.
    [109]金保升,蓝计香等.飞灰循环流化床燃烧动力特性的试验研究[j].东南大学学报,1990(2):49-55.
    [110]荆有印,王保生,齐永霞等.循环流化床锅炉循环倍率的通用数学模型[J]动力工程,2003,(6).
    [111]金晓钟,吕俊复等.循环床锅炉燃烧份额分布的实验研究与理论分析[J1.洁净煤技术.1999.3(1):26-29.
    [112]刘向军,赵燕,徐旭常等.循环流化床内煤粉颗粒团燃烧行为理论分析[J].中国电机工程学报,2006,26(1):30-34.
    [113]刘辉,姜秀民,吴少华,秦裕混等,循环流化床燃烧室密相区燃烧份额计算的数学模型.动力工程,2003,23(4):2511-2512.
    [114]侯祥松,杨海瑞,岳光溪等.一种沥青岩输送特性的实验研究[J].锅炉技术,2005,收录.
    [115]李爱民,池勇,严建华等.大颗粒炭在流化床中燃烧的热应力破碎理论[J].煤炭学报,1998,23(2):208-211.
    [116]骆仲泱,何宏舟,王勤辉等.循环流化床锅炉技术的现状及发展前景[J].动力工程,2004,24(6):761-767.
    [117]杨励丹,贾璐非,吴少华等.沸腾炉中宽筛分物料的分层流化.工程热物理学报.1983.
    [118]张荣光,那永洁,吕清刚等.循环流化床煤气化平衡模型研究[J].中国电机工程学报,2005,25(18):80-85.
    [119]张殿军,陈之航等.生物质燃烧技术的应用[J].能源研究与信息,1999。15(3):15-21.
    [120]林宗虎,魏敦菘,安恩科等.循环流化床锅炉[M].北京:化学工业出版社,2004.
    [121]陈克俭.循环流化床锅炉旋风分离器效率的计算.动力工程,2003,23(2):2346-2349.
    [122]Blinichev V N, Strel'tsov V V, Lebedeva E S. An investigation of the size reduction of granular materials during their processing in fluidized beds[J]. Int. Chem. Eng,1968,8(4):615-618.
    [123]Connell M G R. Carbon sequestration and biomass energy offset: theoretical, potential and achievable capacities globally, in Europe and the UK[J]. Biomass and Bio-energy,2003,24(2):97-116.
    [124]Cheng Leming, Cen Kefa, Ni Mingjiang, et al. Heat transfer in circulating fluidized bed and its modeling [A]. Proc. of 13th Inter. Conf. on FBC, ed. by K. J. Heinschel [C], ASME Press, ISBN No.0-7918-1305-3,1995:487.
    [125]Mickley H S, Faiebanks D F. Mechanisms of heat transfer to fluidized beds [J]. AIChE J.,1955,1(3):374-384.
    [126]Wu R L, Grace J R, Lim C J. A model for heat transfer in circulating fluidized beds [J]. Chem. Eng. Sci.,1990,45(12):3389-3398。
    [127]Wang Quihui, Luo Zhongyang, Ni Mingjiang, et al. Particle population balance model for a circulating fluidized bed boiler[J]. Chemical Engineering Journal,2003,93(2):121-133.
    [128]Basu P, Fraser S. Circulating Fluidized Bed Bolier-Design and Operation[J]. Butterworths-Heinemann, Stoeham,1991:103-109.
    [129]Hihunen M A, Vilokki H A j, Holopainen H A. Green energy from wood-based fuels using foster wheeler CFB boilers [A]. Sama V pisupat ed proceedings of 17th International Conference on Fluidized Bed CombustionrC]. Florida ASME, May 2003:77-81.
    [130]Breitholtz C, Leckner B, Baskakov A P. Wall average heat transfer in CFB boilers[J]. Powder Technology,2001,120(1-2):41-48.
    [131]Xavier A M, Davidson J F. Heat transfer in fluidized beds:convective heat transfer in fluidized beds [M]. Fluidization 2nd Edition, Ed. by J. F. Davidson, R. Clift, D. Harrison, Academic Press London, ISBN 0-12-20552-7,1985:443-450
    [132]Pan Z G Wang D S IET. CFBC:Research and Development [C]. Proceedings of the 1993 Inter. Conf. on Fluidized Bed Combustion. Eds. byRubow L, Commonwealth G. Califor-nia:ASME Press,1993:93-98.
    [133]Chirone R, Massimilla L. The application of weibull theory to primary fragmentation of a coal during devolatilization[J]. Powder Technology, 1989,57 (3):197-212.
    [134]YangH, Lu J, Zhang H, etal. Coal ignition characteristicin CFB boiler[J]. Fuel,2005,84(14215):1849-1853.
    [135]LuJ, Zhang J, Yue G, etal. Heat transfer coefficientcalculation method of the heater in the circulating fluidizedbed furnace [J]. Heat Transfer2Asia Research,2002,31(7):540-550.
    [136]YangH, Yue G, Xiao X, etal.1D modeling on thematerial balance in CFB boiler[J].Chemical EngineeringScience,2005,60(2),5603-5611.
    [137]Lu J F, Wang Q M, Li Y, et al. Unburned carbon loss in fly ash of CFB boilers burning hard coal[D]. Beijing:Tsinghua Science and Technology, 2003.
    [138]Joos E. ModUlisation del'hydrodynamique de lagranulomUtrie des cendres dans une chaudiere alit fluidisecirculant[R]. Rapport electricitede France, September,2004.
    [139]Hiiseyin T Aysel T, A. Co-combustion of agricultural wastes in a circulating fluidized bed [A]. Kef a cen ed proceedings of 8th International Conference on Circulating Fluidized Beds[C]. Hangzhou:China, M ay 2005: 617-622.
    [140]Grubor B D, Oka S N, Liic M S, et al. Biomass FBC combustion bed agglomeration problems[A]. Rubow L N ed proceedings 13th International Conference on Fluidized Bed CombustionrC]. New York ASM E, M ay 1995, (1): 515-522.
    [141]Brewster M Q. Effective absorptivity and emissivity of particulate slender with application to a fluidized beds [A], in Circulating Fluidized Bed Technology IV[C], A. Avidan, ed., AIChE, New York,1986:137-144
    [142]Toraman O Y.Huseyin T, Bayat O, et al. Emission characteris-tics of co-combustion of sewage sludge with olive cake and lignite coal in a circulating fluidized bed[J]. Journal of Environmental Science and Health-Part A Toxic/Hazardous Substances and Environmental Engineering, 2004,39(4):973-986.
    [143]Gross R, Leach M, Bauen A. Progress in renewable energy [J]. Environment International,2003,29(Ⅰ):105-122.
    [144]Duo W L, Karidiol, Cross L, et al. Combustion and emission performance of a hog fuel fluidized bed boiler with addition of tire derived fuel [A]. Sama V pisupat ed proceedings of 17th Interna-tional Conference on Fluidized Bed Combust ion[C]. Florida ASM E,2003.3,18-21.
    [145]Su Yaxin. The study of CFB boiler heat transfer model and the flow and heat transfer of square-shape cyclone separator on theory and experiment[D]. Hangzhou:Zhejiang University,2000(in Chinese).
    [146]Cheng Leming. Heat transfer in a commercial circulating fluidized bed boiler[J]. Power Engineering,2000,20(2):587-591(in Chinese).
    [147]Ireneusz Lalak, Jaochim Seeber, Frank K, et al. Operational Experience with High Efficiency Cyclones:Comparison Between Boilers A and B in the Zeran Power Plant. In:Sarma V Pisupat ed. Proceedings of 17th International Conference on Fluidized Bed Combustion, Florida:ASME,2003: No.146.
    [148]Wen C. Y., Dutta s., "Research Needs for t he Analysis, De2sign and Seale up of Fluidized Beds", AIChe Symposium Series,73,161, (1973).
    [149]Jin Xiaozhong, Lu Junfu, Yang Hairui, et al. Comprehensive Mathematical Model for Coal Combustion in the Circulating Fluidized Bed Combustor. Tsinghua Science and Technology,6(4):319-325.
    [150]Senior R C, Brereton C. Modeling of Circulating Fluidized Bed Solids Flow and Distribution. Chem. Eng. Sci.1992,47(2):281-285.
    [151]徐贤.锅炉水冷壁管爆管原因分析[J].宁夏电力,2006,6.
    [152]马登卿.CFB锅炉选择性排灰冷渣器调试技术探讨[J].河北电力技术,2004,24:13-14.
    [153]赵晓强,阴建生,王征等.220t/h CFB锅炉风道燃烧器烧损原因分析及对策,河北电力技术,2003,22(3):49-50.
    [154]任红,王吉科等.电厂锅炉煤耗高的原因分析及对策,有色冶金节能,2004,21(8):32-33.
    [155]盛伟,刘勇等.410t/h锅炉热平衡试验及其热效率计算,电站系统工程,2003,19(6):37-38.
    [156]于瑞生,伦国瑞等.利用煤的热值和工业分析数据计算煤中各主要元素含量[J].华东电力,1993(4).
    [157]蔡杰进,马晓茜,廖艳芬等.锅炉运行性能与烟气含氧量优化研究,热力发电,2006,07:28-29.
    [158]岑可法,周吴,池作和.大型电站锅炉安全及优化运行技术[M].北京:中国电力出版杜,2002.
    [159]苑广存,赵长遂,吴新,陈晓平等,燃用石油焦和煤添加脱硫剂循环流化床锅炉热效率计算,洁净煤燃烧与发电技术,2005,6:11-12.
    [160]冯俊凯.循环流化床燃烧锅炉正常运行的规律[J].能源信息与研究,2000,16(1):1-6.
    [161]朱国桢,徐洋等.循环流化床锅炉设计与计算[M].北京:清华大学出版社,2004.
    [162]倪维斗.热动力系统建模与控制的若干问题[M].北京:科学出版社,1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700